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Abstract

Jaeger et al.[ J. Combin. Theory, Ser B, 56 (1992) 165-182] con-
jectured that ever 3-edge-connected graph is Zs-connected. Let G
be a 3-edge-connected simple graph on n vertices and A an abelian
group with |A| > 3. If a graph G* is obtained by repeatedly contract-
ing nontrivial A-connected subgraphs of G until no such a subgraph
left, we say G can be A-reduced to G*. It is proved in this paper
that G is A-connected with |4| > 5 if one of the following holds: (i)
n <15 (i)n=16and A > 4; or (fli) n = 17and A > 5. As
applications, we also show the following results.

(1) For |A| > 5 and n > 17, if [E(G)| > (') + 31, then G is
A-connected.

(2) For |A| > 4 and n > 13, if [E(G)| > (™3!) + 23, then either
G is A-connected or G can be A-reduced to the Petersen graph.

1 Introduction

The graphs considered in this paper are finite, loopless, and may have
multiple edges. We follow the notations and terminology in [1] except
otherwise stated.

Denote by §(G) (or short &) and A(G) (or short A) the minimum degree
and maximum degree of a graph G, respectively. A k-path is a path of
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length k. A k-cycle is a cycle of length k. We also say C,, for a n-cycle.
The girth of a graph G, denoted by g(G), is the length of its shortest cycle.
An edge cut X C E(G) of G is a trivial edge cut if one of the components
of G- X is a K;. For two subsets V},V, C V(G) such that VNV, =0, let
ec(Vi, V2) (e(W1, V) for short) denote the number of edges of G with one
endpoint in V; and the other endpoint in V3. If Hy and H; are two vertex
disjoint subgraphs of G, we write e(H), H2) instead of e(V(Hh1), V' (H3)).

Let G be a graph, and D an orientation of G. If an edge e € E(G) is
directed from a vertex u to a vertex v, then let tail(e) = u and head(e) = v.
For a vertex v € V(G), denote by E*(v) the set of edges with tail at v
and E~(v) the set of edges with head at v. Let A be a nontrivial additive
abelian group and A* the set of all the nonzero elements in A. Define
F(G,A)={f|f:E(G)— A} and F*(G,A)={f | f: E(G) » A"}.

For a given function f € F(G, A), let 8f : V(G) — A be given by, for

all v € V(G),
afw)y= Y. fley— > fle)

ecE+(v) ecE-(v)

where “ Y refers to the addition in A.

A function b : V(G) — A is called an A-valued zero-sum function on

Gif Y b(w) =0. The set of all A-valued zero-sum functions on G is

veV(G)

denoted by Z(G, A). For a given b € Z(G, A), a function f € F*(G, A) is
called a nowhere-zero (A,b)-flow if G has an orientation D(G) such that
8f = b. A graph G is A-connected if for any b € Z(G,A), G has a
nowhere-zero (A, b)-flow. A nowhere-zero A-flow is an (A, 0)-nowhere-zero
flow. More specifically, a nowhere-zero k-flow is a nowhere-zero Zy-flow,
where Zj is the cyclic group of order k. Tutte in [15] proved that G admits
a nowhere-zero A-flow with |A| = k if and only if G admits a nowhere-zero
k-flow.

The concept was first introduced by Tutte [14], and the theory of
nowhere-zero flows provides an interesting way to investigate the coloring of
planar graphs. The long standing open problems in this area are Tutte’s 3-,
4- and 5-flow conjectures. Jaeger et al. [5] successfully generalized nowhere-
zero flow problems to group connectivity. For group connectivity, Jaeger
et al. posed two famous conjectures: Z3- and Zs-connectivity conjectures.
On the other hand, group connectivity plays an important role to study
nowhere-zero flow problems. For example, Thomassen [13] used the all
generalized Tutte-orientation, which is equivalent to Zz-connectivity, to
confirm the weak 3-flow conjecture. The following conjecture of Jaeger et
al. [9] is still open.

Conjecture 1.1 Every 3-edge-connected graph is Zs-connected.
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Lai and Zhang in [9] proved that every 3-edge-connected planar graph
is Zs-connected. Yang and Li [16] proved that Conjecture 1.1 holds for
graphs on at most 11 vertices. On the other hand, Lai in [8] proved that
the family consisting of all A-connected graphs is a complete family. This
provides an approach as the induction proof in such a way that if a graph
can be contracted to a small graph by contracting Zs-connected subgraph
into a vertex and such a small graph is also Zs-connected, then the origin
graph is Zz-connected. Motivated by these observations, we investigate
small 3-edge-connected graphs and present the following theorem.

Theorem 1.2 Let G be a 3-édge-connected graph on n vertices and A an
abelian group with |A| > 5. If one of the following holds:

(i) n < 15; or

(i) n =16 and A > 4; or

(i#i) n=17 and A > 5,

then G is A-connected.

Theorem 1.2 tells us that Conjecture 1.1 holds for every 3-edge-connected
graphs at most 15 vertices. The proof techniques used in this note are split-
ting of edges and deletion of one vertex developed by Lai in [8] and Luo
[12]. For large 3-edge-connected graphs, such two techniques will give us a
lot of computations and the new technique will be needed. We will prove
Theorem 1.2 in Section 3 and applications of Theorem 1.2 will be discussed
in Section 4.

2 Preliminaries

For a subset X C E(G), the contraction G/X is the graph obtained from
G by identifying the two ends of each edge in X and then deleting all loops
generated in this process. Note that even if G is simple, G/X may have
multiple edges. For simplicity, we write G/e for G/{e}, where e € E(G).
If H is a subgraph of G, then G/H denotes G/E(H).

We state some known results in {5, 8] on group connectivity which are
useful as follows.

Lemma 2.1 Let G be a graph and A be an abelian group with |A] > 3.
Then each of the following holds

(1) K, is A-connected.

(2) If G is A-connected and e € E(G), then G/e is A-connected.

(3) Let H be a subgraph of G. If H is A-connected and G/H is A-
connected, then G is A-connected.

(4) Let Cy, be a cycle of n vertices. Then Cy, is A-connected if and only
if |A|>n+1.
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Let G be a graph. Denote by 7(G) the maximum number of edge-
disjoint spanning trees of G, and let J denote a family of graphs such that
a graph G € Z if and only if 7(G) > 2 or G is a cycle of length 3. A graph
G* is called the T-reduction of G if it is obtained from G by repeatedly
contracting nontrivial subgraphs of G in Z until no subgraph in J left.

Lemma 2.2 Let G be a graph and A be an abelian group. Then each of
the following holds.

(1) (8) If 7(G) > 2, then G is A-connected with |A| > 4.

(2) ([16])) Let G* be the T-reduction of G. If G* is nontrivial, then
2[V(G*)| - |E(G")| 2 3.

Let v be a vertex of a graph G and u,w be two neighbors of v in G.
If d(v) > 4, let Gyu,uw) be the graph by deleting vu and vw and adding
a new edge uw. The following lemma was first proved by Lai in (8] and
reformulated by Chen et al. in [2].

Lemma 2.3 Let A be an abelian group with |A| > 3 and d(v) > 4. If
Glvu,vu) 18 A-connected, then so is G.

Let v be a vertex of a graph G with d(v) = 3 and u, w be two neighbors
of v in G. Define G(v, uw) be the graph by removing vertex v and adding
a new edge uw. The following technique is due to Luo et al. in [12].

Lemma 2.4 Let A be an abelian group with |A| > 3 and d(v) = 3. Let
be Z(G,A) and b(v) # 0. If G(v,uw) is A-connected, then there exists an
orientation D of G and a function f € F*(G, A) such that 8f = b under
the orientation D.

Let G be a 2-edge-connected graph on n vertices. Lai in (7] proved that if
n < 17, then either G admits a nowhere-zero 4-flow or G can be contracted
to the Petersen graph. Yang and Li in [17] gave group connectivity version
for 3-edge-connected graphs as follows.

Theorem 2.5 Let G be a 3-edge-connected simple graph on n vertices. If
n < 11 and A an abelian group with |A| > 4, then either G is the Petersen
graph or G is A-connected.

Lai et al. in [10] proved that if A is an abelian group with |A| >
5, then the Petersen graph is A-connected. Thus we obtain next lemma
immediately from Theorem 2.5.

Lemma 2.6 Let G be a 3-edge-connected simple graph on n < 11 vertices
and A an abelian group with |A| > 5. Then G is A-connected.



On the other hand, Kochol gave smallest counterexamples to the 5-flow
conjecture, a recent one is stated as follows.

Theorem 2.7 ([6])A smallest counterezample to the 5-flow conjecture has
girth at least 11.

3 Proof of Theorem 1.2

Let G be a graph and u,v be two vertices of G. Denote by dg(u,v) the
distance between u and v in G. For i > 1, let D;(G) = {v € V(G) : d(v) =
i}. We establish the following lemmas.

Lemma 3.1 Suppose that G is a simple graph on n vertices with § > 2. If
9(G) 2 5, then each of the following holds:

(1) If |Da| = s, then n > 2¢(G) — s.

(2) n 21+ 6A. In particular, if |Da| =s, thenn > 3(A —s) + 25+ 1.
Furthermore, if |[Dy| = 1 and the vertez of degree 2 is not adjacent to v
with d(v) = d, thenn > 14 3d.

(8) If 9(G) 2 6, thenn > 2+(A+8—2)8. In particular, if |Dz| = 1 and
the vertez of degree 2 is not adjacent to v with d(v) = d, then n > 4 + 3d.

(4) If 9(G) 27, thenn > 1+ A + A(6 - 1)4.

Proof. (1) Let k = g(G) and C : vjv;...v; be a cycle of G. Note that
each v € V(C) \ D; has a neighbor in V(G) \ V(C) for i € {1,2,...,k}.
Thus, G contains at least 2k — s vertices.

(2) Let A = 1. Pick a vertex u € V(G), and let N(u) = {u;,uz, - w}.
Since g(G) 2> 5, u; is not adjacent to u; and N(u;) N N(u;) = {u} for
1 <4< j <! Thus, we obtain that n > 1+1+ (6 — 1)l =1+ 4l. The
proof for the other two cases are similar.

(3) Pick a vertex u € V(G) with d(u) = A. Let v be a neighbor of u.
Define Ni(u) = {w | de—uv(u,w) = k}. Since g(G) > 6, we can obtain
that |[Nf(u)| = A —1 and [N} (v)| 2 6 —1 and |[N3(u)| > (A -1)(5 —1)
and [N3(v)| > (6 — 1) and N;(u) N N (v) =0 for 1 < 4,5 < 2. Therefore,
n 2 2+ [NT(u)] + [NT ()] + N3 (u)| + N3 (v)| 2 24+ (A-1)+ (8- 1) +
(A-1)(6—-1)+ (6 —1)2 =2+ (A + 6 — 2)6. The proof for the other case
is similar.

(4) Pick a vertex u € V(G) with d(u) = A. Define Ni(u) = {w | dg(u, w) =
k}. Since g(G) 2 7, we can obtain that |[Ny(u)| = A and |Na(u)| > A(S—1)
and |[N3(u)| > A(d — 1)2 and N;(u) N Nj(uw) =0 for 1 <i < j < 3. There-
fore, n > 14 |N1(u)| + |Na(u)| + |[N3(u)] 2 1+ A+ A -1) + A —1)2 =
1+A+A36-1). 1
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Lemma 3.2 Suppose that G is 3-edge-connected with g(G) 2 5, u € V(G),
and {uy,uz,u3,us} C N(u). Let X be a nontrivial edge cut X of Glyu, uu,)-
If|V(G)| < 16, then |X| > 3. Moreover, | X| = 3 if and only if G — X has
a component H = K, with one vertez of degree 3 and the other of degree 2.

Proof. Since G is 3-edge-connected, Gy, uu,] i8 connected. Suppose
otherwise that Gjuu, uu,) contains a nontrivial edge cut X with 1 < |X| <3
and let Hy, Hs, ..., H; be the components of G — X such that u) € V(H;)
and uz € V(H2).

We first show that each component of G — X contains a cycle. Suppose
otherwise that G — X has a component, say H;, which is a tree. Then
Yvevidy) 8 (V) = 2(|V(Hy)|—1). On the other hand, since each vertex of
H, has degree at least three except one, 3, ey (,) @1, (v) = 3|V(H))| — 4.
Thus, 2(|V(H,)| — 1) > 3|V(H1)| — 4, which implies that |V(H))| = 2,
|X] = 3. Moreover H = K with one vertex of degree 3 and the other
vertex of degree 2.

Suppose that |V (H))| = minj<i<: |V (H;)|. Since g(G) > 5, |[V(Hy)| > 6
since H; contains a cycle. In the case when |V (H;)| = 5. Since g(H,) > 5,
H, is a 5-cycle and eg(Hy, G2 \ V(H1)) 2 4, contrary to that |X| < 3. Let
|V(H,)| = 6. Since H; contains a cycle of length at least 5, ec(H:,G \
V(H,)) 2 4, contrary to that |X| < 3. If |V(H;)| =7, then ¢ = 2. In this
case, it is easy to verify that eg(H1, G\ V(H1)) 2 4, contrary to that | X| <
3. Suppose that |V (H;)| = 8. Since [V(G)| < 16, |V(H))| = [V (H2)| = 8.
If H; contains a 5-cycle C, the subgraph of H; induced by V(H;)\V(C) is
either a 2-path or a 1-path and a vertex or three independent vertices. In
each case, eg(H;, G\ V(H,)) 2 4, contrary to that | X| < 3. If H contains
a k-cycle, where k = 6,7, 8, the proofs are similar. [ |

Utilizing the technique in the proof of Lemma 3.2, we can prove next
two lemmas. We left the detail to the readers.

Lemma 3.3 Suppose that G is 3-edge-connected with g(G) > 5, v € V(G)
and N(v) = {v1,v2,v3}. Let X be a nontrivial edge cut X of G(v,v1v2). If
[V(G)| € 14, then |X| > 3. Moreover, |X| =3 if and only if G— X has a
component H = Ky with one vertez of degree 3 and the other of degree 2.

Lemma 3.4 Suppose that G is connected and §(G) 2> 3. If g(G) > 5 and
|V(G)| £ 14, then G is a 3-edge-connected graph.

Lemma 3.5 Let A an abelian group with |A| > 5. Suppose that G is a
2-edge-connected simple graph with |Do(G)| < 1. If G is not A-connected
with |V (G)| minimized, then g(G) > 5.

Proof. Suppose otherwise that G contains a k-cycle C, where 3 < k < 4.
Contracting C into one vertex and contracting all cycles of length less



than 5 generated in the process, denote by G’ the resulting graph. Then
V(G < IV(G)| —2. If |V(G")| = 1, then G’ = K, which is A-connected
by Lemma 2.1. Thus, by Lemma 2.1 again, G is A-connected, a contra-
diction. Thus, assume that |[V(G’)] > 2. In this case, it is easy to see
that |Da(G’)| < 1 and |D1(G’)| = 0. Since the edge connectivity will not
decrease under contraction, G’ satisfies the hypothesis of our lemma. By
assumption, G’ is A-connected. By Lemma 2.1, G is A-connected. This is
a contradiction. [l

Denote by P+ the graph obtained from the Petersen graph by replacing
one edge of the Petersen graph with a 2-path.

Lemma 3.6 Let G be a 2-edge-connected simple graph on n < 11 vertices
and A an abelian group with |A| > 5. If |Do(G)| = 1, then either G is
A-connected or G is the graph P+,

Proof. Suppose that G is not A-connected with [V(G)| = n minimized.
Let v be the vertex of degree 2 of G. Since |Dy(G)| = 1, n > 3. If
3 < n £ 4, then G contains at least one 2-cycle. Contracting this 2-
cycle and repeatedly contracting 2-cycle generated in the process, we finally
obtain a K which is A-connected by Lemma 2.1. By Lemma 2.1 again, G
is A-connected. Therefore, we assume that n > 5.

Consider the case when 5 < n < 8. By Lemma. 3.5, we assume that
9(G) > 5. By Lemma 3.1(1), n > 2¢(G) — 1 = 9, a contradiction.

In the case when n = 9. We claim that g(G) < 5. Suppose otherwise
that g(G) = k > 6. Let C be a k-cycle of G. For each vertex u €
V(G)\V(C), there is no more than one edge from u to V(C) since g(G) > 6.
Hence there are no more than 9 — k edges from V(G)\V(C) to V(C). On
the other hand, since G contains a vertex v of degree 2, there are at least
k —1 edges from V(C) to V(G)\V(C). Thus, k —1 < 9 — k, and hence
k <5, a contradiction. Therefore, g(G) < 5.

By Lemma 3.5, g(G) = 5. Let C : v1v2v3v4usv; be a cycle of length
50f G. If v ¢ V(C), then for i = 1,---,5 each v; has a neighbor vertex
u; € V(G)\V(C). Since G has no cycle of length 3 or 4, u; # u; for i # j.
Thus, n > 10, a contradiction. Thus, v € V(C). We assume, without loss
of generality, that vs = v. Observe the vertex uz. If u; were adjacent to
a vertex of V(C) \ {vz}, then G would contains a cycle of length less than
5, contrary to our assumption. Since n = 9, N(ug) \ {vo} C {u1,uq,us}.
Since d(uzg) 2> 3, there are at least two vertices in {u;,ua, uq} adjacent to
ug. It follows that wyu; € E(G) or uguz € E(G). In the former case, we
get a 4-cycle viujuavav;; in the latter case, we get a 4-cycle vaugugvavs.
In each case, we conclude that g(G) < 4, contrary to Lemma 3.5. Thus,
n > 10.
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In the case when n = 10. Note that every G contains even number
of vertices with odd degree. Since G contains one vertex of degree 2, it
contains a vertex u with even degree at least 4. It follows that A(G) > 4.
By Lemma 3.5, g(G) > 5. By Lemma 3.1(2), n 2 3(A — 1) +2+1 = 12,
contrary to our assumption that n < 10.

We are left with the case when n = 11. By Lemma 3.5, g(G) > 5. It
follows that A(G) = 3 for otherwise, by Lemma 3.1(2), n > 12, contrary
to that n = 11. Let e = uv be an edge incident with the vertex v of degree
2. Define G’ = G/e and v, be the vertex obtained by identifying « and
v. Then G’ is a 2-edge-connected cubic graph with [V(G’)| = 10. Since
g(G) > 5, g(G') > 4. We now show that g(G') = 5. If g(G") > 6, by
Lemma 3.1(1), |[V(G’)| > 12 and hence n > 13, contrary to that n = 11.

If g(G') = 4, then v, lies in a 4-cycle of G’ since g(G) > 5. Thus, v
lies in a 5-cycle: vv,vouzvqv of G. Since d(v;) =3 for i = 1,2,3,4, each v;
has a neighbor vertex u; € V(G) \ V(C). Let {wy,we} = V(G) \ (V(C)U
{u1,u2,u3,uq}). Let H be the subgraph of G induced by {u1,u2,us,us}.
We consider two possibilities.

If wyw; ¢ E(G), then H contains only one edge. It follows that there
are two distinct vertices u;, u; such that dg(u;) = duy(u;) = 0. We get a
4-cycle of G : u;w u; wou;, contrary to that g(G) > 5.

If wyws € E(G), then there are two edges in E(H). Suppose that
there exists a vertex u; such that dg(u;) = 0. Then G contains a 3-
cycle u;w wou;, a contradiction. Therefore, dy(u;) > 1 for i = 1,2,3,4.
Since g(G) > 5, ujus, ugug € E(H). Without loss of generality, assume
wyw; € E(G). Since uj is adjacent to either w; or ws, in each case G
contains a 3-cycle or 4-cycle, a contradiction.

Therefore, g(G’) = 5. In this case, let C : vjvou3v4vsv; be a cycle of
length 5 of G’. Since G’ is a cubic graph, each v; has a neighbor vertex
u;. Since g(G') = 5, u; # u; for i # j and {u1,uz,...us} C V(G')\V(C).
Note that |V (G')| = 10, V(G') = {v1,...,vs,u1,...,us}. Since G’ is cu-
bic and g(G') = 5, dg(ui) = 3 for each i and u; has two neighbors in
{u1,u2,...,us}\ {u:}. It follows that ujus, uiua, ugus, u2us, usus € E(G).
This means that G’ is the Petersen graph, and so G is the graph P*+. li

Lemma 3.7 Let G be a 3-edge-connected cubic simple graph onn =12 or
14 vertices and A be an abelian group with |A| > 5. If g(G) = 5, then G is
A-connected.

Proof. Let b € Z(G, A). Assume first that b = 0. Since g(G) = 5, by
Theorem 2.7, G admits a nowhere-zero 5-flow. Therefore, we assume that
there is a vertex v with b(v) # 0. Let N(v) = {v1,v2,v3} and N(v;)\{v} =
{vi,, v, } for i =1,2,3. let {ug,---w} = V(G)\ (N(v) UN(v1) UN(v2) U
N(v3)) where ! =2 or 4.



Claim. There exist two vertices v;; and v, such that vixvje € E(G) where
i#34,1,7€{1,2,3} and k, t =1,2.

Proof of Claim. By way of contradiction, we assume that vizv;; ¢ E(G)
for all 4,4, k, t.

In the case when n = 12. Then ! = 2. It follows that there are 12 edges
from V(G)\{u1,u2} to {uj,uz}. On the other hand, there are at most 6
edges from {u1,u2} to V(G)\{u1,u2}. Thisis a contradiction. Therefore,
there are two vertices vy, and v;; with 7 # j such that vv;: € E(G).

In the case when n = 14. Then ! = 4. It follows that there are
precise 12 edges between V(G)\{u1, - u4} and {uj,---u4}. It implies
that the subgraph induced by wu;,us,u3 and u4 contains no edge. We as-
sume, without loss of generality, that u,v11,ujv21, 21031 € E(G). Since
d(vi1) = 3, we may assume ugvy; € E(G). Since d(uz) = 3, up must be
adjacent to two vertices of vy, v21,¥22,v31 and vas. On the other hand,
since g(G) = 5, uz cannot be adjacent to one of vz, v21,v3;. It implies
that uguge, ugv3z € E(G). Since d(vi2) = 3, v12 cannot adjacent to one of
u; and up. So, vi2u3, vi2u4 € E(G). Since d(vg;) = 3 and vg1uy € E(G),
vg) is adjacent to either u3 or u4. By symmetry, assume that vyuz € E(G).
1t follows that vaous, u4v3;, u4vee € E(G). This means that g(G) = 6. This
contradiction proves our claim. O

By the claim, G contains a 5-cycle: vvugv;v;v. Let Gy = G(v,vv;).
Then G; contains a 4-cycle v;vixvjev;v;. Contracting this 4-cycle and re-
peatedly contracting all cycles of length at most 4 generated in process, we
obtain the resulting graph, denoted by G2. Then |V(G;)| < n-1-3 < 10.
By Lemma 3.3, G is 2-edge-connected. By Lemma. 3.6, G5 is A-connected.
By Lemma 2.1, G; is A-connected. By Lemma 2.4, there exist an orienta-
tion D(G) and a function f € F*(G, A) such that 8f = b. Therefore, G is
A-connected. Il

Lemma 3.8 Let G be a 3-edge-connected simple graph on 13 < n < 16
vertices and A be an abelian group with |A| > 5. If g(G) = 5 and A(G) = 4,
then G is A-connected.

Proof. Let d(v) = 4 and N(v) = {v1,vs,v3,v4}. Let N(v)\{v} =
{vir, -+ v} fori=1,2,3,4and ; > 2. Let {uy,---w} = V(G)\(N(v)U
N(n) UN(v) U N(‘Ua) UN('U4)). Then il =n ~ G+h+lb+i3+ Iy) <
16 — 13 = 3. It follows that there are at most 12 edges from {uy,---,u}
to V(G)\{u1,--- ,w}. We claim that there exist two vertices vix and vj
with i # j such that v;zv;, € E(G). Suppose otherwise. There are at least
16 edges from V(G)\{uy, - ,ui} to {u1, - ,u}, a contradiction. So v lies
in a 5-cycle of G. We assume, without loss of generality, that G contains
5-cycle C = vv1v1kvo:vev. Let Gi = Gy, ,vvp]- Then G contains a 4-cycle
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L : v1v1,v2,v9v;. Contracting L into one vertex and repeatedly contract all
cycles of length at most 4 generated in process, we finally get a resulting
graph denoted by G2 and let vx be the vertex into which H is contracted,
where G, = G/H. Then |V(G3)| < n—3 =13 and g(Gs) > 5.

Let |[V(G2)| < 11. If v ¢ V(G3), then by Lemma 3.2, G; is 3-edge-
connected. By Lemma 2.6, G is A-connected. Thus, assume that v €
V(G2). By Lemma 3.3, G, is 2-edge-connected and dg,(v) = 2. Since
dc,(v*) > 4, Gz is not the graph P*. By Lemma 3.6, G is A-connected.

Thus, assume that 12 < |V(G3)| < 13. In this case, since n < 16, it
follows that G is the graph obtained just by contracting L, v* is the vertex
into which L is contracted and 15 < n < 16. Note that v is not adjacent
to v* in Ga. Assume that g(Gz) > 6. By Lemma 3.1(3), |V(G2)| >
4+ 3dg,(v*) > 16, a contradiction. Thus, g(Gz) = 5. By Lemma 3.1(2),
[V(Gs)| 2 1+ 3dc,-,(v‘) > 13. Thus, |V(G2)| = 13 and dg,(v*) = 4 and
n = 16. Note that v is not adjacent to vz. Let N(v*) = {v],v5,v5,v4}.
Since |V(G2)| = 13, V(G1) = N(v*) U N(v}) U N(vé) U N(v3)UN(vy) and
v € V(Gg) \ {v ,vi,vh,v5,v5}. It follows that v* and v lie in a 5-cycle
Ly : v*vjvuvjv* of Ga. Thus, either vs or vy is adjacent to v*. It implies

that G contams a cycle of length at most 4, contrary to that g(G) =5. ll

Lemma 3.9 Let G be a graph and A an abelian group with |A| > 3. Sup-
pose that Ng(v) = {v1,v2,v3} and u # vs. Let b € Z(G, A) such that
b(v) # 0 and b(u) # 0. Assume that G, = G(v,v1v2) and Ng,(u) =
{u1,u2,us}. Let Gy = Gy(u,uiuz). If Gy is A-connected, then there exists
an orientation D of G and a function f € F*(G, A) such that 8f = b under
the orientation D.

Proof. Define b,: V(G,) — A by
bv(Z) = { b(v) + b(v3) if z=1v3

b(z) otherwise

Then b, € Z(G,, A) and b, (z) # 0. Since G, is A-connected, by Lemma 2.4,
there exists an orientation D(G,) of G, and a function f, € F*(Gy, A) such
that 8f, = b,. Without loss of generality, assume that the new edge v,v; is
oriented from v; to vg. Define an orientation of G from D(G,) and extend
f» to f € F*(G, A) as follows. Orient the edge v1v from v; to v and the
edge vvz from v to v, and the edge vvs from v to v3. For any other edges
in G orient the same way as in D(G,). Define

fo(v1v2)  if w=vv,0v2
(w) b(v) if w=vvg
fo(w) otherwise

Then f € F*(G, A) such that 6f =b. I
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Lemma 3.10 Let G be a 3-edge-connected simple graph onn < 15 vertices
and A an abelian group with |A| > 5. Then G is A-connected.

Proof. Suppose otherwise that G is not A-connected with |[V(G)| = n
minimized. Suppose that n < 11. By Lemma 2.6, G is A-connected.
Therefore, we assume that n > 12. By Lemma 3.5 , we assume that
9(G) =2 5. By Lemma 3.1(2), n > 14+6A > 1+ 3A. Since n < 15, it follows
that A < 4.

Assume that A = 4. Since n > 1+ 3A, it follows that n > 13. Suppose
that g(G) > 6. By Lemma 3.1(3), n > 17, a contradiction. Therefore,
g(G) = 5. By Lemma 3.8, G is A-connected.

Assume that A = 3. Since there are even number of the vertices of odd
degree, it follows that n = 12 or 14. If g(G) = 5, then G is A-connected by
Lemma 3.7. So we suppose that g(G) > 6. By Lemma 3.1(3), n > 14. If
9(G) 2 7, then by Lemma 3.1(4), n > 22, a contradiction. Thus, g(G) = 6.
Now we prove that G is A-connected when G is a 3-edge-connected cubic
graph with n = 14 and ¢(G) = 6 (Fig. 1).

Let b € Z(G, A). If b = 0, then by Theorem 2.7, G admits a nowhere-
zero 5-flow. Therefore, we assume that there exists a vertex v such that
b(v) #0. Let V(G) = {v,v1,vs,...,v13} as depicted in Fig. 1. Since b(v) #
0, there must exist a vertex v; such that b(v;) # 0 for some i € {1,...,13}.
As depicted in Fig. 1, the vertices v; and v must lie in a 6-cycle of G. By
symmetry, we discuss only v; = v, in level 2; v; = v4 in level 3; v; = vyq in
level 4.

In the case when v; = v, consider this 6-cycle: vv;v4v10v6v2v. Define
G,, = G—{v,v1} + {vov4}. Then G,, contains a 4-cycle Ly: v4v10vgV20s4.
We contract this 4-cycle into a vertex vg, and denote by G, the resulting
graph. It is easy to see that G, contains a 3-cycle: vL,v11v7vL,. We
contract this 3-cycle and repeatedly contract all cycles of length less than
5, finally we obtain a K, which is A-connected by Lemma 2.1. Repeatedly
utilizing Lemma 2.1, G,,, is A-connected.

In the case when v; = vy, define Gy, = G — {v,v4} + {v1v2,v1v10}.
Then G,, contains a 4-cycle Ly: v1vavgviov;. As the argument above,
we contract this 4-cycle into a vertex and repeatedly contract all cycles
of length less than 5, finally we obtain a K, which is A-connected by
Lemma 2.1. Repeatedly utilizing Lemma 2.1, G, is A-connected.

In the case when v; = vy, define G,,, = G — {v,v10} + {v1v2,v4v6}.
Then Gy,, contains a 4-cycle L;: v1vovgvsv;. As the argument above,
we contract this 4-cycle into a vertex and repeatedly contract all cycles
of length less than 5, finally we obtain a K, which is A-connected by
Lemma 2.1. Repeatedly utilizing Lemma 2.1, G,, is A-connected.

By the arguments above, we may assume that G,, is A-connected for
1 <1< 13. By Lemma 3.9, there exists an orientation D of G and a func-
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tion f € F*(G, A) such that 8f = b under the orientation D. Therefore, G
is A-connected. Hl

Fig. 1: Cubic graph on 14 vertices with girth 6

Proof of Theorem 1.2 Let G be a 3-edge-connected simple graph on
n < 17 vertices and A an abelian group with [A] > 5. By Lemma 3.10, we
assume that n = 16 with A(G) = 4 or n = 17 with A(G) > 5. We wish to
show that G is A-connected.

Suppose otherwise that G is not A-connected with |V(G)| minimized.
By Lemmas 3.10 and 3.5, g(G) > 5. By Lemma 3.1(2), 17 > n > 1 + 3A.
It follows that & < 5.

Assume first that A = 4. By our assumption, n = 16. If g(G) > 6,
then by Lemma 3.1(3), n > 17, a contradiction. Therefore, g(G) = 5. By
Lemma 3.8, G is A-connected.

Assume then that A = 5. If g(G) > 6, then by Lemma 3.1(3), n >
20, a contradiction. Therefore, g(G) = 5. Let d(v) = 5 and N(v) =
{v1,v2,vs3,v4,v5}. Let N(wi)\{v} = {vi1,---,va,} and §; > 2 for i =
1,-++,5. Let H be the subgraph induced by N(v)UN(v1)UN (v2)UN (v3)U
N(v4)UN(vs). It follows that |V(G)\V(H)| = n—(6+l1+la+l3+l+1s) <
1. Therefore, there are at most 5 edges from V(G)\V(H) to V(H). If
vikvje ¢ E(G) for all i # j, then there would be at least 20 edges from
V(H) to V(G)\V(H). This is a contradiction. This implies that there exist
two vertices, say v11 and v, such that vy3v9; € E(G). It follows that v lies
in a 5-cycle of G: vvyv13v21v2v. Let G1 = Glyu;,vv,)- Then G, contains a
4-cycle: vyv11v21v2v;. Contracting this 4-cycle and repeatedly contracting
all cycles of length at most 4 generated in processing, finally we obtain the
resulting graph, denoted by G;. It follows that |V(G2)| = [V(G,)|-3 < 14
and g(Gz) > 5. By Lemma 3.4 and Theorem 3.10, G2 is A-connected. By
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Lemma 2.1, G, is A-connected. By Lemma 2.3, G is A-connected. @

4 Applications

Recently, the problems of nowhere-zero flow and group connectivity have
been studied extensively. In particular, degree conditions are used to guar-
antee the existence of group connectivity. For the literature, some results
can be seen in (3, 4, 10, 11, 18, 16]. Lai [7] first used edge condition to
guarantee the existence of nowhere-zero 4-flows. As applications of Theo-
rem 1.2, we consider edge condition and group connectivity and prove the
following result. First we establish the following lemma.

Lemma 4.1 Let G be a 3-edge-connected simple graph on n vertices and
p 2 2 be an integer. If |E(G)| > ("";""1) +2p—1, then G can be T-reduced
to G* with |V(G*)| <p-1.

Proof. Suppose otherwise that |V/(G*)| > pandlet V(G*) = {v1,v2,--+ ,vc}.
We choice a graph G such that [V(G*)| = ¢ > p with |E(G)| maximized.
Let H; denote the preimage of v; in G. Since |E(G)| is maximized, all the
H;’s are complete subgraphs and at most one H; is a nontrival subgraph
of G with |V(H;)|=n—c+ 1. Thus

n—c+1

[E(G)| = |E(H;)| + |E(G*)| = ( 2

)+E@ o
Since ¢ > p > 2 and G is 3-edge-connected, G* is nontrival. By
Lemma 2.2, 2|V(G*)| - |E(G*)| = 3, together with Equation (1), we obtain

(n—§+1)+2p—15(n—;+1)+2c-—3. @)

Evaluating this inequality, we get 2n(c — p) < (c — p)(p + ¢+ 3) — 4, which
implies that ¢ > p. Since n > c, we get 7 < p+3 — -1 which implies that
n<p+2

Ifn =p+2, then c—p < 2. This implies that n < p+3—cf—p <p+l,a
contradiction. If n = p+1, then ¢ = p+1. It follows that n < p+3— L =
P — 1, a contradiction. Thus, n < p. On the other hand, n > ¢ > p. This
is a contradiction. Il

Theorem 4.2 Let G be a 3-edge-connected simple graph on n vertices and
A an abelian group with |A| > 5. If|E(G)| > ("3'°) + 31 where n > 17,
then G is A-connected.
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Proof. Let |[A| > 5. By Lemma 4.1, when p = 16, |[E(G)| > ("3'°) + 31
and the T-reduction G* of G has order at most 15. By Theorem 1.2, G* is
A-connected. Thus, G is A-connected. [l

If a graph G* is obtained by repeatedly contracting nontrivial A-connected
subgraphs of G until no such a subgraph left, we say G can be A-reduced
to G*. Note that if T-reduction G* of G is A-connected with |A| > 4, then
G is A-connected.

Theorem 4.3 Let G be a 3-edge-connected simple graph on n vertices and
A an abelion group with |A] > 4. If |E(G)| = (*3'") + 23 where n > 13,
then either G is A-connected or G can be A-reduced to the Petersen graph.

Proof. Let |A| > 4. When p = 12, by Lemma 4.1, |E(G)| > ("‘211) +23
and the T-reduction G* of G has order at most 11. By Theorem 2.5,
either G* is A-connected or G* is the Petersen graph. Thus, either G is
A-connected or G can be A-reduced to the Petersen graph. Il
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