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Abstract

Given a partial cube G, the ©-graph of G has ©-classes of G as
its vertices, and two vertices in it are adjacent if the corresponding
©-classes meet in a vertex of G. We present a counter-example to
the question from [8] whether ©-graphs of graphs of acyclic cubical
complexes are always dually chordal graphs. On a positive side, we
show that in the class of ACC p-expansion graphs each ©-graph is
both a dually chordal and a chordal graph. In the proof a funda-
mental characterization of a-acyclic hypergraphs is combined with
techniques from metric graph theory. Along the way, we also intro-
duce a new, weaker version of simplicial elimination scheme which
yields yet another characterization of chordal graphs.
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1 Introduction

Partial cubes (i.e. isometric subgraphs of hypercubes) were studied quite
intensively in recent years (we refer to some very recent papers investigating
different aspects of this class of graphs [7, 8, 10, 11, 14, 16, 17, 22, 23)).
One of the oldest characterizations of partial cubes, due to Winkler, uses
the so-called relation © on the edge set of a graph [25]. Winkler proved
that partial cubes are precisely those bipartite graphs in which this relation
is equivalence. The equivalence classes, called ©-classes or parallel classes,
contain edges that form a matching, and the distances between endvertices
of two edges uv,zy from one class are in the following relation: d(z,u) =
d(y,v) = d(z,v)—1 = d(y, u)—1. The structure in which different ©-classes
interfere is an issue of many investigations of partial cubes. Though this
interference is not completely arbitrary, there are some concepts (such as
the crossing graph [15]) which show that every graph structure can already
be realized within partial cubes (more precisely, every graph is the crossing
graph of some partial cube). There are several other natural ways how to
analyze the structure of ©-classes, and one of the seemingly simplest is the
intersection graph of ©-classes, called the ©-graph of a partial cube.

The concept of ©-graph was used in [8] to obtain good upper bounds
for the strong chromatic index of special families of partial cubes, see also
[17). For instance, s'(G) < 2A(G) holds for all p-expansion graphs {17] (see
[6] for more on p-expansion graphs). The main step in proving the bound
was the fact that ©-graphs of p-expansion graphs are chordal, and thus
perfect graphs. Several other connections between some natural classes of
partial cubes and their ©-graphs were then established in [14].

Bandelt and Chepoi introduced the graphs of acyclic cubical complexes
as follows [1]. First, a cubical complez K is a set of cubes of arbitrary
dimensions which is closed for subcubes and nonempty intersections {(our
interest here is in graphic cubes, although its geometric realization, called
a cubical polyhedron was also considered [24]). One may look at a complex
K as the hypergraph with vertices representing 0-dimensional cubes, and
edges representing cubes of X of larger dimensions. If this hypergraph has
an additional property to be a-acyclic (which is a well-known concept in
hypergraph theory, that was used for characterizing simplicial complexes,
and consequently chordal and dually chordal graphs [4]), then K is called
an acyclic cubical complez. In the underlying graph of a cubical complex X
two vertices of K are adjacent whenever they form a 1-dimensional cube, see
Bandelt and Chepoi [1]. The underlying graphs of acyclic cubical complexes
will be called shortly ACC graphs. They are a subclass of the well-known
class of median graphs (see Klavzar and Mulder [15] for a survey on median
graphs), and were characterized among median graphs in several ways [1].

The cube graph (i.e. intersection graph of maximal hypercubes) of
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an ACC graph coincides with the line graph of the corresponding cubical
complex, which is always a dually chordal graph [1] (in fact, as shown in
6], any dually chordal graph can be realized in this way). Since the cube
graph (like the ©-graph) of a p-expansion graph is always a chordal graph
[6], it is natural to look for other similarities between these two intersection
concepts. The following question from [8] seems plausible: Is ©-graph of
every ACC graph o dually chordal graph?

In this paper we give a negative answer to this question by presenting
a counter-example (see Fig. 1). On the positive side, we show that some
correlation between these concepts still exists. We prove that if a graph G
is an ACC and a p-expansion graph, then ©(G) is indeed dually chordal,
even more, it is a doubly chordal graph. We failed to obtain a direct
proof of this result, but the connection with hypergraphs was helpful ~ we
applied the characterization of dually chordal graphs as the line graphs of
a-acyclic hypergraphs, by showing that the naturally defined hypergraph of
©O-classes of an ACC p-expansion graph is indeed a-acyclic (the hypergraph
of ©-classes of a partial cube G is simply the hypergraph on the vertex set
of G whose edges correspond to ©-classes, each hyperedge consisting of the
endvertices of all the edges from a ©-class).

In the next section we present basic definitions and some preliminary
results that will be needed. The main result of Section 3 is that the 2-
section graph of the hypergraph of ©-classes of arbitrary ACC graph is
chordal. (The proof relies on, as far as we know, a new characterization of
chordal graphs, using the so-called almost simplicial elimination scheme).
Unfortunately, this hypergraph is not necessarily conformal if G is an ACC
graph. However, we prove in Section 4, that by assuming in addition that a
graph is p-expansion then the hypergraph of ©-classes becomes conformal.
This result combined with the theorem from Section 3, yields the main
positive result of this paper, that the ©-graph of every ACC p-expansion
graph is doubly chordal.

2 Preliminaries

We consider finite, undirected, connected graphs. For u,v € V(G), let
dg(u,v) (or d(u,v) for short) denote the length of a shortest path (also
called geodesic) in G from u to v. A subgraph H of a graph G is an
isometric subgraph if dg(u,v) = dg(u,v) for all u,v € V(H). A subgraph
H of a graph G is convez if for any two vertices u, v of H all shortest paths
between u and v in G lie in H. It is easy to see that the intersection of
two convex subgraphs is also convex. A conver closure of a subgraph H of
G is defined as the smallest convex subgraph of G which contains H. A
subgraph H of a graph G is called gated in G if for every z € V(G) there
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exists a vertex w in H such that u € I(z,v) for all v € V(H). If for some
z such a » in V(H) exists, it must be unique.

The hypercube (of dimension k) or k-cube is the graph Q) with the
vertex set {0, l}k where two vertices are adjacent whenever they differ in
exactly one position. The 2-cube will be also called the square. A graph
G is a partial cube if G is an isometric subgraph of some Qk. The most
important subclass of partial cubes is the class of median graphs {15], and,
in turn, ACC graphs form a subclass of median graphs [1]. Among other
subclasses of median graphs let us mention trees, hypercubes, and complete
grid graphs.

Edges e = zy and f = uv of a graph G are in the Djokovié¢-Winkler
relation © [9, 25] if dg(z,u) + da(y,v) # dg(z,v) + de(y,u). Relation
© is reflexive and symmetric. If G is bipartite, then © can be defined as
follows: e = zy and f = wv are in relation © if d(z,u) = d(y,v) and
d(z,v) = d(y,u). In partial cubes the relation © is also transitive and so
an equivalence relation, see Winkler [25]. Given an edge ab in a partial
cube G we define also the following sets:

Wap = {w € V(G) | d(a,w) < d(b,w)},

Uap = {w € Wop | w has a neighbor in Wi, }, and

Fap = {f € E(G) | abOf}.

Median graphs are defined as the graphs in which for every three vertices
there exists a unique vertex, lying on shortest paths between all pairs of the
three [21]. They are characterized as the bipartite graphs in which all sets
U, are convex [2). Note that the sets Fop coincide with ©-classes of G, and
each F,;, forms a matching between U, and Us, which in turn corresponds
to an isomorphism between the subgraphs induced by Usp and Upa.

Let G be a (bipartite) graph, and H an isometric subgraph of G. We
say that G’ is obtained from G by the peripheral expansion of H if G' is
the graph obtained from the disjoint union of graphs G and H, by addi-
tion of |V(H)| edges between H and the subgraph of G isomorphic to H
that correspond to an automorphism between the copies of H. We also say
that we obtained G’ from G by ezpanding H. Mulder characterized me-
dian graphs through the peripheral expansion procedure from K; in which
convex subgraphs are expanded at each step [21].

We will also use some hypergraph notions from [3]. Let H = (V,£) be a
hypergraph. A hypergraph H is conformal if any subset S C V' of elements
is contained in an edge of H provided any pair of elements of S is. The line
graph L(H) of H is the intersection graph of H (that is, vertices of L(H) are
edges of H, and two vertices are adjacent in L() if the corresponding edges
intersect). The 2-section 25 EC(H) of a hypergraph H has the vertices of H
as its vertex set, and two vertices are adjacent in 2SEC(H) if they belong
to a common edge of H. If H is conformal, then its edges are exactly
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the maximal cliques of its 2-section graph. A cycle of a hypergraph H is
z1, By, x2, B, . .., Tk, Ex, 21 where z; are distinct vertices and E; distinct
edges of H, such that z;,z4) € E; for i = 1,2,...,k (mod k), and no
member of H includes three distinct vertices of the cycle. A hypergraph H
is an a-acyclic hypergraph if it is conformal and has no cycles. We will use
the following characterization of a-acyclic hypergraphs.

Theorem 1 [{] A hypergraph is a-acyclic if and only if it is conformal
and its 2-section graph is chordal.

We refer to a comprehensive monograph, containing relations between
hypergraphs and related classes of graphs, see Brandstadt, Le and Spinrad
[5).

Bandelt and Chepoi [1] introduced the graphs of acyclic cubical com-
plexes as presented in the introduction. In addition, ACC graphs are pre-
cisely the graphs obtainable by peripheral expansion procedure from K,
such that a hypercube is expanded at each step. Hence every ACC graph
includes a pendant hypercube, that is the k-cube H, having an edge ab,
such that Usp = Wy is a subcube of H of dimension k — 1. Another useful
characterization of ACC graphs is that they are median graph that contain
no convex bipartite wheels B, for r > 4 [1] (where the bipartite wheel B, is
the graph, obtained from the cycle Ca, by adding a new vertex and edges
between this vertex and every second vertex of the cycle).

Recall that for any vertex v € V, the open neighborhood of v is the
set N(v) = {u € V | wv € E}, and its closed neighborhood is the set
Nlv] = N(v) U {v}. If A C V then N(A) denotes the union of open neigh-
borhoods of vertices of A (N[A] denotes the union of closed neighborhoods,
respectively). A vertex u € N[v] is a mazimum neighbor of v if for all
w € N[v] the inclusion N[w] C N[u] holds (note that v = v is not ex-
cluded). Let G be a graph and (v1,...,v,) the ordering of its vertices. Let
Gi be the subgraph of G induced by {v;,...,v,} and let N;[v] denote the

closed neighborhood of v in G;. The ordering (v1,...,v,) is a mazimum
neighborhood ordering if for all i € {1,...,n} there is a maximum neighbor
u; € N; [vi] :

N;w] C Ni[u;), for all w € N[v;].

A graph G is a dually chordal graph [4] if G has a maximum neighbor-
hood ordering. For a recent paper, dealing with intersection concepts, in
particular in relation with dually chordal graphs, we refer to [12).

A vertex v is simplicial if N[v] is a clique. A simplicial vertex which
has a maximum neighbor is called doubly simplicial. Furthermore, if each
vertex v; is doubly simplicial in G; then such ordering is called doubly per-
fect. A graph G is doubly chordal if G has a doubly perfect ordering. Note
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that doubly chordal graphs can be defined as the graphs which are simul-
taneously chordal and dually chordal [19]. There are several applications
of doubly chordal graphs, cf. [18].

3 2-section graph of the hypergraph of ©-
classes

Let T(G) denote the set of ©-classes of a partial cube G. We say that ©-
classes Fy, F; € T(G) are adjacent if there exist edges e; € Fy and e € F;
which are adjacent (that is, e; and ez have an end-vertex in common). By
©(G) we denote the intersection graph of ©-classes of a graph G. That
is, the vertex set of ©(G) is T(G) and two vertices in O(G) are adjacent
whenever the respective ©-classes are adjacent. Thus the ©-graph presents
an intersection concept in the sense of [20].

7[_.

Figure 1: ACC graph and its ©-graph

We can now present the counter-example to our question from the pre-
vious paper [8]. On the left side of Fig. 1 an ACC graph is presented, and
on the right side of that figure its ©-graph is depicted. It is easy to verify
that this graph is not dually chordal (in fact, no vertex in this graph has a
maximal neighbor). We believe, though we have not proved it, that this is
the smallest possible counter-example.

Let G be a partial cube, and T(G) the set of ©-classes of G. Let
f: T(G) — E(G) be any function that maps a ©-class to one of its edges,
and T'(G) be the range of f. A hypergraph Hg of ©-classes of a graph
G has V(G) as the underlying (vertex) set and {Uasp U Usa : ab € T'(G)}
as its (hyper-)edges. For example, Fig. 2 shows a graph G with five ©-
classes and a representative e; of every class E;. For this graph He =
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{{c,g},{a,b,c,d,e, f},{d, h}, {a,b,¢c,d},{c,d,e, f}}. Next, it is easy to see
that the hypergraph Hg, of ©-classes of the k-cube has k copies of V(G)
as the set of edges. In particular, one can prove without much effort that
V(G) is one of the edges of H¢ if and only if G is a prism (i.e. the Cartesian
product of a partial cube with Kj).

Ia €, 'b
€4
c e
.g e) “d 3 $h
€s

Figure 2: Example

Clearly ©(G) coincides with the line graph L(H¢) of the hypergraph
of O-classes of G. Hence the following characterization of dually chordal
graphs due to Brandstadt et al. will be useful for our purposes.

Theorem 2 [4] A graph G is dually chordal if and only if it is the line
graph of some a-acyclic hypergraph.

Recall that a graph is chordal when every cycle of length more than 3
has a chord (i.e. an edge between non consecutive vertices of the cycle). It is
well-known that chordal graphs are characterized by simplicial elimination
scheme — an ordering (vy,...,v,) of the vertices of V such that for i =
1,...,n, v; is simplicial in G;. We will show a slightly more general result,
by introducing the so-called almost simplicial vertices and scheme.

We say that z is almost simplicial in a graph G if for any pair of non
adjacent vertices y, z in N(z) every path from y to z in G — = contains a
vertex from N(z) \ {y,2}. (Note that if N(z) is complete, the condition is
trivially fulfilled). The corresponding procedure in which we remove one by
one a vertex that is almost simplicial in a (sub)graph during the procedure
will be called an almost simplicial elimination scheme. Here is our first
result.

Theorem 3 A graph G is chordal if and only if it has an almost simplicial
elimination scheme.
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Proof. If a graph is chordal then it has a simplicial elimination scheme
which is by definition also an almost simplicial elimination scheme. The
proof of the converse is by induction on the number of vertices of a graph
G. Let z be a vertex that is almost simplicial, and we may assume by
induction that G — z is chordal. We need to see that then also G is chordal.
Suppose that it is not. Then there are vertices that form a cycle of length
at least 4 that has no chords. Since G — z is chordal, this cycle (denote
it by C) must contain z, and let ¥ and z be the non adjacent neighbors
of z in C. However, since z is almost simplicial, any path from y to z in
G — z contains a vertex u from N(z)\ {y, z}. But then uz is a chord of C,
a contradiction, which shows that also G is chordal. O

Theorem 3 will now be used in the result about the hypergraph of ©-
classes of an ACC graph. We will also use the following observation from

[6].

Lemma 4 If the intersection I of two hypercubes in an ACC graph G is
not a subset of some other intersection of two hypercubes, then I is a cut
set in G.

Theorem 5 Let G be an ACC graph, and € a hypergraph of ©-classes of
G. Then 28EC(g) is a chordal graph.

Proof. The proof is by induction on the number of ©-classes of a graph
G. Let E be a ©-class whose edges belong only to a pendant hypercube
R in a graph G. By contracting the ©-class E we obtain an ACC graph
G', and we denote by &’ the hypergraph of ©-classes of a graph G'. By
induction hypothesis 28 EC(¢') is a chordal graph. Let A be the set of
vertices from 2SEC(¢) — 2SEC(¢’) (in G they induce a cube — contracted
part of R) and N(A) be the open neighborhood of this set in a graph
2SEC(e). Note that by definition, N(A) coincides with N (z) for any z € A.
Let F = {Fi,..., F:} be the set of ©-classes of G such that each F; € F
has the following property: for each vertex of the hypercube R there exists
an edge from F}, incident with this vertex. We distinguish two cases.

Case 1: The subgraph of 28EC(¢) induced by N[A] = AUN(A) is a
complete subgraph. Therefore all vertices from A are simplicial vertices in
the graph 2SEC(¢). Hence 2SEC(g) is chordal.

Case 2: The subgraph of 28EC(e) induced by AU N(A) is not a com-
plete subgraph. Then there exist vertices  and y from N(A) in 2SEC(¢)
which are not adjacent. To show that vertices of A are almost simplicial
in 2SEC(¢), we need to prove, by Theorem 3, that every path between z
and y in 2SEC(e) contains a vertex from N[A]\ {z,y}. Assume to the
contrary that there exist vertices z and y that are connected by a path in
2SEC (€) which lies outside N[A]\{z,y}. Hence there is clearly such a path
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between z and y also in G. Since z and y are from N(A), there exist edges
e; = za € F; and e; = yb € F;. Note that F; and F; are distinct ©-classes
from F, and there is no O-class from F that would be incident with both
z and y since they are not adjacent in 2SEC(¢). Let U = U, U Uy, and
Uz = Uyp U Upy. Note that they are convex subsets and I = Uy NUp # 9
because it contains vertices from R.

Recall that in median graphs every convex subgraph is also gated [13].
Let z € I be the vertex that is the closest to z in U, (since I is gated, z is
uniquely determined). Let 22’ be an edge in F; and zz” be an edge in Fj.
Let z’ be the neighbor of z on the shortest path from z to z. Denote by A
a maximal hypercube that contains the square with vertices z, 2/, 2", and
the common neighbor of 2 and 2" (this neighbor is unique, since in partial
cubes there can be no induced K5 3). Let B be a maximal hypercube that
contains the edge z’2. Then the intersection of A and B can be maximal or
it can be included in some other intersection of two hypercubes, say A’ and
B'. In either case, by Lemma 4, AN B is (or lies in) a cut set C. It is clear
that = and y lie in distinct connected components of G — C. This implies
that any path from x to y necessarily goes through some vertices from two
maximal hypercubes A’ (or A) and B’ (or B), which are all incident with
edges from U; and Us, and they are in N[A]. We arrive at the contradiction,
since we assumed that there is path between z and y that lies outside N[A].
This contradiction completes the proof.

The above result shows that one of the conditions for a hypergraph of
©-classes to be a-acyclic (cf. Theorem 1) holds in ACC graphs. Hence the
question which motivated this paper, was in this sense reasonable. The
other condition — conformality — is not always fulfilled. Note that the
property in the above theorem is not characteristic for ACC-graphs. For
instance, if G is a prism, then 2SEC(Hg) is a complete graph, thus a
chordal graph.

4 O-graphs of ACC p-expansion graphs

Another subclass of partial cubes are the so-called p-expansion graphs,
treated in [6]. They are the graphs that can be obtained by successive
use of peripheral expansions from K in such a way that at each step the
expanded graph H is

® one vertex, or

* a union of maximal hypercubes in G with a nonempty common in-
tersection.
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It turns out that also in the second case H is an isometric subgraph, and
so the expansion is well-defined [6]. This class was introduced in relation
with the cube graph transformation.

We shall prove the conformality property of hypergraphs of ©-classes of
ACC p-expansion graphs. Unfortunately, we cannot extend this property
to all p-expansion graphs; see Fig. 3, in which three vertices that violate
conformality are marked. As we already know, it is also not true for all
ACC graphs (e.g. the hypergraph of ©-classes of the graph that is depicted
on the left side of Fig. 1 is not conformal).

Figure 3: A p-expansion graph
In the proof we shall use the following result, cf. [3].

Theorem 6 (Gilmore’s Theorem) A necessary and sufficient condition for
hypergraph 'H to be conformal is that for any three edges Ay, A2, A3 of H,
there exists an edge A, of H such that (A1 N A2)U(A2 N A3)U(A1 N A3) C
A,.

We will also use the fact that convex subgraphs of median graphs G sat-
isfy the Helly property, cf. [13]. That is, if C is a set of convex subgraphs
of a median graph G, where any two elements of C have a nonempty inter-
section, then HﬂecH # 0. The following result can be regarded as the Helly

property of the hypergraph of ©-classes in median graphs.

Proposition 7 Let G be a median graph and {E1,Ea,. ..., Ex} a set of
©-classes which are pairwise adjacent. Then there exists a set of edges
{e1,€2,...,ex}, where e; € E; for every i € {1,2,...,k} which share a
common endvertez.

Proof. Let G be a median graph. Let Ey, Ey, ..., E). be the set of ©-classes
of G which are pairwise adjacent. Let z;y; be an edge of E; for every
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i € {L,2,...,k}. Then (Us,y, UU,,z,) are convex subgraphs of median
graph G, where i € {1,2,...,k}, hence they have a nonempty intersection.
We denote by v a vertex from the intersection. Obviously v is an endvertex
of an edge in F;,,, for every i € {1,2,...,k}. O

Note that this kind of Helly property does not hold in all partial cubes
(for instance, in Cg all three ©-classes are pairwise adjacent, but no vertex
is incident with all three ©-classes).

As a by-product we easily deduce the following

Corollary 8 If G is a median graph, then w(©(G)) = A(G).

This result is again not true in all partial cubes, as for instance w(©(Cs)) =
3, and A(Cs) = 2.
Now we are ready for the main result of this section.

Theorem 9 Let G be an ACC p-expansion graph. Then the hypergraph
He of O-classes of G is conformal.

Proof. We use induction on the number of ©-classes of a graph G (and
conformality trivially holds if the order of a graph G is one). Let G’ be
obtained from G by expanding a subgraph U. By induction hypothesis
the hypergraph H¢ of ©-classes of a graph G is conformal. We will use
the fact that G’ is a p-expansion graph, hence one of the two possibilities
for U occur. First, if the expanded graph U is one vertex, then H¢ is
clearly also conformal, and the result follows. Thus let G’ be obtained
from a graph G by expanding the union U of maximal hypercubes with
a nonempty common intersection. Let E be the new ©-class obtained in
the last expansion step. To prove that Hg is conformal we will apply
Theorem 6. Let Ey, B3, E3 be arbitrary ©-classes of Hgr. Let z;y; be an
arbitrary edge in E; for every ¢ € {1,2,3} and U; = (Us,y, U Uy,z,) for
every i € {1,2,3}. (The same notation will be used for the corresponding
©-classes and hyperedges in G.) We distinguish two cases.

Case 1: Suppose that E; = E for some i € {1,2,3}. Without loss of
generality let E = E),. Then let z € G\ U be a vertex incident with ©-
classes Ey and Ej3 (if there is no such vertex, the condition from Theorem
6 is already fulfilled by setting A, = U;). Moreover, let there be a vertex
z which is incident with ©-classes F and E; but not with E3, and a vertex
y incident with ©-classes E and E3 but not with E (in other cases one of
Us, Us can serve as A;). Observe that vertices z and y are from different
maximal hypercubes (which we denote by, say H; and H,) from U, and
H:NH, # 0. Because U, and Us are convex subsets of G, it follows that
I = UNUs is a convex subset, and note that H.NH, C I. Since IN(G\U)
is nonempty (it contains z), we infer there exists a vertex u € H,NH, which
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has a neighbor w in I N (G\U). Now consider the edges uu’, u'z’, v'y’
that belong to ©-classes from E, E2, E3, respectively. Since H; (H,) is
a hypercube, each of its vertices is incident with all ©-classes that appear
in H; (Hy). Furthermore, vertices u,u’,z’ induce a path P3 whose convex
closure is a square S; which is contained in hypercube H;. Similarly,
vertices u,u’,y’ form P; whose convex closure is a square S; in Hy. Let
vertices ", y" be the remaining vertices of squares S;, Sz, respectively. By
a similar argument we obtain a square S3, formed by vertices z”, u, w, w’,
where w' is the other neighbor of w, and a square S formed by vertices
y",u,w,w", where w” is the other neighbor of w. We infer that u is the
center of a bipartite wheel W isomorphic to By (see Figure 4) which is
convex, by construction (namely, because w is not incident with E, and y”
is not incident with E3). Hence G’ is not an ACC graph, a contradiction.

Figure 4: Bipartite wheel By from proof of Theorem 9

Case 2: Suppose that E; # E for every i € {1,2,3}. Then we may
assume that at least two ©-classes of the three are having an edge that lies
in U, for otherwise the hyperedge A, in G, which includes A = (U; N Uz)U
(UznUs) U (UyNUs) in G by induction, also includes A in G’ (which
is the same as in G). If E1, E,, Fj3 all have edges in U, then we have two
possibilities: either A is in U in which case the hyperedge of the new ©-class
can serve as A;. The second possibility is that there is a vertex z € U; NU;
that lies in G\ U. Without loss of generality, let z € U2NUs. Then we are
in the same situation as in Case 1, and the proof follows the same lines.
Hence in what follows we may assume that exactly two © classes (let these
be E; and E3) have some edges in U, while E3 has no edges in U.

First consider the possibility that both ©-classes E; and E; appear
in the same hypercube from U, denoted by H;. Then the hyperedge A,
includes all vertices of H,, in G. We have two possibilities: ©-class with cor-
responding hyperedge A, has edges in H,. In this case the same (expanded)
hyperedge A, can serve the purpose in G'. If ©-class with corresponding
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hyperedge A, does not appear in H,, then all vertices of H, are incident
with this ©-class which is a contradiction with H, being a maximal hyper-
cube. Hence E; and E; cannot appear in the same hypercube. Then there
exist maximal hypercubes H, and Hy from U such that E, appears in H,
and E; appears in H,. Then the intersection H, N H, is either maximal
or it can be included in some other intersection of two hypercubes from U.
Denote by J this maximal intersection. Since E; and E; appear in different
maximal hypercubes and E3 has no edges in U, there is no edge from E;,
i =1,2,3, that would appear in J. Using Lemma 4 we find that J is a cut
set. Combining the last two observations we infer that each U;,i = 1,2, 3
is contained in exactly one connected component of G’ \ J. This implies
that Uy N Uz N Us lies in I which in turn implies that .4 lies in one of the
Ui, and Gilmore’s condition is fulfilled also in this last case. (]

Our main result follows from Theorem 1, Theorem 5 and Theorem 9.

Corollary 10 Let G be an ACC p-ezpansion graph. Then the ©-graph of
G is a dually chordal graph.

Recall also the following result.

Theorem 11 [8] Let G be a p-ezpansion graph. Then ©(G) is a chordal
graph.

By combining Theorem 11 with the fact that doubly chordal graphs are
precisely graphs that are chordal and dually chordal (see [4]), we derive the
following observation.

Corollary 12 The ©-graph of an ACC p-expansion graph is a doubly chordal
graph.

It is easy to observe that K 3 is not obtained as ©-graph of some median
graph. It would be interesting to characterize those doubly chordal graphs
that can be obtained as ©-graphs of ACC p-expansion graphs. The similar
question concerning graphs which can be realized as ©-graphs of all ACC
graphs (or median graphs, etc.) is also open.

Some of the results of this paper show certain similarities between the
©-graph and the cube graph of a partial cube. In the case of ACC graphs G,
Theorem 5 shows that the 2-section graph of the hypergraph of ©-classes
of G is chordal. This holds also for the graph G2 [1] that is defined as
the graph obtained from G by adding edges in such a way that cliques are
created out of all its maximal hypercubes. The corresponding hypergraph
is conformal which can be regarded as the reason that the cube graph of an
ACC graph is dually chordal. It would thus make sense to investigate rela-
tions between the hypergraph of ©-classes and the hypergraph of maximal
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hypercubes (defined on the vertex set of a partial cube with hyperedges
consisting of vertices of maximal hypercubes) in other natural classes of
partial cubes.
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