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Abstract
The edge-face total chromatic number of 3-regular Halin graphs
was shown to be 4 or 5 in [5]. In this paper, we shall provide
a necessary and sufficient condition to characterize 3-regular Halin
graphs with edge-face total chromatic number equal to four.
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1 Introduction

A Halin graph G is a plane graph embedding of a tree T with order at
least 4 and whose interior vertices have degree at least 3, and a cycle C*
connecting all end vertices of . The tree T is called the characteristic tree
of G, and C* is called the adjoint cycle of G. Vertices and edges on the cycle
C* are called the outer vertices and outer edges respectively. Other vertices
and edges are called inner vertices and inner edges respectively. A path
consisting of inner edges is called an inner path. The face incident with all
outer vertices and outer edges is called the outer face and is denoted by
fo. All other faces are called inner faces. Faces of degree 3 are sometimes
called triangles. Note that an inner face is bounded by one outer edge and
an inner path. Two end vertices of the characteristic tree of a Halin graph
are called neighboring vertices if they are linked by an edge of the adjoint
cycle C*. Two inner faces are neighbors of each other, or neighboring faces,
if they are incident with a common outer vertex. A Halin graph is said to
be 3-regular if all the interior vertices of its characteristic tree are of degree
3.

* Partially supported by Faculty Research Grant (FRG/07-08/11-30), Hong Kong Bap-
tist University; and Research Grant Council Grant (HKBU210207), Hong Kong.
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u - an outer vertex

uv - an outer edge
o w - an inner vertex
. wy - aninner edge

vy - an inner path

So - the outer face
S - an inner face
J?  -atrangle

“ wand v - neighboring vertices
v S'and /7 - neighboring faces

Figure 1: An example of 3-regular Halin graph

Definition 1.1 A proper k-edge-face total coloring, of a loopless plane
graph G is an assignment of k colors 1,2, ... ,k to all edges and faces in
E U F such that no two adjacent or incident elements have the same color.
A graph G is k-edge-face total colorable if there exists a k-edge-face total
coloring on G. Moreover,

Xes(G) = min{k| G is k-edge-face total colorable }
is called the edge-face total chromatic number of G.

The edge-face total chromatic number has been investigated as early
as the conjecture that the edges and faces of each plane graph G may be
colored with A(G) + 3 colors so that any two adjacent or incident elements
receive different colors, where A(G) is the maximum degree of G, was raised
by Melnikov [8] in 1975. Since then, many researchers have been working
on this problem [2, 3, 4, 6, 7, 9]. In 2000, it was shown in (5] that if G
is a 3-regular Halin graph, then X.;(G) is either 4 or 5. In this paper, we
provide a necessary and sufficient condition to characterize those graphs
with X.;(G) = 4. The reader is referred to [1] for standard terminology of
graph theory not defined in this paper.

2 A necessary and sufficient condition

From the structure of Halin graphs, it can be observed that there is a
one-to-one correspondence between inner faces and outer edges. Thus, the
inner faces can also be regarded as cyclically ordered according to the order
of the outer edges incident with them.

Theorem 2.1 Suppose G is a 3-regular Halin graph. X.;(G) = 4 if and

only if for any two triangles T and T', the sequence of faces fifz...fm
separating T' and T' in the cyclic order contains at least one even face.
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Proof Suppose G is a 3-regular Halin graph and, between any two triangles
of G, there is an inner face of even order. We shall construct a 4-edge-face
total coloring of G by the following steps. The first two steps are from the
5-EF'T coloring procedures in [5] to color all inner edges with colors ¢y, 3
and ¢4, and the outer face with c;.

(1) Choose any inner vertex of G and assign colors ¢z, ¢3 and ¢4 to the

@)

3)

(4)

three edges incident with that vertex in the clockwise direction. An
inner vertex whose three incident edges have been assigned colors is
marked as labelled. An inner vertex which has not yet been marked as
labelled is called unlabelled.

If there are unlabelled vertices remaining, then choose an unlabelled
vertex v adjacent to a labelled vertex u. Without loss of generality, we
may assume that ¢; has been assigned to the edge uv, and that colors
have been assigned to the three edges incident to u in the clockwise
direction. We then assign the remaining two colors, c3 and ¢4, to edges
incident to v in the anti-clockwise direction and mark v as a labelled
vertex. This process will continue until all inner vertices have been
marked as labelled.

In [5], it was also shown that every face of G is surrounded by an outer
edge and an inner path, in which the inner path is colored alternately
by any two of colors ¢, c3 and c;.

Put the color in {c,¢3,c4}\ {ci, ¢} to f, where ¢; and ¢; are the colors
on its inner path.

If two inner faces f; and f, are adjacent, the pairs of colors on the
inner paths of the two faces cannot be identical. The colors of f, and
fy are thus distinct.

Suppose Ty and T5 are any two triangles of G and there is no other
triangles between T; and T, in the clockwise direction from T} to To.
Let Ty, f1, f2,.--, fn, T2 be a sequence of inner faces in the clockwise
direction, and v;_jv; be the outer edge incident with f;, 1 < i < n.
Change the color of the inner edges incident with v, vs, ...and v,_;
to ¢;. From the assumption of the theorem, there is an inner face of
even order in the above sequence. Let f; be a face of even order and
put the color of f; to v;v;41 for i = 1,...,5 — 1 and to v;_pv;—; for
i=37+2,...,n, and put the color of T} to vyv; and the color of T to
VUn-1Vn.-

Clearly, every outer edge v;_;v; incident with f;, 1 < i < n, is colored
with a color different from the color of f;. Since the colors on the
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adjacent inner faces of f; should be distinct from the color of f; and
the color of the outer face, there are only two colors of the adjacent
faces of f; and they should be arranged alternately. Moreover, the
order of f; is even. Therefore the colors of f;—1 and f;4; must be
the same. Thus, the colors of w1, v1v2, ..., ¥j—1v; are respectively
identical to the colors of Ty, fi, ..., f; — 1 and the colors of v;_,v;,
VjUjt1, +-) Un—1Vn are respectively identical to the colors of f;11, fj+2,
ey T

(5) For any triangle T' = uvw of G, where u and v are outer vertices, let f’
be the neighboring face of T incident with uw. From (4), the colors of
the outer edges incident with u and v (distinct from uv) are the same
as that of T, so we can simply put the color of f’ to the outer edge of
T and change the color of vw to ¢; as shown in Figure 2.

¢, 4
u \4 u \4
—_ Ci'f-_f‘ C— _.cl_—x— ¢ —f- Ci—
¢ Ci ¢ c G c
¢ ¢
f v [ Tw

Figure 2: Coloring of the outer edge of a triangle

We can see that (i) at each vertex, all incident edges have distinct
colors, (ii) the color of each face is distinct from those of its incident
edges, and (iii) adjacent faces received different colors.

Hence, the construction of the 4-edge face total coloring of G is com-
pleted.

On the other hand, we shall prove that if there exist two triangles T’
and T of G such that all inner faces f1, f2,..., fm between T” to T" are
odd, then G is not 4-edge-face total colorable. Suppose G is edge-face
colorable by the color set {c1,c2,c3,c4}. Without loss of generality, we
assume that fo, 7 and f; are colored with ¢y, ¢ and c3 respectively. The
color of f*, which is the other neighboring face of T, must be the fourth
color, c4. There are 2 possible ways to color the edges incident with 7" as
shown in Figure 3. Obviously, in both cases, the color of the outer edge
incident with fi must be c;. Because the colors of the faces adjacent to
f1 should not be ¢; (the color of the outer face) nor ¢ (the color of f;),
each face adjacent to f; should receive either ¢z or ¢4. Moreover, the two
colors of the faces adjacent to f; should be arranged alternately. Since f;
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is one of the adjacent faces of f; and the order of f; is odd, the color that
appears on fo must be ¢4 and hence the outer edge of f, must be colored
with c3. Since f3 is one of the adjacent faces of f, and the order of f, is
odd, the color of f3 must be ¢, and that on the outer edge of f3 must be
ca. Similarly, we got c3 and ¢3 on f4 and the outer edge of f; respectively
as shown in Figure 3.

G

c,(c.)’rc’ﬂrc’—T_c‘-T\%\

[ ¢, ¢
: 04("'1) c c, ) ¢

c/(c;)

c, T f
r* % A 2

Figure 3: The color pattern on the odd faces and their outer edges

It can be easily observed that the colors ¢3, ¢4 and c; appear cyclically
on faces f1, fa,..., fm. Moreover, the colors of the outer edges are c;, c3
and c4 when the color of their incident inner face is respectively cs, ¢4 and
Ca.

c!
/T/c, ———X——‘-‘: —t—°17
cl
[ C
[ J ! . ? c,

\ 'f.d"\ N »T/ for

Figure 4: No proper 4-edge-face total coloring of G

Finally, suppose the colors of f—1, fm and T" are c;, ¢; and cx respec-
tively, where none of i, j, k is equal to 1. Then the colors of the outer edges
of fm-1, fm and T" must be, respectively, cx, ¢; and ¢; (see Figure 4).
Hence the color of f** which is the other neighboring face of T" should be
¢, and the two inner edges of the triangle T should be colored with ¢;, a
contradiction. ]
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