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ABSTRACT. Let a(v) and g(v) denote the least possible area
and the least possible number of lattice points in the interior
of a convex lattice v-gon, respectively. Many lower and upper
bounds for a(v) and g(v) are known for every v. However, the
exact values of these two functions are only known for v < 10
and v € {12, 13,14, 16,18,20,22}. The purpose of this paper is
to answer the following Open Question 1 from [13]: What is the
exact value of a(11)? We answer this question by proving that
a(11) = 21.5. On our way to achieve the goal we also prove
that g(11) = 17.

1. INTRODUCTION

A lattice point in the plane is a point with integer coordinates. A
lattice segment is a line segment whose endpoints are lattice points.
The lattice length of such a segment is one less than the number
of all lattice points of that segment. Any line passing through two
lattice points is called a lattice line. A lattice polygon is a simple
(hence non-degenerated) polygon whose vertices are lattice points.
A convex lattice polygon with v vertices is called a v-gon. The set
of all v-gons is denoted by K.

By v = v(K), b = b(K), g = g(K) and a = a(K) we denote the
number of vertices, boundary lattice points, interior lattice points
and the area of a lattice polygon K, respectively. We will also deal
with the number G = G(K) = b(K) + g(K) and use the following
standard notation. For a set S we denote by conv S, 85, cl S the
convex hull, the boundary and the closure of the set S, respectively.
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Problems of finding relationships between the numbers v, b, g,
G and a are of great interest and have been investigated by many
authors, see among others [2, 8, 9, 10, 11, 12, 13, 14, 15].

For positive integers v > 3 define the function

a(v) = min{a(K) : K € Ky}.

Since Andrews [1] the natural problem of finding the values of the
function a(v) has been investigated by many authors. As a result
some lower and upper estimates for a(v) have been obtained, see
among others [3, 4, 5, 6, 7, 13, 15]. For example, in [4] one can find
the following estimates

1 . a(v) . .1_(1 +0o(1))

872 = 3 ~ 54 '
The exact values of a(v) are only known for a few, relatively small,
v; namely for v < 10 and v € {12,13, 14, 16, 18, 20, 22}, see [5, 15].
For the first yet unknown value, a(11), Simpson [15] has obtained
that
(1.1) 19.5 < a(11) £21.5
and Rabinowitz [13, Open Question 1] has asked: What is the exact
value of a(11)? The main purpose of this paper is to answer this
question by proving the following theorem. .

Theorem 1.1. a(11) =21.5.

In our proof of Theorem 1.1 we use the function
g(v) = min{g(K) : K € K.}
which is closely related to a(v) in the following way.
Fact 1.2. [15] For v > 3,

(1.2) a(v) =g(v) +v/2-1.
From Fact 1.2 and inequalities (1.1) we immediately get that
(1.3) 15 < g(11) < 17.

Now it is clear that in order to establish Theorem 1.1 it suffices to
show that g(11) = 17, and this will be done in Section 3. In this way
we also find the first unknown value of the function g(v). Since we
will have to refer to some values of the function g(v) let us collect the
first few of them which are as follows: g(3) =0, g(4) =0, g(5) = 1,
g(6) =1, g(7) = 4, g(8) = 4, g(9) =7, g(10) = 10, see [12].
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2. PRELIMINARIES

We will work with classes of equivalent lattice polygons. To un-
derstand when two lattice polygons are equivalent we need to review
some definitions. An affine transformation is a linear transforma-
tion followed by a translation. A unimodular transformation is one
that preserves area. If the entries of the matrix corresponding to a
unimodular transformation are integers then the transformation is
known as an integral unimodular transformation. Such a transfor-
mation has the property that it preserves convexity and the number
of lattice points in a set.

Two lattice polygons are said to be lattice equivalent, or just equiv-
alent, if one can be transformed into the other via an integral uni-
modular affine transformation. In particular, two lattice polygons
are lattice equivalent if one can be transformed into the other via a
shear about a line [, that is, an integral unimodular transformation
that leaves all the points on the line { fixed. For example, a shear
about the z-axis in the plane is given by the equations

T z+ky, keZ,
y y.

The interior hull and the outer hull of a convex lattice polygon
are two key concepts used in this paper. Let us recall their defini-
tions. Let K be a convex lattice polygon in the plane. Denote by
H = H(K) the convex hull of all lattice points in the interior of K.
Following [12] we call H(K) the interior hull of K. Note that H(K)
might degenerate into a segment, a point or even the empty set. We
will also use H" = H"(K) defined by

HY(K)=H(K) and H™(K)=H(H*Y(K)) for n>2.

Suppose that the interior hull of a convex lattice polygon K is a
lattice polygon. Let u be an edge of H(K). By I!(u) and h(u) we
respectively denote the lattice line containing u and the open half-
plane that is exterior to H(K) and bounded by [(u). The following
two facts will be very useful.

Fact 2.1. [12] Let K be a conver lattice polygon with interior hull
H. Ifo(K) 2 7, then v(H) > [42]. Ifo(K) 29, then b(H) >

[%—v(K)]
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Fact 2.2. [12] Let H be the interior hull of a convez lattice polygon
K. Ifu is an edge of H, then h(u) contains at most two vertices of

K.

Recall from [9] that the outer hull of a convex lattice polygon H,
denoted by O(H), is the closed convex region bounded by the lattice
lines exterior to H, parallel to and closest to the edges of H. In
the proofs of the next two theorems we will also use the following
notation. Let g(u) C h(u) denote the open halfplane bounded by
the lattice line l(u) which is parallel to and closest to .

Theorem 2.3. Let the interior hull of a convez lattice polygon K be
a lattice polygon H. Then the vertices of K must lie on the boundary
of O(H).

Proof. From the definition of O(H) it follows that the vertices of K
cannot lie in the interior of O(H). We will show that they cannot
lie in the exterior of O(H) either. Suppose that there is a vertex X
of K that lies in the exterior of O(H). Then X € g(uo) for some
ug C OH. Let A and B be the endpoints of the edge uo and let
m be its lattice length. First notice that the triangle ABX cannot
contain any interior lattice points. Indeed, if there were a lattice
point Y in the interior of ABX then conv(H UY’) would be a convex
lattice polygon contained in K and larger than H, contradicting the
maximality of H. A similar argument reveals that the segments AX
and BX contain no lattice points in their relative interiors. Thus
g(ABX) =0 and J(ABX) =m+ 2.

Let C be any lattice point on l;(uo). Applying a similar argument
to that in the case of the triangle ABX one can see that the triangle
ABC contains m + 2 boundary lattice points and no interior lattice
points. By Pick’s Theorem both triangles should have the same area,
but obviously their areas are different since they have the same base
and different altitudes, a contradiction. The proof is complete. [

It was pointed out in [9] that the outer hull is not always a lattice
polygon. The following theorem explains why we are interested only
in outer hulls which are lattice polygons.

Theorem 2.4. Let K be a conver lattice polygon. There ezists a
convez lattice polygon P such that H(P) = K if and only if O(K) is

a lattice polygon.
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Proof. The sufficient condition is obvious. We prove the necessary
condition. Let K be the interior hull of a convex lattice polygon P.
Assume that O(K) is not a lattice polygon. Then at least one vertex
of O(K), say B, is not a lattice point. In order to obtain a lattice
polygon we need to cut away the vertex B. Thus, we have to find
two lattice points, say B; and By, lying on two edges adjacent to B
such that the intersection of the triangle BB; B, and the polygon K
is the empty set. Considering two cases we will show that this is not
possible.

First consider the case when B = ly(u1)Niy(ug) for two consecutive
edges u; and up of K. Let A = uj Nuy, X; = lg(u1) N I(ug) and
Xa = lg(up) Nl(uy), see Fig. 1.

Uy

dpuy)

Fig. 1.

Notice that B; cannot lie in the relative interior of the segment
X1B since l4(uz) would not be the lattice line closest to I(ug). Simi-
larly B cannot lie in the relative interior of the segment XoB. The
point B) cannot coincide with X, otherwise X;A4 would be a lattice
segment and therefore between B and X, there would have to be a
lattice point. This, however, is impossible since /y(u;) would not be
the lattice line closest to I(u;). For the same reason B, cannot co-
incide with X,. Hence B; and Bz would have to lie out of BX; and
BXj, respectively. Moreover B; B, cannot intersect K. Therefore
the lattice points B;, B; and A are not collinear. One can easily see
that B; + (B2 — A) would be a lattice point in the interior of the
quadrilateral BB AB3, which of course cannot happen.

Suppose now that B = lg(u1) Nly(ux), where uy, ug, ..., ux, k > 3,
are consecutive edges of K. Notice that this happens when the lattice
lines ly(u;) parallel to and closest to I(u;), i = 2,...,k — 1, do not
intersect the interior of O(K). Let X1 = lg(u1) Nl(uz) and Xy =
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lg(ur) Ni(u2). The lattice points By and B, cannot lie in the relative
interiors of the segments X;B and X3B, respectively. Otherwise
lg(u2) would intersect the interior of O(K). It is clear now that a
construction of triangle BB; B having empty intersection with K is
impossible. The proof is complete. O

In view of Theorem 2.3 we need a procedure of trimming the outer
hull to a desired polygon. By cutting away or trimming a vertex A
of a convex lattice polygon K with nonempty interior hull, we mean
an operation that replaces K by the polygon cl(K \ A4), where A4
is the triangle with vertices at A and its closest lattice points lying
on the edges adjacent to A. We say that a convex lattice polygon K
admits a trimming at its vertez A if Ay N H(K) =0, and admits o
proper trimming at its vertez A if, in addition, we have

v(cl(K \ Ay)) =v(K)+1.

Alternatively, we say that the vertezx A can be cut away or that it
can be cut away properly, respectively.

We notice some useful observations about trimming. First, if a
convex lattice polygon K admits a trimming at its vertex A, then
A4 cannot contain any interior lattice points. Second, K admits a
proper trimming at A if and only if the vertices of A4, different from
A, lie in the relative interiors of the edges adjacent to A. Third, if AB
is an edge of K of lattice length 2 and K admits a proper trimming
at A and at B, then after cutting away the vertex A, the polygon
cl(K \ Aa) does not admit a proper trimming at B.

We want to draw the reader’s attention to the difference between
cutting away a single vertex of O(H) and the process of trimming
O(H) to a required polygon. This is illustrated in the case of the
lattice pentagon H with vertices (0,0), (0,2), (1,2), (2,1) and (2,0).
It is easy to check that the outer hull of H is a convex lattice pentagon
which admits a proper trimming at every vertex. Therefore, one
could get an impression that O(H) could be trimmed to a decagon.
However, it is easy to observe that we can cut away properly at most
three vertices in a row, obtaining an octagon.

The following two facts will be very helpful.

Fact 2.5. [9] Suppose that H is a convez lattice polygon with interior
lattice points. Let u be an edge of H with no lattice points in its
relative interior and let v be an edge of O(H) parallel to u and lying
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in h(u). Then v cannot contain two lattice points in its relative
interior.

Fact 2.6. [10] For any conver lattice polygon K with interior lattice
points we have

(2.1) b(K) < 29(K) — v(K) + 10.

3. PROOF OF THE MAIN RESULT

We have already mentioned that in order to establish Theorem
1.1, which is the main result of this paper, it suffices to prove the
following theorem.

Theorem 3.1. A convex lattice 11-gon must contain at least 17
interior lattice points.

Proof. In connection with inequalities (1.3) the theorem is proved
by considering two claims in which we show that there is no convex
lattice 11-gon K with g(K) = 15 or g(K) = 16.

Claim 1. A conver lattice 11-gon cannot contain 15 interior lattice
points.

Proof of Claim 1. Suppose to the contrary that there exists a convex
lattice 11-gon K with 15 interior lattice points. We first find nec-
essary conditions for the existence of such a polygon and next show
that no polygon satisfying these conditions exists.

The interior lattice points of K are all lattice points of H = H(K).
Thus

(3.1) b(H) +g(H) = g(K) = 15

and obviously v(H) < b(H) < 15. By Fact 2.1 we have v(H) > 6
and b(H) > 8. We must also have v(H) < 8, otherwise we would
get b(H) > v(H) > 9 and g(H) > g(9) = 7 and equality (3.1) would
not be valid. Clearly, when v(H) = 6 we have g(H) > g(6) = 1, for
v(H) > 7 we have g(H) > g(7) = 4. From the above conditions we
get 15 possible realizations of the numbers v(H), b(H) and g(H),
which we collect in Table 1.
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[[Case Tv(H) [b(H) [¢(H) | G(H)=g(K) || Case | v(H) | b(H) | g(H) |G(H)=g(K)
1.1 ] 6 8 7 15 1.9 7 9 6 15
12 | 6 9 6 15 110 7 | 10 | 5 15
13 | 6 10 | 5 15 T11 | 7 | 11 | 4 15
14 | 6 11 4 15 112 | 8 8 7 15
151 6 12 | 3 15 .13 | 8 9 6 15
16 | 6 13 2 15 14| 8 | 10 | § 5
17 | 6 14 1 15 15| 8 | 11 | 4 15
18 | 7 8 7 15

Table 1

By Fact 2.6 we can immediately eliminate Cases 1.5, 1.6, 1.7 and
1.15. In the remaining cases we will show that it is not possible to
construct a convex lattice 11-gon with the interior hull H having the
required parameters collected in the ordered triple
t(H) = (v(H),b(H), 9(H))-

Case 1.1: t(H) = (6,8,7) and 1.2: t(H) = (6,9,6). Let H be a
convex lattice hexagon with 8 or 9 boundary lattice points. We try
to trim O(H) to an 11-gon. Obviously this would not be possible if
v(O(H)) < 5. So assume that v(O(H)) = 6. Now we need to cut
away properly five vertices of O(H) in a row.

Since the polygon H has at least three edges of lattice length 1,
Fact 2.5 implies that O(H) has at least three edges with at most one
lattice point in their relative interiors. Even if we could cut away
properly each vertex of O(H) separately, in view of the observations
following the definition of trimming it is impossible to cut away prop-
erly five of them in a row. Thus, we can obtain at most a decagon.
This completes the proof in this case.

We want to refer to the above observations later on and therefore
we formulate the following fact.

Fact 3.2. Let H be a conver lattice hexagon with 8 or 9 boundary
lattice points. Then O(H) cannot be trimmed to any convez lattice

11-gon.

Case 1.8: t(H) = (6,10,5). A reasoning similar to that in Cases
1.1 and 1.2 allows us to assume that H has only two edges of lattice
length 1 and four edges of lattice length 2. The lattice lengths of
the edges of H can occur in the following three sequences: 122122,
121222 and 112222. The three possible situations are symbolically
illustrated in Fig. 2. We want to warn the reader that here we pay
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more attention to the lattice lengths than to the placement of the

OO

Fig. 2.

In the case of the first outer hull we can cut away properly only four
vertices in a row. The second outer hull cannot be trimmed to an
11-gon either. Only in the case of the sequence 112222 there is a
chance to obtain an 11-gon. Using a similar reasoning one can easily
observe that the following fact is true.

Fact 3.3. Let H be a convez lattice hezagon. The necessary condi-
tion for a possibility of trimming O(H) to a convez lattice 11-gon is
that H has at least four consecutive edges of lattice length at least 2.

We continue the analysis of Case 1.3. Recall that g(H) = 5. This
and g(5) = 1 imply that v(H2) < 4. Thus H? is either a lattice
segment or a lattice polygon for which
t(H?) € {(4,5,0), (4,4,1),(3,5,0), (3,4, 1), (3,3,2)}.

The interior lattice points of H are collinear. Obviously they form
a lattice segment of lattice length 4. Using a similar argument to
that in [11, The z-axis Lemma] we can transform H by means of
an integral unimodular affine transformation in such a way that
its interior lattice points are mapped into points with coordinates
(1,0),...,(5,0). It is clear that such a transformation carries H into
a lattice hexagon lying in the strip S bounded by the lines y = —1
and y = 1 with two vertices on each line and two vertices with coor-
dinates (0,0) and (6,0). From now on, whenever we place a polygon
in the strip S it will lie in the half-plane z > 0 with vertex (0, 1).
In order to get such a placement previous transformations should be
(if necessary) followed by a shear about the z-axis. Clearly, the four
edges adjacent to the vertices (0,0) and (6,0) have lattice length 1.
Thus, by Fact 3.3 this situation cannot happen.

The interior lattice points of H form a triangle. Obviously, O(H?)
has 3 edges. After cutting away all three vertices of O(H?) we get
three edges of lattice length 1. Therefore by Fact 3.3 we can eliminate
this case.
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The interior lattice points of H form a quadrilateral. When H? is
a quadrilateral we have to cut away at least two vertices of O(H?)
to obtain a hexagon. The resulting hexagon will never have four
consecutive edges of lattice lengths 2 and again by Fact 3.3 such a
situation cannot happen. This completes the consideration of Case
1.3.

From Fact 3.3 and the above observations we have the following
fact.

Fact 3.4. Let H? denote the interior hull of a convez lattice hezagon
H. If v(H?) < 4, then O(H) cannot be trimmed to a convex lattice
11-gon.

Case 1.4: t(H) = (6,11,4). In view of Fact 3.4 this case is elimi-
nated.

Case 1.8: t(H) = (7,8,7). Here by Fact 2.1 we have v(H?) > 4.
Thus

t(H?) €{(4,4,3),(4,5,2),(4,6,1),(4,7,0),(5,5,2),(5,6,1),(6,6,1)}.

When t(H?) = (4,4,3) it follows from Fact 2.5 that every edge of
O(H?) contains at most one lattice point in its relative interior.
Thus it is impossible to trim O(H 2) to a heptagon. Using a similar
argument one can see that O(H2) cannot be trimmed to a heptagon
when t(H?) = (4,5, 2).

When t(H?) = (5,5,2) we place H? in the strip S. If (0,0) and
(3,0) are vertices of H2 we can assume that (1,1) is also a vertex
and then the last vertex is either (1,—1) or (2,—1). If only one of
the points (0,0) and (3,0), say (3,0), is a vertex of H?, then on both
lines y = —1 and y = 1 there are two vertices of H2. Clearly, in
this way we get three non-equivalent polygons. By [11, Theorems
1 and 5| we get five more polygons related to the remaining cases
t(H?) € {(4,6,1),(4,7,0), (5,6,1),(6,6,1)}. All candidates for H?
are presented in Fig. 3.
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Fig. 3.

It is easy to check that only the outer hulls of the last three polygons,
called Qqg, Po and Hp, can be trimmed to heptagons.
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For the quadrilateral Qo we obtain 15 heptagons shown in Fig. 4.
: oy A [ Py i : }

NN

: N "
- &P -0-4214%-7- ¢ e\ 4»-”

Fig. 4.

Only for two of them the outer hulls are lattice polygons but they
cannot be trimmed to an 11-gon.

For Py and Ho we obtain the following 10 polygons but none of
their outer hulls can be trimmed to an 11-gon.

Case 1.9: t(H) = (7,9,6). We have the following four possibilities:
tH?) € {(4,4,2),(4,5,1), (4,6,0), (5,5, 1)}.

In Case 1.8 we noticed that the first two triples do not lead to any
heptagon.

By [11, Theorem 5] only pentagon P; with vertices (0,1), (1,2),
(2,2), (2,1) and (1,0) has triple (5,5,1). Obviously, @(P;) cannot
be trimmed to a heptagon with 9 boundary lattice points.

By [11, Theorem 1] there are two realizations of the triple (4, 6, 0).
Namely, the trapezoid Ty with vertices (1,1), (1,2), (2,2), (4,1) and
the rectangle R; with vertices (1, 1), (1,2), (3,2), (3,1). The reader
can easily check that O(T}) cannot be trimmed to a heptagon. In
the case of O(R;) a symmetry consideration restricts the resulting
polygons to the six heptagons in Fig. 6, the first one with one edge
of lattice length 3 and the remaining with two edges of lattice length
2. None of their outer hulls can be trimmed to an 11-gon.

. P [ iobo] e

B S abd i fan 02 -4 - *--$

“Are AR b gt A -+

RadiE o e N~ R
Fig. 6
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Case 1.10: t(H) = (7,10,5). Fact 2.1 and g(5) = 1 imply that
v(H?) = 4. Thus t(H?) € {(4,5,0),(4,4,1)}. By [11, Theorems 1
and 5] H? is equivalent to one of the three possible quadrilaterals
shown with their outer hulls in Fig. 7.

).\

It is obvious that only the first outer hull can be trimmed to a hep-
tagon. No matter how we trim O(H?) to a heptagon we obtain
heptagons equivalent to the one shown in Fig. 8. Its outer hull
cannot be trimmed to an 11-gon.

[ 2R )

Py
*

Fig. 8.

Case 1.11: t(H) = (7,11,4). In this case we have equality in (2.1).
On the other hand equality in (2.1) cannot happen for heptagons,
see [10]. This eliminates Case 1.11.

Case 1.12: t(H) = (8,8,7). All possible lattice polygons with v > 4
and G = 7 are shown in the picture in Case 1.8. Only the outer hulls
of Qo and Hp can be trimmed to an octagon. One can see that the
outer hulls of the resulting octagons, shown in Fig. 9, are not lattice
polygons.

:
-@ \
|
. ~’~Nv-!b

Aty

Fig. 9.

Case 1.13: t(H) = (8,9,6). We can repeat here the argument from
Case 1.9 and assume that t(H?) € {(4,6,0),(5,5,1)}. The outer hull
of the pentagon P; cannot be trimmed to an octagon. When H 2 s
equivalent to the rectangle R; the outer hull of the only obtained
octagon, shown in Fig. 10, cannot be trimmed to an 11-gon.
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Fig. 10.

Case 1.14: t(H) = (8,10,5). This case can be ruled out since a
convex lattice octagon cannot contain 5 interior lattice points, see

[12, The Octagon Anomaly]. This completes the proof of Claim 1.
()

Claim 2. A convez lattice 11-gon cannot contain 16 interior lattice
points.

Proof of Claim 2. Suppose that there exists a convex lattice 11-gon K
with 16 interior lattice points. In this case we have b(H) + g(H) =
9(K) = 16, v(H) < b(H) < 16 and again by Fact 2.1 v(H) > 6
and b(H) > 8. Moreover v(H) < 9 and when v(H) = 9 we have
g(H) > g(9) = 7. From the constraints and observations made in
the analysis of Claim 1 and also by Facts 3.2 and 2.6 we get the
following remaining possible realizations of the numbers v(H), b(H)

and g(H).

Case | v(H) [ b(H) | g(H) | G(H)=g(K)|| Case [ v(H) [b(H) | g(H) JG(H)=9(K)
21 [ 6 |10 6 16 27 [ 7 [11] 5 16
22 | 6 | 11 [ 5 16 28 '8 [ 8 [ 8 16
23 (6 | 12 [ 4 16 29 | 8 [ 9 [ 7 16
24 | 7 | 8 | 8 16 210 | 8 |10 | & 16
25 | 7 | 9 [ 7 16 211 9 [ 9 [ 7 16
26 | 7 | 10| 6 16
Table 2

Case 2.1: t(H) = (6,10,6). In view of Fact 3.4 we may assume
that v(H?) > 5. Thus t(H?) = (5,5,1) and H? is equivalent to the
pentagon Pj. Since b(O(Py)) = 10 it is impossible to trim O(P;) to
a hexagon with b(H) = 10.

Case 2.2: t(H) = (6,11,5) and 2.3: t(H) = (6,12,4). Here v(H?) <
4 and both cases are eliminated by Fact 3.4.

Case 2.4: t(H) = (7,8,8). In this case
t(H2) e {(4’ 4’ 4)3 (4’ 5’ 3)’ (4’ 6’ 2)’ (4’ 7’ 1)7 (47 8) 0)’
(5a 5, 3)1 (5a 67 2), (5’ 77 1)» (62 6a 2)}
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A similar argument to that in Case 1.8 reveals that the triples (4, 4, 4)
and (4,5, 3) do not lead to any heptagon.

We place the polygons with triples (4,6,2), (5,6,2) and (6,6,2)
in the strip §. Vertices of the polygons have to be on both lines
y = —1 and y = 1 and can be at (0,0) and/or (3,0). It is easy to
check that there are only two non-equivalent hexagons having the
required parameters. We can assume that in the case of (5,6,2) the
existing edge of lattice length 2 can lie either on the y-axis or on the
line y = 1. In this way we obtain four non-equivalent pentagons. Any
quadrilateral with the triple (4,6,2) has one edge of lattice length
3 or two edges of lattice length 2. All polygons with two interior
lattice points obtained in this case are presented in Fig. 11.

4

RVe
RS
X

Fig. 11.

The interior lattice points of H? with t(H?) = (5,5,3) can be
collinear or not. If they are collinear we place H? in the strip S. If
H? has two vertices on the z-axis, then we get three nonequivalent
pentagons. If H? has only one vertex on the z-axis we get one
polygon. If the interior lattice points of H 2 are not collinear, then
we can assume that H?3 is the triangle with vertices (1,0), (2,0) and
(1,1). To obtain a required polygon we have to cut away all three
vertices of O(H3). All pentagons with three interior lattice points
obtained here are presented in Fig. 12.

b b

am—tm £

o S Na5mh:

Fig. 12.

-9,

*
.

In our consideration of the remaining triples (4,7,1), (4, 8,0) and
(5,7,1) we use the known characterization of convex lattice polygons
with at most one interior lattice point, see [11, Theorems 1 and 5).

Fig. 13 collects only those polygons, obtained in this case analysis,
whose outer hulls are lattice polygons.
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Only the outer hulls of the top four polygons can be trimmed to a
heptagon but only in the case of the two heptagons shown in Fig. 14
their outer hulls are lattice polygons.

R J A

<3

Fig. 14.

However, no vertex of the resulting two polygons can be cut away
properly.

Case 2.5: t(H) = (7,9,7). We can repeat here the reasoning from
Case 1.8. The outer hulls of Qg, Pp and Hp can be trimmed to
24 non-equivalent heptagons. Only nine of them (shown in Fig. 15)

have outer hulls which are lattice polygons. The resulting outer hulls
can be trimmed at most to an octagon.
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Fig. 15.

Case 2.6: t(H) = (7,10,6). As in Case 1.9 we obtain in Fig. 16 four
heptagons with 10 boundary and 6 interior lattice points. None of
their outer hulls can be trimmed to a convex lattice 11-gon.
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Case 2.7: t(H) = (7,11,5). As in Case 1.10, O(H?) is the quadri-
lateral with vertices (0, 0), (0, 3), (2,3), (5,0). Since b(O(H?)) = 13
it is impossible to trim O(H?2) to a heptagon H with b(H) = 11.
Case 2.8: t(H) = (8,8,8). We can repeat here the reasoning from
Case 2.4. In this case only two outer hulls can be trimmed to an
octagon. We obtain 8 different octagons but the outer hull of one of
them, shown in Fig.17, is a lattice polygon. This outer hull does not
admit a proper trimming at any vertex.

Fig. 17.

Case 2.9: t(H) = (8,9, 7). Following Case 1.12 we obtain 3 different
octagons, see Fig. 18. None of their outer hulls admits a proper
trimming at any vertex.

? A
U . v .
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-m-«)» :.__-_l & p - o
Fig. 18.

Case 2.10: t(H) = (8,10, 6). Just like in Case 1.13 we trim the outer
hull of the rectangle R; to the only octagon given in Fig. 19. Its.
outer hull can be trimmed at most to a decagon.

Fig. 19.
Case 2.11: t(H) = (9,9, 7). In Fig. 20 we show the unique nonagon

with the required parameters, see [12]. Its outer hull is also a nonagon
that does not admit a proper trimming at any vertex.
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This completes the proof of Theorem 3.1, namely, that a convex
lattice 11-gon must contain at least 17 interior lattice points. Since
there exists an example of a convex lattice 11-gon with 17 interior
lattice points, see [12], we proved that g(11) = 17 and in view of
Fact 1.2 also that a(11) = 21.5. a

Remark 3.5. It would be nice to eliminate the readable asymmetry
between the numbers of known values of the functions a(v) and g(v)
for odd and even values of v.
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