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Abstract A Steiner system S(2, &, v) is a collection of k-subsets (blocks) of a v-
set V such that each 2-subset of V is contained in exactly one block. We find re-
currence relations for $(2, &, v).

1. Introduction.

Suppose ¢, k, v are integers with 2 < ¢ < k < v. A Steiner system S(t, &, v) is
av -set V and a collection of k-subsets (blocks) of V such that each ¢-subset of
V is contained in exactly one block. An S(¢,£,v) is also a ¢ — (v, k, 1) design.
Here we treat the case ¢ = 2. An element of V occurs in exactly (v — 1)/(k - 1)
blocks of an S(2,k,v). It follows that every S(2,k,v) has the form
S(2,k, (k- 1)z + 1) for an integer z, and it is easily seen that z > k. Here we find
two recurrence relations for S(2, &, v):

Theorem 1.1. Suppose k,z,z’ are integers, k 2 3, z 2 k, 2’ 2 k, an
S(2,k,(k— 1)z + 1) exists, an S(2,k,(k — 1)z’ + 1) exists, and there exist 7’ - 2
orthogonal Latin squares of order z. Then an S(2,k,(k — 1)z'z + 1) exists.

Theorem 1.2. Suppose k, z,7’ are integers, z > 2’ 2 k 2 3, an S(2, 7, z) exists,
and an §(2,k,(k — 1)z’ + 1) exists. Then an S(2,k, (k — 1)z + 1) exists.

The above are established in Section 2 below. To obtain a more usable form
of Theorem 1.1, suppose p is a prime, p” divides m > 1, and p™*' does not di-
vide m. Then call p" a prime power factor of m. It is well-known that there exist
r - 1 orthogonal Latin squares of order m, where r is the smallest prime power
factor of m. This yields

Corollary 1.1. Suppose k,z,z’ are integers, k > 3, z 2 k, 7’ 2 k, an
S(2, k, (k- 1)z + 1) exists, an S(2,k,(k - 1)z’ + 1) exists, and z has no prime
power factor less than 2’ - 1. Then an S(2, k, (k - 1)z'z + 1) exists.

For example, taking z’ = 4, z = 10, k = 3 in Theorem 1.2, existence (e.g.,

[2]) of an §(2,3,9) and an S(2, 4, 10) implies the existence of an S(2, 3, 21). As
another example, taking z’ = 6, z = 13, k = 6 in Corollary 1.1, existence (e.g.,
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(1)) of an S(2,6,31) and an S(2,6,66) implies the existence of an S(2,6,391).
In addition to use with sporadic S(2, k, v), Theorem 1.2 and Corollary 1.1 can be
instantiated by fixing z’ via existing infinite families of S(2, k, v), which include
(e.g., [1], p. 103):

A. S(2,9,9" ), q a prime power, n 2 2.
B.S(22,g+1,4" +.. + g + 1), g a prime power, n 2 2.
C.52,q+1,4° + 1), q a prime power.

For example, suppose g is a prime power. Then in Corollary 1.1 we can
take z’ = k = ¢ + 1. Family (B) shows that an §(2,¢ + 1, q* + q + 1) exists. Thus
we find

Corollary 1.2. Suppose q is a prime power, z2q + 1,an S2,q + 1,9z + 1) ex-
istss, and z has no prime power factor less than q. Then an
S(2,g + 1,9(q + 1)z + 1) exists.

Alternatively, in Corollary 1.1 we can take k = ¢, 2’ = ¢ + 1. Family (A)
shows that an (2, g, ¢° ) exists. Thus we find

Corollary 1.3. Suppose q is a prime power, 22 q 2 3, an $2,9,(g— 1)z + 1)
exists, and z has no prime power factor less than q. Then an
S, 4, (q2 - 1)z + 1) exists.

In turn, Corollaries 1.2 and 1.3 can be used to extend existing infinite
familes of S(2, k, v). For example, applying Corollary 1.3 to family (A) yields

Corollary 14. Suppose q is a prime power, z 2 q 2 3, n 2 2, and
¢"'+..+q+1 has no prime power factor less than q. Then an

$(2,q,9™" + q" — q) exists.

Applying Corollary 1.2 to family (B) yields
Corollary 1.5. Suppose q is a prime power, n 2 1, and q" + ... + q + 1 has no
prime power factor less than q. Then an

S2,q+1,q9(q +1)gq" +... + g+ 1) + 1) exists.

Another application of Corollary 1.1 is
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Corollary 1.6. Suppose k > 3, q is a prime power, m21,n2 1, g™ 2 k, and an
S(2,k,(k - 1)g™ + 1) exists. Then an S(2, k, (k - 1)g™™ + 1) exists.

The above follows from Corollary 1.1 by first taking z’ = z = ¢™ , yielding
the case n = 2, and then taking z’ = ¢" , z = g™ to accomplish induction on
n. In particular, taking k = g + 1, m = 2 in the above extends family (C):

Corollary 1.7. Suppose q is a prime power and n = 1. Then an
52,q +1,¢**" + 1) exists.

The above and Corollary 1.2 yield

Corollary 1.8. Suppose q is a prime power and n > 1. Then an
52,q+ 1,82 + g*"! + 1) exists.

In Theorem 1.2 we can take z’ = k = ¢ + 1 and replace z by gz + 1. This
yields

Corollary 1.9. Suppose q is a prime power, 22 2, and an S2,q + 1,9z + 1) ex-
ists. Then an $(2,q + 1, 4% z + q + 1) exists.

For example, taking z = g*" in the above and invoking Corollary 1.7 gives

Corollary 1.10. Suppose q is a prime power and n > 1. Then an
52,9 +1,8°™2 + g + 1) exists.

Alternatively, in Theorem 1.2 we can take k = g, z’ = ¢ + 1 and replace z
by gz + 1. This yields

Corollary 1.11. Suppose q is a prime power, q 2 3, z 2 2, and an
S(2,q+1,qz + 1) exists. Then an S(2, q, 42 2 = qz + q) exists.

For example, taking z = ¢%" in the above and invoking Corollary 1.7 gives

Corollary 1.12. Suppose q is a prime power, ¢ > 3, and n 2 1. Then an
S(zi q9, q2n+2 - q2"+l + q) exists.

The previous results derive from the study of what we call product systems.
These are generalizations of ordinary block designs. In an ordinary r-design, a
block consists of k entries from one v-set of varieties V, and each ¢-set of V
must occur in exactly 4 blocks. In a product system, V is replaced by a collec-
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tion of sets {V; }; a block consists of & entries from k different {V; }. Each z-set,
with entries from ¢ different {V; }, must occur in exactly A blocks. If |V; | = 1 for
all i then the product system is isomorphic to an ordinary design. At the opposite
extreme, we could choose all the {V; } arbitrarily. In Section 2 we generalize
S(2, k, v) via product systems with |V; | = m for all i, where m is fixed but arbi-
trary. We find recurrences for the product systems which, when specialized,
yield Theorems 1.1 and 1.2. It is not immediately clear whether the results we
obtain can be extended to other classes of designs. The prospects for such ex-
tensions are difficult to assess. For one thing, we have wide latitude in the choice
of {V; }, and the choice used in Section 2 might not be optimal for generalizing
designs with £ > 2 or 1> 1. Also, a given class of product designs may satisfy re-
currences not analogous to any noted here. Finally, it is possible that direct con-
struction techniques might exist for product systems; when specialized, these
might yield new construction techniques for ordinary designs. An exploration of
any of these topics would be beyond the scope of this article.

2. Product systems.

Suppose k,m, n are integers with n 2 k 22 and m 2 1. Suppose Vg , ...,
V,- are pairwise disjoint m-sets. Let V = (Vg , ...,V } . Suppose x € V; and
y € V for some i, i’ with i # i’. Then call {x, y} a V-pair. Suppose 4 is a k-set
(block) such that if {x,y} < A then {x, y} is a V-pair. Then call A a k-block of
V. Suppose B is a collection of k-blocks of V such that every V-pair is con-
tained in a unique block of B. Then call B a PS(k, m,n) over V. The exact na-
ture of the {V; } does not affect existence of a PS(k, m, n), as long as the {V; }
are pairwise disjoint m-sets. Thus, if a PS(k, m, n) exists over any V we can sim-
ply say that a PS(k, m, n) exists. The reason we are interested in product systems
is the following:

Lemma 2.1. Suppose k,z are integers with z 2 k 2 3. Then there exists a
PS(k,k - 1,2) ifand only if an S(2, k, (k = 1)z + 1) exists.

Proof: Suppose B is an S(2, £, (k — 1)z + 1) over Vv’ ={0,...,(k - 1)z}. Let
= {jtk=1),..,j(k-D+k-2} ©0=j<z-1).
LetV ={Vp,..,V, }. We can assume without loss of generality that the
blocks of B containing (k — 1)z are {By , ..., B,y } where B; = {(k- 1)z} U
V. The {B;} contain all pairs of V' of the form {i, (k= 1)z}, 0 <igtk-1z-

1, and all pairs {i,i’} ¢ V; for some j. Thus the blocks of B not containing
(k - 1)z are k-blocks of V containing all V-pairs. Hence the latter blocks consti-
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tute a PS(k, k - 1, z) over V. Conversely, given a PS(k, k - 1, z) over V, adjoin-
ing By, ..., B, yields an S2,k, (k - 1)z + 1) over V. 0O

Now we note

Lemma 2.2. Suppose k,m, n are integers, n2k22,m21,(V,, ..., Vi ] are
pairwise disjoint m-sets, V = {Vy, ..., V,_, }, and

m? n(n-1)

2.1 =
(21) b W=D

Then if B is a PS(k,m,n) over V then b is an integer and |B| = b. Con-
versely, suppose b is an integer and B = (B, , ..., B,_, } is collection of k-
blocks of V such that if 0 < i < i"<b -1 then |B;By|< 1 Then B is a
PS(k, m, n) over V.,

Proof: Suppose B is a PS(k, m, n) over V and |B| = b’. Then

(2)v=(5)m.

The left side of the above is the number of V-pairs contained in the blocks
of B. The right side is the total number of V-pairs. Thus &’ = b and |B| = b. Con-
versely, suppose b is an integer and B = {By , ..., B,; } is a collection of k-
blocks of V such thatif 0 < i <i’< b - 1 then |B; N By | < 1. Then a V-pair is
contained in at most one B; , and hence, since the above holds with &’ = b, in a
unique B; . Thus Bis a PS(k,m,n)over V. O

Lemma 2.3. Suppose m, k are integers with k > 3 and m > 1. Then there exists
a PS(k,m, k) if and only if there exist k - 2 orthogonal Latin squares of order m.

Proof: ForO<r<k-1l,letV,={m,.., m+m—-1}.LetV = {Vo,..,
Vi1 } and J = {0,...,m-1}. Suppose M, , ..., M,_, are orthogonal Latin squares
over J, each with rows and columns indexed by J. Fori, j € J let

(2.2) Bij={i,j+m}U{ M [i,jl+rm:2<r<k-1}.

In the above we note 0 < M, [i, j] S m - 1, and hence M, [i, jl+meV,,
Thus B = {B;; } is a collection of k-blocks of V. We claim that B is a
PS(k, m, k) over V. To prove this claim, suppose {x, y}isaV-pairand {x,y} C
B;; N By y for some i, j, ¥, j’. Suppose x € V, ,y € V,, forsome r, 7, 0< r <
r’<Sk - 1. For some x’, y’ € J we have x = x’ + rm, y = y’ + r’m. There are four
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cases:

Case 1. 7,7’ 22: Then we find M, [i,jl=x"=M, [I',j/land M [i, jl=y =
M, [, j'1, whence

(Mr [l’ j]s Mr’ [i, j] ) = ( Mr [i’o J,]v Mr' [i', j’] ) .
Since r # r’ and M, and M, are orthogonal, the above yields (i, j) = (', j*).

Case2.r=0,7">2:Thenwe find i =x"=i"and M, [x, j1=y = M, [¥, j'].
Since M, is a Latin square, j = j’.

Case3.r=1,r'22: Then we find j = x’= j and M, [i,x") =y’ = M, [, x'}.
Since M, is a Latin square, i = ",

Case4.r=0,r'=1:Thenwefindi=x"=iand j=y = j.

In all cases we find (i, j) = (', j*). Thus |B;; N By y | < 1 for (i, j) # (', J').
Also, | B| = m® . The claim follows from Lemma 2.2. Conversely, suppose B is a
PS(k, m, k) over V. Then from (2.1) we find |B| = m*> . Now (i, j+m}isa V-
pair, where i, j € J. For i, j € J, let B; ; be the block of B containing {i, j + m}.
Then B={B;; }. For2<r <k - 1define M, over J, with rows and columns in-
dexed by J, via (2.2). We claim that {M; , ... , M, } are orthogonal Latin
squares. To prove the claim, first of all we note thatifxeV,,ye V., r+r,
and {x,y} < B;; N By y then (i, j) = (¢, j"). The proof of the claim splits into
three cases:

Case 1. Suppose i,i",j € J,i#i,2<r<k-1,and M, [i, j1=M, [i’, j]. Let x
=j+m,y=M, (i, j1 + rm. Then {x,y} S B;; N By j,butx € Viandy e V,,
contradiction.

Case 2. Suppose i, j, j/ € J, j# j,2<r<k-1,and M, [i, j1 = M, [i, j']. Let
x=i,y=M,[i,jl1+rm Then {x,y} S B;; N B,y ,butx € Voandy e V,,
contradiction.

Case 3. Suppose i,i’,j,j’ € J, L ) # (W j)2<r<r k-1, M [ijl=
M, [, 1, and M, (i, jl = M, [, j). Let x = M, [i,j1+ rm, y = My [i,j] +
r'm.Then {x,y} S B;jN Byy,butx€V,andyeVy, contradiction.

Cases 1 and 2 show that each M, is a Latin square over J. Case 3 shows
that the {M, } are orthogonal. O
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Remark: In Lemma 2.3, taking m = & - 1 and invoking Lemma 2.1 shows
that an (2, &, k(k — 1) + 1) exists if and only if there exist & - 2 orthogonal Latin
squares of order k - 1. This is a well-known result: an S(2,k, k(k-1)+1) is a
projective plane of order & - 1.

Lemma 2.4. Suppose k,m, z,7’ are integers, k 22, 22k, 2k m21,a
PS(k,m, z) exists, a PS(k,m,z') exists, and a PS(z’,z,7') exists. Then a
PS(k, m, 7'2) exists.

Proof: For0<i<z’-1,0< j< z- 1 suppose V; (j) is an m-set. Suppose V; ()
NVy (JN=Dif(,j)#(, j). For0<i<z’ -1let V; = {V; (0), ..., Vi (z—= D}.
LetV=VyU.. UV, .For0<i<z -1,V;isaset of z pairwise disjoint m-
sets; hence, suppose A; is a PS(k,m,z)over V; . For0<sr<z -1letW, =
{(rzy.srz+z-1}). Let W = {Wy, ..., Wp_y }. Then W is a set of 2’ pairwise
disjoint z-sets; hence, suppose B is a PS(z’, z, 2') over W. Suppose B = (B, , ...,
By, }. Then per (2.1), b = z% . Also, each B, is a z’-block of W. Thus, B, con-
tains exactly one element from each W, . Suppose for 0 < s < b - 1 that B, =
{as, +rz:0<r<z’-1},where0<a;,<z-1. For0<s<b-1,08r<z -1
letY,, =V, (a5, ). ForO<s<b-1let¥;={Ys,.., Y }. Since the
{V; (j)} are pairwise disjoint they are distinct. Hence Y,, = Y, implies r = r".
Thus each Y; is a set of 2’ - 1 pairwise disjoint m-sets. For 0 < s < b - 1 suppose
E isa PS(k,m,z")overY, . Let

G=EUV.VE_UAU .. VA, .

We claim that G is a PS(k, m, z'z) over V. To prove the claim, first of all,
per (2.1) we have

m* (7 - 1)

Bl = Gy~ ©sssb-b,
2 —
|Ai|=% ©0<i<z-1).

Thus, assuming that the blocks defining G are all distinct,

m* 72’z - 1)

16l = kK - 1)

Per (2.1), the right side above is the correct number of blocks for a
PS(k,m, 2z). Also, each V; and Y is a subset of V. Thus, each block of each A;
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and E; is a k-block of V, as is each block of G. Per Lemma 2.2, to prove the
claim we need only show that if H, H' are two of the blocks defining G then
|H N H'| £ 1. There are four cases:

Case 1. H, H' are blocks of A; , or blocks of E; , for some i or s: Then by defi-
nition |[H N H'|< 1.

Case 2. H is a block of A; and H’ is a block of A; , for some i # i": Then each
element of H is from some V; (j), and each element of H’ is from some V- (j).
Since V; (j) and V- (j) are disjoint, |H n H'| =0.

Case 3. H is a block of E; and H' is a block of E , for some s # s’: Suppose x
#yand {x,y)cHNH . Thenx €Y, Y, forsomer,r’,andy € Y, ,» N
Yy . for some r”,r" with r” # r and r" # r’. Thus x € V, (a,, ) NV, (ag )
andy € V,» (a;,» ) "V, (ag,~ ). Hence r'=r,r"" =r", a;, = ag, , and a; .~
=ay,~. Nowif w € W, and w” € W,~, then {w, w”} is contained in a unique

B, .Let

w=a,+rz=ay,+rz,

w' = agm+rz = ag+r'z.
Then w € W, and w” € W,~ , but {w,w”} € B; N By . Thus s’ = 5, con-
tradiction. Hence |H N H'| £ 1.

Case 4. H is a block of E; and H' is a block of A; , for some s, i: Suppose x # y
and {x,y}) € H N H’. Then x € Y;, NV, (j) and y € Y, - N V; (j’) for some
rr' j,j with r # v and j # j. Now x € V,(a,,)NV;(j) and y €
V, (a, ) N V; (j°). Hence r =i = #/, contradiction. Thus [H n H'|<1. O

Corollary 2.4. Suppose k,z,7’ are integers, k 2 3, z 2 k, 7 2k a
PS(k, k — 1, 2) exists, a PS(k, k — 1, 2’) exists, and there exist z’ - 2 orthogonal
Latin squares of order z. Then a PS(k, k - 1, 2'2) exists.

Proof: In Lemma 2.4 take m = k - 1 and invoke Lemma 2.3. O

Combining Corollary 2.4 and Lemma 2.1 yields Theorem 1.1. Finally we
note

Lemma 2.5. Suppose k,m,z,z’ are integers, z > 2 2 k23, m21 a
PS(k,m, 2" exists, and an S(2, 7', z) exists. Then a PS(k, m, z) exists.



Proof: Suppose V(0), ..., V(z - 1) are pairwise disjoint m-sets. Let V = {V(0),
w s V(z=1) } and V’ = {0,...,z-1}. Suppose B is an S(2, z’,z) over V' and B =
(Bos s Bpy }.ForO<s<b-1suppose B; = {a,y, ..., a5~ }. Then each
as, €V'. ForOSs<b-1lletY,={V(asg), .., V(as.)}. Theneach?,isa
set of 2’ pairwise disjoint m-sets. Hence, suppose A, is a PS(k, m, z’) over Y, .
Let A=Ay V..U A, . Weclaim that A is a PS(k, m, z) over V. To prove the
claim, we note that

_ -1
7@ -1
Per (2.1),for0<s<b-1,

m2 ZI(ZI - l)

Thus, assuming that the blocks defining A are all distinct,

4] = m? 2(z - 1)
T Okk-1)

Per (2.1), the right side above is the correct number of blocks for a
PS(k, m, z). Also, each Y is a subset of V. Thus, each block of each A, is a k-
block of V, as is each block of A. Per Lemma 2.2, to prove the claim we need
only show that if H, H’ are two of the blocks defining A then |H N H’| < 1.
There are two cases:

Case 1. H, H’ are blocks of A for some s: Then by definition |H N H'| < 1.
Case 2. H is a block of A; and H” is a block of Ay , for some s # s”: Suppose x
#yand {x,y} S HN H’.Then x € V(a,, )N V(ay, )forsomer,r’,and y €
V(a;,») N V(ag,~ ) for some r”, r" with r”” # r and r*” # r’. Since the {V; }
are pairwise disjoint, a,, = ay,- and a,» = ay .~ . Now |B; N By | £ 1. Hence
as, = a,~ and thus r = r”, contradiction. Hence |[H N H'|<1. O

Taking m = k - 1 in Lemma 2.5 and invoking Lemma 2.1 yields Theorem
1.2,
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