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Abstract
Hammack and Livesay introduced a new graph operation G*) for
a graph G, which they called the kth inner power of G. A graph G is
Hamiltonian if it contains a spanning cycle. In this paper, we show
that C¥(n > 3, k > 2) is Hamiltonian if and only if n is odd and
k =2, where C,, is the cycle with n vertices.
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1 Introduction

In the study on the problem of cancellation over the direct product, Ham-
mack and Livesay [2] constructed a new graph operation which they called
the inner power of a graph. Given a graph G and a positive integer k, the
kth inner power of G, denoted by G¥), is the graph defined as follows,
where arithmetic on the indices is done modulo k.

V(G*) = {(zo,1,...,Tk-1): 7: € V(G) for 0 < i < k},

E;Gk) = {(z0, 21, -, Tk—1)(¥0, Y11 - -, Yk—1): Ti¥ix1 € E(G) for 0 <
i < k}.

Since the case k =1 is trivial, we assume k > 2 in the following. Notice
that if k = 2, then (2o, 1)(y0, ¥1) € E(G'?) if and only if zoy; € E(G) and
z1y0 € E(G). Fig.1 shows two examples, where for convenience the vertices
are labeled as zy rather than (z,y). We refer to [2] for various properties
of inner powers, such as connectivity, bipartiteness, and their interaction
with the direct product.

In this paper, we consider the Hamiltonicity problem of inner powers of
cycles. Our main result can be formulated as follows.

Theorem 1. Let n > 3 and k > 2. The inner power C,(,k) is Hamiltonian
if and only if n is odd and k = 2.
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Fig.1 The inner powers ngz) and ng).

2 Proof of necessity

We regard the vertices of C, as the elements of Z,, where Z, = {[0], [1], ...,
[n — 1]} denotes the set of equivalence class of Z under congruence modulo
n. Two vertices [i] and [j] are adjacent in Cy, if and only if [i] — [j] = [£1].

Lemma 1. ({2) G is connected if and only if G is connected and has
an odd cycle.

Lemma 2. C¥ contains an isolated vertez for n >4 and k > 3.

Proof. Let z = (zo,z1,-.-,Zk-1) = ([0},[1),[1],...,[1]) and we show that
z is an isolated vertex of C’,(,k). Suppose to the contrary that there exists
a vertex ¥ = (¥0,¥1,..-,Yk—1) such that zy is an edge of c®. 1t follows
by the definition of the inner power that zoy1 = [0)y1 € E(Cr) and zoyy =
[1]y; € E(Cy). This is a contradiction since two adjacent vertices [0] and
[1} in Cp(n = 4) have no common neighbors. O

Lemma 3. C:,(,k) contains a vertez incident with exactly one edge (possibly
a loop) for k > 3.
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Proof. Let

[O]’[I]a[2]?”"[0]’[1]’[2]s [0]’ if 3 l (k_l)’
[O]a [1]a [2]a reey [O], [1}1 [2]’ [211 [0]3 if3 | (k - 2)‘

One can easily check that z;_; # z;31 for 0 < i < k, where arithmetic
on the indices is done modulo k. Let y = (yo,¥1,...,¥x_1) be an adjacent
vertex of z. The definition of the inner power implies that y; is a common
neighbor of z;_, and z;4, and hence is the unique vertex in C3 other than
Z;—) or T;4; for each i € {0,1,...,k—1}. (]

$=(x0,...,$k_1) £

{ o1, (1), 2. --,[0), 1], 2], if 3 | k,

Proof of necessity Let n > 3 and k > 2. We show that if n is even or
k > 3 then C&¥ is not Hamiltonian. First, if k > 3 then by Lemmas 2 and
3, the inner power C{) contains either an isolated vertex (when n > 4) or
a vertex incident with exactly one edge (when n = 3). Either case implies
that C{* is not Hamiltonian. Now assume k = 2 and n is even. By Lemma
1, we see that C = Cf? is not connected and hence is not Hamiltonian.
The necessity part of Theorem 1 follows.

3 Proof of sufficiency

Throughout this section, we assume n > 3 is odd. We will construct a
Hamiltonian path in C{? and then show that it can be adjusted to form
a Hamiltonian cycle by edge switching. We need the following lemma, a
generalization of the classical Dirac/Ore switching argument.

Lemma 4. Let G be a graph with a Hamiltonian path vo...wi{l > 2).
Let > 0 and let sosy...s.41 be an increasing sequence from 0 = sq to
L= srp1. If (i) vsovs, € E(G) and (ii) vs,—1vs,,, € E(G) fork=1,...,r
then G is Hamiltonian.

Proof. Let eg = vsovs, and ex = v5,-1s,,, for k = 1,...,7. We use the
even-indexed edges e; to build one vo,v;-path and the odd-indexed edges
to build another vo, v-path. When r is even, the two paths are formed by
the following concatenations.

eo, P(s1,52 — 1), €2, P(s3,84 — 1), €4,..., P(8p-1,8- — 1), €,

P(0,s1 —1),e1, P(s2,53 — 1), e3, P(s4,85 — 1),...,e,_1, P(ss,1)

€o €2 €r—2 €r
S1  s2—1 33 Sr—1 §p—

0 s— 82 83— Sr—1— Sr l
€ €3 T €1
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When 7 is odd, the path starting with eg reaches v,_ and ends with P(s,,!),
while the other path reaches v,,..; and ends with e,. The union of the above
two paths is a Hamiltonian cycle. O

We also need the following two simple lemmas. Let |x]| denote the
largest integer not greater that x.

Lemma 5. Letn >3 be odd. Then1 < |Bi2| <221 forn <m <n?-1.
Proof. Adding n to each term of the inequality n < m < n? — 1, we have
m<m+n<n®—1+n<n(n+1). (1)

Dividing each term of (1) by 2n, we have

m+n n+1l
< .
1< 5 < 5 (2)

Note (n + 1)/2 is an integer since n is odd. It follows from (2) that

m+n n-—1
< .
1=l 2n J= 2

O
Lemma 6. Let a,b,c be nonzero integers with a and b coprime. Then
(i) a{ ¢ implies a { bc, and (ii) a | c and b | ¢ implies ab | c.
Now we give a construction of a Hamiltonian path in 07(12)_ Let
o (4mrJm), form € {0,2,...,n% —1}, 3
T Gmrim), forme{1,8,...,n% -2}, @)
where
i = [m}, for0<m<n-1, 4
m=Y [-m-2, forn<m<n?-1, )
and
. [m], for0<m<n-—1, 5
Im = 2132} -m], forn<m<n?-1. (5)
Lemma 7. No element is repeated in the sequence z°... -1,
Proof. Define a map ¢ : {0,1,...,n% — 1} — Z, as follows:
_f dm—im, ifmiseven,
w(m) = { im — jm, if m is odd. (6)

A direct calculation from (4) and (5) shows



[ 0<m<n-1,
e(m) = {[(]1)m2[ min|| p<m<n? 1. (7

Let m and m’ be two different 1ntegers in {0,1,. —1}. We shall show
™ # ™. We may assume m < m/.

Case1: 0<m<n-1land0<m'<n-1. By (4) and (5), im = jm = [m)
and ip = jmr = [m’] Hence, 2™ = ([m},[m]) and z™ = ([m’] [m’]) by
(8). Since 0 < m’' —m < n, we see [m] # [m'] and hence z™ # z™, as
desired.

Case 2. 0 <m<n-1landn <m' <n? — 1. It suffices to show

p(m) # p(m') since <p(m) # p(m') lmphes z™ # 2™ by (3) and (6). Lem-
ma 5 implies n { |_—+—j and hence n { (- "‘2[—-"—'—] by Lemma 6 (i). I
follows from (7) that ¢(m') # [0] and ¢(m) = [0], and hence p(m) # p(m’ ),
as desired.

Case 3: n<m<n?—landn<m/ <n?2-1.
Subcase 3.1: m' —m is odd. As in Case 2, it suffices to show p(m) # p(m’).
Lemma 5 implies

m+n m +n
< -
and hence N -
m+n m +n
Using Lemma 6 (i), we have
ma M+ m +n

On the other hand, by (7) and the assumption of this case,

olm) = p(m) = [(~2 TR — 1y ZET)
= (om0 e By,

Therefore, by (8), w(m) — ¢(m’) # [0], as desired.
Subcase 3.2: m’ —m is even. We assume that both m and m’ are even (the

case that both m and m’ are odd can be settled in the same way). From
this assumption and (3), we know ™ = (im,jm) and 2™ = (im/, jme). If
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im # ims then £™ 3 2™ | completing the proof. Now assume i,, = ipy, i.e.,
[-m — 2] = [-m' — 2] by (4) and thus n|(m’ —m), yielding 2n|(m' —m) by
Lemma 6 (ii). Let m’ = m + 2np. It follows from the inequality n < m <
m’ < n? — 1 that 0 < 2p < n and hence [2p] # [0]. From (5), we have

Jme =

= [2

= Jjm+ [2p]

% jm;
completing the proof. 0
Lemma 8. Any two consecutive elements in the sequence z°... =1 gre
adjacent.
Proof. By definitions of the inner power and the sequence z°.. 21 we

need to show that both ig...4,2—; and Jo...Jjn2—1 are walks in Cy, that is
any two consecutive elements in either sequence are adjacent.

We first show that ig...%,2_1 is & walk. From (4), we see i, — i, =
[-n — 2] — [n — 1] = [-1], implying i, is adjacent to i,. It is clear that
consecutive elements among ig...%p—1 OF amMONE iy ...in2_ are adjacent
in Cy,.

Now consider the sequence jg...Jn2—1. It is clear that consecutive el-
ements among Jo...Jjn—1 are a.d_]acent in C,. Since jp — jn-1 = [-n| —
[n—1]=[1] by (5) we see that j,—; is adjacent to j,. Let m be arbitrary
with n < m < n? — 1. If | 2EL=0| = 1 4+ | B=2], then jmi1 — Jm = (1],
otherwise |B4l=m| = | =] and hence jm+1 — jm = [~1]. Either case
implies that jn, is adjacent to jm41. It follows from the arbitrariness of m
that consecutive elements among jn . ..Jjn2—1 are adjacent in C;,. Lemma 8
follows. O

Lemma 9. Let r = (n—3)/2, s0 =0, and sy = 2k+1)n—1 fork =
1,...,7+1. Then (i) z%0z% € E(C?) and (i) z*+~1z*+ € E(CE?) for
k=1,...,r

Proof. From (3)-(5), we know z*° = z° = (ip, jo) = ([0],[0]). Since s; =
3n—1 and n > 3 is odd, we see that s; is even and s; > n. Hence,

% = x3n—l

= (t3n—1,J3n—1)
= (~Bn-1-2,p P - Gr-1)

= [ 1]’[1])'
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Hence, z%0z% € E(C,(,z)).
If r = 0 we are done. Now assume r > 1. Let k € {1,...,r}. Since
sk~ 1=(2k+1)n -2 > n, from (4) and (5) we have

lo—1 = L2k41)n—2 = [~ ((2k + 1)n — 2) - 2] = [0],
and

Jon—1 = J@k+1)n-2
U2 (k4 1y —2)
[2Lknn—l

= [2K).

1+2]

Noting s — 1 = (2k + 1)n — 2 is odd, we see z°*~! = (j,,_1,%5,—1) =
([2%],[0]). By a similar argument we can show z%+ = ([-1],(2k + 1]).
Therefore, z®*~1z%+1 ¢ E(C,(,z)). Lemma 9 follows. O

Proof of sufficiency By Lemmas 7 and 8, we see that z°...z" "1 is a
Hamiltonian path in C®. Let r = (n—3)/2, 80 =0, and s = (2k+1)n—1
for k =1,...,r+1asin Lemma 9. Let ! = n2 — 1, It is clear that
8081- .- Sr41 is an increasing sequence with sp = 0 and s,4; =n? —1 = 1.
From Lemma 9, we see that the graph C? satisfies the condition of Lemma
4, implying C$? is Hamiltonian.

4 A conjecture

By I',T'o we denote, respectively, the set of finite simple graphs and the set
of finite graphs in which loops are admitted. In [1], Gravier obtained a nec-
essary and sufficient condition for the Hamiltonicity of the direct product
of two Hamiltonian graphs in I. Let H be the set of graphs G such that G
is Hamiltonian and if |V (G)| is even then there exists a Hamiltonian cycle
Cn of G with two chords [r][s] and [u]{v] where r and s are even, and u and
v are odd.

Theorem 2. ([1]) Let G1,G, € T' be two Hamiltonian graphs. The graph
G1 X Gy is Hamiltonian if and only if either Gy or Gy belongs to H.

We define Ho by admitting both (r](s] and [u][v] with identical endpoints
in the definition of . We end this paper by putting forward the following
conjecture.
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Conjecture 1. Let G € I'y be a Hamiltonian graph. The inner power G
is Hamiltonian if and only if G belongs to Ho.

Remark 1. Let G; (1 < i < 4) be Hamiltonian graphs with four vertices,
as illustrated in Fig. 2. With the aid of GraphTheory package in Maple, we
find that ng) is Hamiltonian for i =1,2,3 while ng) s not Hamiltonian.

Note G1,G32,G3 € Ho and G4 € Ho. Moreover, for any Hamiltonian
graph G with four vertices, G € Ho implies G contains a span subgraph
isomorphic to G; for some i € {1,2,3}, while G € Ho implies G is isomor-
phic to some span subgraph of G4. This proves Conjecture 1 is true when
V(G =4.

o 2. N 2. N SRS
5 \9) 5 0 "bI ‘D 5 O
G, G, Gs Gy
(00,01,03,23, (00,11,02,01, (00,01,03,10,
21,11,02,10, 03,12,10,13, 02,11,20,13,

30,32,12,31, 20,23,21,30, 23,21,31,22,
20,13,22,33)  32,31,22,33) 33,12,32,30)

Fig.2 Four graphs and Hamiltonicity of their second inner powers.
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