The E_2 -Hamiltonian Property of Circuit Graphs of Matroids *

Hao Fan † Guizhen Liu ‡

Abstract

Let G be the circuit graph of any connected matroid. It is proved that the circuit graph of a connected matroid with at least three circuits is E_2 -Hamiltonian.

Keywords: Matroid; Circuit graph of matroid; E_2 -Hamiltonian

1 Introduction

Let E be a finite set of elements. A collection C of subsets of a finite set E is the set of circuits of a matroid M on E if and only if the following conditions (to be called circuit axioms) are satisfied.

(C1) If C_1 and C_2 are distinct circuits, then $C_1 \nsubseteq C_2$.

(C2) If C_1 and C_2 are circuits and $a \in C_1 \cap C_2$, then there exists a circuit $C_3 \in \mathcal{C}$ such that $C_3 \subseteq (C_1 \cup C_2) - a$.

Then M = (E, C) is called a *matroid* on E. We refer to the members of C as *circuits* of matroid M. The family of circuits of M determines a matroid.

A graph is Hamiltonian if it contains a Hamilton cycle. We now call a graph G positively Hamilton, or edge-Hamiltonian, written $G \in H^+$, if every edge of G is in some Hamilton cycle; on the other hand, G is negatively Hamilton, written $G \in H^-$, if for each edge of G there is a Hamilton cycle avoiding it. When $G \in H^+$ and $G \in H^-$, we say that G is uniformly Hamilton. A graph G is called E_2 -Hamiltonian if every two edges of G are contained in a Hamilton cycle of G. A graph G with G vertices is called edge-pancyclic if for any integer G, G is a cycle of length G containing the edge. Some other definitions and notations about matroid theory can be found in [10].

A subset of E that does not contain any circuit is called an *independent set* of M. A maximal independent set is called a *base* of M, denoted by B(M). Harary et al. considered the properties of tree graphs [3, 2]. Maurer discussed

^{*}This research was supported by NNSF (61070230) of China.

[†]E-mail: sduhaofan@gmail.com, State Grid Energy Research Institute, China.

[‡]The corresponding author, E-mail: gzliu@sdu.edu.cn, School of Mathematics, Shandong University, Jinan, Shandong, P. R. China. 250100

the relationship of bases of matroids and graphs and defined the base graph of matroid [8, 9].

The base graph of a matroid $M=(E,\mathcal{B})$ is a graph G such that $V(G)=\mathcal{B}$ and $E(G)=\{BB'|B,B'\in\mathcal{B},|B\cap B'|=1\}$ where the same notation is used for the vertices of G and the bases of M.

In 1989, Alspach and Liu studied the properties of paths and circuits in base graphs of matroids [1] and obtained the following results.

Theorem 1. [1] Let G be the base graph of a simple matroid M. Then G is Hamilton-connected.

Theorem 2. [1] The base graph of a simple matroid is edge-pancyclic.

Later, Liu and Li studied the E_2 -Hamiltonian property of matroid base graphs [4].

Theorem 3. [4] Let M = (E, B) be a matroid and G = G(M) be the base graph of matroid M. If M = (E, B) has at least three bases and there is no minor N of M = (E, B) such that the base graph G(N) of matroid N is isomorphic to W_5 , then G = G(M) is E_2 -Hamiltonian.

Now we give the concept of matroid circuit graph. Let G be a graph. The notation V(G) and E(G) will be used for the vertex-set and edge-set of G, respectively. The *circuit graph of a matroid* M is a graph G = G(M) with vertex set V(G) and edge set E(G) such that $V(G) = \mathcal{C}$ and $E(G) = \{CC'|C, C' \in \mathcal{C}, |C \cap C'| \neq 0\}$.

In 2007, Li and Liu discussed the Hamilton property on the circuit graph of matroids, and give the following two theorems.

Theorem 4. [5] For any connected matroid M = (E, C) which has at least three circuits, the circuit graph G = G(M) is edge-pancyclic.

Theorem 5. [6] For any connected matroid M = (E, C) which has at least four circuits, the circuit graph G = G(M) is uniformly Hamilton.

In this paper, we will prove that if G is a circuit graph of a connected matroid, then G is E_2 -Hamiltonian if it contains at least three circuits.

2 Preliminaries

In the following we assume that every matroid has at least one circuit. Let $M = (E, \mathcal{C})$ be a matroid. If $X \subseteq E$, then the matroid on E - X whose circuits are those of M which are contained in E - X is called the *restriction* of M to E - X (or the matroid obtained by deleting X from M) and is denoted by $M \setminus X$ or $M \mid (E - X)$. There is another derived matroid of importance. If $X \subseteq E$, then

the family of minimal non-empty intersections of E-X with circuits of M is the family of circuits of a matroid on E-X called the *contraction* of M to E-X (or the matoird obtained by contracting X from M) and is denoted by M/X. If $X=\{e\}$, we use $M\setminus e$ and M/e to denote the matroid obtained from M by deleting and contracting e, respectively. A matroid obtained from M by limited times of contractions and limited times of deletions is called a *minor* of M.

A sebset S of E is called a *separator* of M if every circuit of M is either contained in S or E-S. If \emptyset and E are the only separators of M, then M is said to be *connected*. Let $M=(E,\mathcal{C})$ be a connected matroid. An element e of E is called an *essential* element if $M\setminus e$ is disconnected. Otherwise it is called an *inessential* element. A connected matroid each of whose elements is essential is called a *critically connected* matroid or simply a critical matroid. We now state some lemmas which are used in the proof in next section.

Lemma 1. [10] If $a \in C_1 \cap C_2$ and $b \in C_1 - C_2$ where C_1 , $C_2 \in C$, then there exists a circuit $C_3 \in C$ such that $b \in C_3 \subseteq (C_1 \cup C_2) - \{a\}$.

Lemma 2. [10] If M is a connected matroid, then for every $e \in E$, either M/e or $M \setminus e$ is also connected.

Let M be a matroid and let \mathcal{B} denote the family of bases of M. Let \mathcal{B}^* denote the family of complements of members of \mathcal{B} in E. Then \mathcal{B}^* is the family of bases of a matroid, denoted by M^* , called the dual of M. The circuits of M^* are called the *co-circuits* of M.

Lemma 3. [6] A critical matroid of $rank \ge 2$ contains a co-circuit of cardinality two.

Lemma 4. [5] Let M be any matroid on E and $x \in E$. If G and G_1 are circuit graphs of M and $M \setminus x$, respectively, then G_1 is a subgraph of G induced by V_1 where $V_1 = \{C | C \in C, x \notin C\}$.

Obviously the subgraph G_2 of G induced by $V_2 = V - V_1$ is a complete graph. G_1 and G_2 are induced subgraphs of G and $V(G_1)$ and $V(G_2)$ partition V(G).

Lemma 5. [5] For any matroid M = (E, C) which has a 2-cocircuit $\{a, b\}$, the circuit graph of M is isomorphic to that of M/a.

Lemma 6. [5] Suppose that M=(E,C) is a connected matroid with an element x such that the matroid $M\setminus x$ is connected and G=G(M) is the circuit graph of matroid M. Let $G_1=G(M\setminus x)$ be the circuit graph of $M\setminus x$ and G_2 be the subgraph of G induced by V_2 where $V_2=\{C|C\in C,x\in C\}$. If the matroid $M\setminus x$ has more than one circuit, then for any edge $C_1C_2\in E(G)$, there exist a 4-cycle $C_1C_2C_3C_4$ in graph G such that one edge of the 4-cycle belongs to $E(G_1)$ and one belongs to $E(G_2)$ and C_1,C_2 are both adjacent to C_3 .

Lemma 7. For any connected matroid M = (E, C) which has at least three circuits, and G = G(M) is the circuit graph of M, then for any vertex $C_1 \in G$, there is a subgraph K_3 including it.

Proof. For any vertex $C_1 \in G$, and any two adjacent vertices C_2 and C_3 , $e \in C_1 \cap C_2$, $e' \in C_1 \cap C_3$. If C_2 and C_3 not adjacent, by Lemma 1, there is a circuit C_4 such that $e' \in C_4 \subseteq (C_1 \cup C_2) - \{e\}$. Obviously, C_1 , C_3 and C_4 form the complete graph K_3 as a subgraph of G.

Lemma 8. [7] Let G = G(M) be the circuit graph of a connected matroid M = (E, C). If |V(G)| = n and C_1 , $C_2 \in V(G)$, then there is a path of length k joining C_1 and C_2 for any k satisfying $2 \le k \le n - 1$.

3 Main Results

Let $E_1 = E(V(G_1))$, $E_2 = E(V(G_2))$ and let $E_3 = E(V(G_1), V(G_2)) = \{CC'|C \in V(G_1), C' \in V(G_2)\}$ be the edge set between $V(G_1)$ and $V(G_2)$. Let $U_{m,n} = (E,C)$ be a matroid such that $E = \{1,2,\ldots,n\}$ and $C = \{C|C \subseteq E, |C| = m+1\}$. Now we give our main result as follows.

Theorem 6. For any connected matroid M = (E, C) which has at least three circuits, let G = G(M) be the circuit graph of M, then G is E_2 -Hamiltonian.

Proof. We will prove this theorem by induction on |E|. When |E|=3, the circuit graph of a connected matroid is trivial or the complete graph K_3 , obviously true for the theorem. Suppose the theorem is true for |E|=n-1. We now prove that the result is also true for |E|=n>3. Let $e=C_1C_2$ and $e'=C_1'C_2'$ be any two edges in G. There are two cases to distinguish.

Case 1. There is an element x in M such that $M \setminus x$ is connected. Let G_1 and G_2 be the graphs defined as above. We assume that $|V(G_1)| = n_1$ and $|V(G_2)| = n_2$. If $n_1 = 1$, clearly, the circuit graph of this matroid is a complete graph $K_{n_1+n_2}$, so the theorem is true. If $n_1 \geq 2$, by Lemma 1, there are at least three vertices in G_1 , also, there are at least three vertices in G_2 . Then there are six subcases to distinguish.

Subcase 1.1. Edges e and e' in E_1 .

By the induction hypothesis, there is a Hamilton cycle D in G_1 that contains e and e'. Because $n_1 \geq 3$, we can find an edge $e'' = C_1''C_2''$ in D such that $e'' \neq e$, e'. By Lemma 6, there is a 4-cycle $C_1''C_2''C_3C_4$ in G such that $C_3C_4 \in E_2$. Note that G_2 is a complete graph, then we can find a Hamilton path P connecting G_3 and G_4 . Then $D - C_1''C_2'' + C_1''C_4 + P + C_3C_2''$ is a Hamilton cycle in G which contains both e and e'.

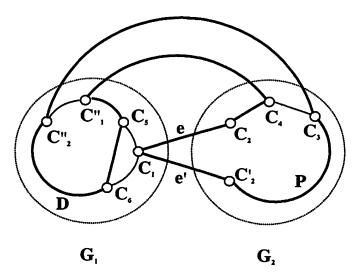


Fig.1 Edge $e, e' \in E_3, C_1 = C'_1, C_2 \neq C'_2$.

Subcase 1.2. Edges e and e' in E_2 . In this case the proof is similar to that in Subcase 1.1.

Subcase 1.3. Edges e and e' in E_3 .

In this case, without loss of generality, we let $C_1, C_1' \in G_1$ and $C_2, C_2' \in G_2$. If $C_1 = C_1', C_2 \neq C_2'$. By Lemma 7, we can find two vertices C_5 and C_6 which are adjacent to C_1 and $C_5C_6 \in E_1$. By the induction hypothesis, there is a Hamilton cycle D that contains C_1C_5 and C_1C_6 . By Lemma 1, we can choose an edge $C_1''C_2''$ from D such that C_2'' connects a vertex C_3 in C_2 and $C_3 \neq C_2$, C_2' . Thus, we can get a 4-cycle $C_1''C_2''C_3C_4$ such $C_3C_4 \in E_2$. Since C_2 is a complete graph, there is a Hamilton path P connecting C_2 and C_2' and includes C_3C_4 . Then $D-C_1C_5-C_1C_6+C_5C_6-C_1''C_2''+C_2''C_3+C_1''C_4+P-C_3C_4+C_1C_2+C_1C_2'$ is a Hamilton cycle including e and e'. (See Fig.1)

If $C_1 \neq C_1'$. If $C_2 \neq C_2'$. By Lemma 8, G_1 has a Hamilton path P_1 connecting C_1 and C_1' . Since G_2 is a complete graph, there is a Hamilton path P_2 connecting C_2 and C_2' . Thus $P_1 + C_1C_2 + C_1'C_2' + P_2$ is the Hamilton cycle we want. If $C_2 = C_2'$. By Lemma 8, G_1 has a Hamilton path P_1 connecting C_1 and C_1' . By Lemma 1, for any edge $C_1''C_2'' \in P_1$, we can find a 4-cycle $C_1''C_2''C_3C_4$ such that C_3 , $C_4 \neq C_2$. Because G_2 is a complete graph, $G_2 - C_2$ still a complete graph, so we can find a Hamilton path P_2 in $G_2 - C_2$ connecting C_3 and C_4 . Then $P_1 - C_1''C_2'' + C_1C_2 + C_1'C_2 + C_1''C_4 + C_2''C_3 + P_2$ is a Hamilton cycle in G that contains e and e'. (See Fig.2)

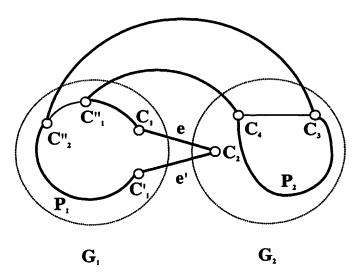


Fig.2 Edge $e, e' \in E_3, C_1 \neq C'_1, C_2 = C'_2$.

Subcase 1.4. Edge $e \in E_1$ and $e' \in E_2$.

By the induction hypothesis, there is a Hamilton cycle D in G_1 that contains e, and we can find an edge $e'' = C_1''C_2''$ in D such that $e'' \neq e$. From Lemma 6, we can find a 4-cycle $C_1''C_2''C_3C_4$, such that $C_3C_4 \in E_2$ and $C_3C_4 \neq e'$. Because G_2 is a complete graph, we can find a Hamilton path P connecting C_3 and C_4 and including e'. Then the cycle $D - C_1''C_2'' + C_1''C_4 + P + C_3C_2''$ is Hamilton and containing e and e'.

Subcase 1.5. Edge $e \in E_1$ and edge $e' \in E_3$.

Without loss of generality, we let $C_1' \in G_1$, $C_2' \in G_2$. Because $n_1 \geq 3$, we can find an edge $e'' = C_1'C_2''$ in G_1 that adjacent to C_1' and $e'' \neq e$. By induction hypothesis, there is a Hamilton cycle D containing e and e''. By Lemma 1, we can find a 4-cycle $C_1'C_2''C_3C_4$ in G such that $C_3C_4 \in E_2$. Since G_2 is a complete graph, so there is a Hamilton path P connecting C_3 and C_4 . Thus the Hamilton cycle in G we want is $D - C_1'C_2'' + C_2''C_3 + P + C_4C_1'$.

Subcase 1.6. Edge $e \in E_2$ and edge $e' \in E_3$. In this case the proof is similar to that in Subcase 1.5.

Case 2. The matroid M is critically connected. By Lemma 2, for any element e in M, M/e is connected. By Lemma 3, M has a 2-cocircuit $C = \{a, b\}$. By

Lemma 5, the circuit graph of M/a is isomorphic to that of M. By induction hypothesis, the theorem holds.

Thus the theorem follows by induction.

References

- [1] B. Alspach, G. Liu. Paths and cycles in matroid base graphs, Graphs and Combinatorics, 5(3), 1989, 207-211
- [2] F. Harary, M. J. Plantholt. Classification of interpolation theorems for spanning trees and other families of spanning subgraphs, Journal of Graph Theory, 13(6), 1989, 703-712
- [3] C. A. Holzmann, F. Harary. On the tree graph of a matroid, SIAM J. Appl. Math.22, 1972, 187-193
- [4] L. Li. Matroids and Graphs, [D] Shandong University, 2005
- [5] P. Li, G. Liu. Cycles in Circuit Graphs of Matroids, Graphs and Combinatorics, 23(4), 2007, 425-431
- [6] P. Li, G. Liu. Hamilton Cycles in Circuit Graphs of Matroids, Computers and Mathematics with Applications, 55, 2008, 654-659
- [7] P. Li, G. Liu. Paths in Circuit Graphs of Matroids, Theoretical Computer Science, 396, 2008, 258-263
- [8] S. B. Maurer. Matroid basis graphs I, Journal of Combinatorial Theory, Series B, 14, 1973, 216-240
- [9] S. B. Maurer. Matroid basis graphs II, Journal of Combinatorial Theory, Series B, 15, 1973, 121-145
- [10] J. G. Oxley. Matroid Theory, Oxford University Press, New York, 1992