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Abstract

A (k,t)-list assignment L of a graph G assigns a list of k colors available
at each vertex v in G and |,y (g) L(v)| = ¢t. An L-coloring is a proper
coloring ¢ such that c(v) € L(v) for each v € V(G). A graph G is (k,t)-
choosable if G has an L-coloring for every (k, t)-list assignment L.

Erdés, Rubin, and Taylor proved that a graph is (2, t)-choosable for any
t > 2if and only if a graph does not contain some certain subgraphs. Chare-
onpanitseri, Punnim, and Uiyyasathian proved that an n-vertex graph is
(2,t)-choosable for 2n — 6 < t < 2n — 4 if and only if it is triangle-free.
Furthermore, they proved that a triangle-free graph with n vertices is
(2,2n — 7)-choosable if and only if it does not contain K33 — e where e
is an edge. Nakprasit and Ruksasakchai proved that an n-vertex graph G
that does not contain Cs V Ky_2 and K, for k > 3 is (k, kn — k? — 2k)-
choosable. For a non-2-choosable graph G, we find the minimum ¢; > 2 and
the maximum ¢ such that the graph G is not (2,;)-choosable for i = 1,2
in terms of certain subgraphs. The results can be applied to characterize
(2, t)-choosable graphs for any t.

1 Introduction

A graph G is an ordered pair (V(G), E(G)), where V(G) is a finite set of
vertices and E(G) is a set of unordered pairs of distinct vertices. A graph
H is a subgraph of G if V(H) C V(G) and E(H) C E(G). For X C V(G)
or X C E(G), a graph G — X is obtained by deleting all vertices (or edges)
of X from G. For § C V(G), a subgraph of G induced by S, denoted by
G[S), is the graph obtained by deleting all vertices of V(G) — S from G.
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We write G — u and G — e instead of G — {u} and G — {e} for a vertex u
and an edge e. The core of a graph G is the subgraph of G obtained by the
iterated removal of all vertices of degree 1 from G.

For each vertex v in a graph G, let L(v) denote a list of colors available
at v. A (k,t)-list assignment L of a graph G assigns a list of k colors
available at each vertex v in G and |U,¢v(g) L(v)] =¢. An L-coloring is
a proper coloring ¢ such that c(v) € L(v) for each v € V(G). A graph G
is L-colorable if G has an L-coloring. A graph G is (k,t)-choosable if G
is L-colorable for every (k,t)-list assignment L. For H C G, we let L(H)
denote U,cy sy L(v) and Ly denote a list restricted to V(H).. Given a
list assignment L, we call L(v) a disjoint list if L(v) N L(u) = @ for each
u € V(G) — {v}. A color b is k-frequent if b appears in exactly k lists of
vertices. If a graph G is L-colorable for every (k, t)-list assignment L, then
G is (k,t)-choosable. If a graph G is (k,t)-choosable for every number ¢,
then we say that G is k-choosable. The list chromatic number of a graph
G, denoted by x:(G), is the minimum k such that G is k-choosable. For
a non-2-choosable graph G, we let f(G) and F(G) denote the minimum
number ¢; > 2 and the maximum number 3 such that a graph G is not
(2,t;)-choosable for i = 1 and 2.

Let p, p,,....p, denote a graph obtained by identifying all beginnings
and identifying all ends of r disjoint paths having pi1,pe,...,pr edges re-
spectively. Two cycles Cp, and C, having exactly one vertex in common is
denoted by Cp, - Cn. Two vertex disjoint cycles Cy, and C,, connected by
a path P is denoted by Cp, « Px - Cp..

The concept of list coloring was introduced by Vizing (5] and by Erdés,
Rubin, and Taylor [2]. In 1979, Erdds et al. [2] showed that a graph is
2-choosable if and only if its core is isomorphic to Ky, Cam42 or 02,2 2m.

One can see that this result is equivalent to the following theorem.

Theorem 1.1. A graph is (2,t)-choosable for any t > 2 if and only if a
graph does not contain one of the followings: (a) odd cycle, (b) Cam - Can,
(¢) Com + Px - Can, (d) 0222,2,2m, or (€) Op,q,r which is not isomorphic to
62,.2,2m and p,q,r are of the same parity.

The (k,t)-choosability was first defined by Ganjari et al. {3] in 2002.
They used the concept of (k, t)-choosability to generalize a characterization
of uniquely 2-list colorable graphs. In 2011, Chareonpanitseri, Punnim,
and Uiyyasathian [1} proved that an n-vertex graph is (2,t)-choosable for
2n—6 <t < 2n—4if and only if it is triangle-free. They also showed
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that a triangle-free graph with n vertices is (2,2n — 7)-choosable if and
only if it does not contain K33 — e where e is an edge. Furthermore, they
proved that every n-vertex graph is (k, t)-choosable if ¢t > kn — k2 + 1 and
every Ky1-free graph with n vertices is (k, t)-choosable for 3 < k< n—3
and t > kn — k? — 2k + 1. Nakprasit and Ruksasakchai [4] proved that an
n-vertex graph G that does not contain Cs V Kx_3 and Ky for £ > 3
is (k,kn — k? — 2k)-choosable. This result solved a conjecture posed by
Chareonpanitseri, Punnim, and Uiyyasathian [1].

Let W(r1,72,73,51, 52, 83) be a subdivision of K4 as shown in Figure
1. We allow r; and s; to be 1. For example, if r; = 1, then there is
no vertex z;. Let 1 = {Com+1}, F2 = {Cn - Cn}, F3 = {Cm - P - Cp},
F4 = {02,22,2m}, §5 = {0pq,r Which is not isomorphic to 8222}, F6 =
{W(1,1,7,1,1,s): siseven, s <, and (r is even) or (r is odd, s = 2,
r# 3)},and §F = Uf=1 Ji. In Section 2, we find the values ¢ such that G
is (2,t)-choosable for G in many classes of graphs including §. In Section
3, we find f(G) and F(G) for every non-2-choosable graph G in terms of
subgraphs in §. Section 4 gives applications of the results from previous
sections including a characterization :f (2, t)-choosable graph for any ¢.

Figure 1: W(ry,r2,73, 51, 82, s3).

2 (2,t)-choosabilities of graphs in some classes

From now on, we let L be a 2-list assignment of a graph G with order n(G).

Lemma 2.1. If H is a non-2-choosable subgraph of G, then F(G) >
F(H) + 2(n(G) — n(H)).

309



Proof. Let L be a 2-list of H achieving F(H). We can extend L' to L with
|L(G)| = F(H) + 2(n(G) — n(H)) by assigning disjoint lists to V(G) —
V(H). O

Lemma 2.2. Let H be a subgraph of G and L' be a list assignment of
H. Suppose that H is not L' -colorable. Then for each t where |L'(H)| <
t < |L'(H)| + 2(n(G) — n(H)) there is a (2,t)-list assignment L of G such
that G is not L-colorable. In particular we can replace |L'(H)| by f(H) or
F(H) in the inequality.

Proof. We can extend L' to a 2-list assignment L" of G with |L"(@Q)| =
|L' (H)| 4 2(n(G) — n(H)) by assigning disjoint lists to vertices outside H.
Redefining some colors in L”(G — H) to be redundant with ones in L'(H),
we can obtain a (2,t)-list assignment of G and reduce |L(G) — L'(H)| as
desired. The graph G is not L-colorable because H in not L’-colorable. By
definition of f(H) and F(H), there are 2-lists of H which satisfy f(H) and
F(H) respectively. O

Theorem 2.3. (a) An odd cycle is (2,t)-choosable if and only if t > 3.
(b) If G contains an odd cycle C, then for eacht where 2 <t < 2+4+2(n(G) -
n(C)) there is a (2,t)-list assignment L of G such that G is not L-colorable.
(¢) If G contains an odd cycle C, then F(G) > 2 + 2(n(G) — n(C)).

Proof. The obvious statement (a) implies F(C) = 2 for an odd cycle C.
The statements (b) and (c) follow from Lemma 2.2. O

Lemma 2.4. If G is not L-colorable but every proper subgraph H is Ly-
colorable, then |L(u) N L(v)] = 1 for each edge uv, every color in L(G)
appears in at least 2 lists, and |L(G)| < n(G).

Proof. By assumption, G—uv is Lg_yy-colorable for each edge uv. If L(u)N
L(v) = 0, then G is also L-colorable which is a contradiction. Suppose that
there is a color a in L(G) such that o appears in L(v) only. By assumption,
G — v is Lg_,-colorable. We can extend the coloring to G by using a for
the vertex v. Thus every color in L(G) appears in at least 2 lists.

The Hall’s theorem implies that there is § C V(G) such that |L(S)| <
|S| to prevent L-coloring of G. We now consider the colors in L(G — ).
Since each color in L(G) appears in at least 2 lists, each color in L(G — S)
appears in L(S) or in the list of different vertices in V(G) — S. Thus
IL(G - S)| - |L(S) N L(G - S)| < n(G) — |S|. Hence, |L(G)| = |L(S)| +
|L(G = S)| = |L(S) N L(G — 8)] < |S] + n(G) = |S| = n(G). m]
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Theorem 2.5. Let G = C,, - C,,. Then

(a) G is (2,2)-choosable if and only if m and n are even,

(b) for t > 3, G is (2,t)-choosable if and only if t > max{m+n—1,2m+1
if n is odd, 2n + 1 if m is odd}.

Proof. (a) Obvious.

(b) Let C, = utnv2...vm—1u and C, = vwyws ... Wyp_1u.

Necessity. Suppose that G is (2,t)-choosable for ¢ > 3. Define a list
assignment L of G by L(u) = {1,2}, L(v1) = {1,a1}, L(v:) = {ai—1,a:}
for 2 < i < m=2, L(vm-1) = {1,am-2}, L(w1) = {2,am-1}, L(w;) =
{am+i-3,8m4i—2} for 2 < i < n—2, L(wn-1) = {2,am+n-q}. One can
check that G is not L-colorable. If all a;’s are distinct, then |L(G)| =
m+n—2. We can reduce |L(G)| as needed by defining am—3 = Gmin-q4 =3
and a; = 1 or 2 for some i. The part of ¢ > max{2m +1 if nis odd, 2n+1
if m is odd} follows from Theorem 2.3.

Sufficiency. Let t > max{m+n—1,2m+1ifnisodd, 2n+1if m
is odd}. Then |[L(C)| > 3 if C is an odd cycle in G. Theorem 2.3 implies
C is Lc-colorable. Thus every proper subgraph H of G is Lg-colorable.
Suppose G is not L-colorable. Lemma 2.4 implies |L(G)| < n(G) = m+n—1
which contradicts to the assumption. O

Theorem 2.6. Let G =Cy, - P, - C,,. Then

(a) G is (2,2)-choosable if and only if m and n are even,

(b) for t > 3, G is (2,t)-choosable if and only if t > max{m +n + k —
2,2m+2k—-1ifnisodd, 2n+2k—1ifmis odd}.

Proof. (a) Obvious.

(b) Let C = zujus...um-17, Cp = yv1v3...v,_1y and P =
Tuwe ... Wp-2Y.

Necessity. Suppose that 3 <t < m +n+ k — 3. Define L(G) by
L(z) = {1,2}, L(w1) = {1,a1}, L(w) = {ai-1,a:} for 2 < i < m -2,
L(um-1) = {L,am-2}, L(w1) = {2,am—1}, L(w;) = {am+i-3,8m4i-2} for
2<i<k-2, L(y) = {am+k—a,8msk-3}, L(vi) = {@mik+i-a; Gmtk+i-3}
for 1 <i<n-2, L(vp-1) = {@m4n+k—5;@m+k-3}. One can check that
G is not L-colorable. If all a;’s are distinct, then |L(G)| = m +n + k — 3.
We can reduce |L(G)| as needed by defining am—2 = aminsk-5 = 3 and
a; =1 or 2 for some i. The inequality ¢ > max{2m + 2k — 1 if n is odd,
2n + 2k — 1 if m is odd} follows from Theorem 2.3.

Sufficiency. The proof is similar to one in Theorem 2.5 (b). O
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Lemma 2.7. Let C, be L-colorable. Given uy,ur € V(Cy), there ezist
L-colorings ¢; and cp such that (c1(u1),c1(uk)) # (ca(u1),ca(ux)) unless
there is a ujuk-path P with |L(P)| = 2.

Proof. Let ¢; be an L-coloring of Cp, with ¢;(u1) = a3 and L(u;) = {a, a2}.
First we aim to color vertices in a way that ¢a(u;1) = a2. This coloring fails
only when L(u;) = {ai,ai+1} for 1 i <n—1and L(un) = {an,a2}. In
this situation we may assume that ¢;(ux) = ax+1 by symmetry. We now
aim to use a coloring cz(u;) = a; for each 1 <4 < k. This plan fails only
if L(u;) = {ak,ax4+1} for each k < i < n, ary1 = a; for odd n — k, and
ax = a; for even n — k. This implies L(u;) = {a1,a2} foreach k <i<n
which completes the proof. 0O

Theorem 2.8. Let G =0, andp < g < 1. Then

(a) G is (2,2)-choosable if and only if p,q,r are of the same parity,

(b) fort >3, G is (2,t)-choosable if and only if t > max{g+r—-1,2p+1
ifq+7is odd, 2+ 1 if p+r is odd, 2r + 1 if p+q is odd}.

Proof. (a) Obvious.

(b) Necessity. The inequality t > max{2p+1 if ¢+ 7 is odd, 2 +1
if p+ 7 is odd, 2r + 1 if p + ¢ is odd} follows from Theorem 2.3. Let
P=uw;... wp_1v, Q = uUT1T3...Zq-1v, and R =uy1y2...yr—1v be paths
in p g,

Define L(u) = L(v) = L{w;) = {1,2} for 1 < i < p-1, L(z1) =
{1,a1}, L(z:) = {@i—1,0:} for 2 <i < qg—2, L(y1) = {2,091}, L(y:) =
{@q4i-3,agti—2} for 2 < i < 7—2. Let L(zg—1) = {2,a4-2} and L(y,-1) =
{1,ag4r-4} if pis odd. Let L(zo—1) = {1,a4-2} and L(yr—1) = {2, ag4r—4}
if p is even. One can check that G is not L-colorable. If all a;’s are distinct,
then |L(G)| = ¢ + r — 2. We can reduce |L(G)| as needed by defining
Gq—2 = Gg4r—4 = 3 and a; = 1 or 2 for some i. Thus G is not (2,t)-
choosable for 3<t < g+7—2.

Sufficiency. Let ¢t > max{g+r—1,2p+1ifg+risodd, 2¢+1
if p+ris odd, 2r + 1 if p+ g is odd}. Then every odd cycle C (if exists)
has |L(C)| > 3. Consequently, every proper subgraph H of G is Ly-
colorable. Suppose G is not L-colorable. If |L(P)| = 2 or |L(Q)| = 2, then
|L(G)| € g +r — 2 by Lemma 2.4. Thus |[L(P)| > 3 and |L(Q)| = 3. Let
C=G-{y1,¥2,-.-,Yr—1}. By Lemma 2.7, there there exist Lc-colorings
¢1 and ¢z such that (¢ (u),c1(v)) # (ca(u), c2(v)). In case of e1(u) = e2(u),
we assign a coloring c to the path R in a way that c(u) = c1(u) = c2(u)
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and c(v) = ¢;(v) or c3(v). Thus G is L-colorable. Now suppose ag =
c1(u) # c2(u) = bo and a, = ¢1(v) # c2(v) = b,. We aim to define
a coloring ¢ in a way that c¢(u) = ag and c(v) = a,, or ¢(u) = by and
c(v) = b,. In a successful case, we can use ¢; or ¢ for C to extend a
coloring ¢ to G. If this strategy fails, then L(y;) = {a;,aiy1} = {b:,bis1}
for 1 <i <7 —1. Consequently, L(R) = {ao, bp}. Using Lemma 2.4, we
have that |L(G)| < p + g — 2 which is a contradiction. (]

Theorem 2.9. Let G =022 2.2m. Then

(a) G is (2,2)-choosable,

(b) 62,2,2,2m s (2,3)-choosable if and only if m =1,

(c) fort > 4, G is (2,t)-choosable if and only if t > 2m + 3.

Proof. Let P = uzv, Py = uyv, P3 = uzv, and Py = vwws ... Wem—_1v be
paths in G.

(a) Obvious.

(b) Necessity. We define L(u) = L(z) = L(w;) = {1,2} for 1 <4 <
om — 3, L(y) = L(v) = L(wam-1) = {1,3}, L(2) = L{wam_2) = {2,3}.
One can check that G is not L-colorable.

Sufficiency. Assign a color in L(u) N L(v) to both vertices u and v.
A coloring of other vertices follows easily.

(c) Necessity. Suppose that 4 < t < 2m + 2. Let L be a list
assignment of G such that L(u) = {1,2}, L(v) = {3,4}, L(z) = {1,3},
L(y) = {1,4}, L(z) = {2,3}, L(w1) = {2,a1}, L(wi) = {ai-1,a;} for
2 <i<2m -2, L(wyn-1) = {4,a2m-2}. One can check that G is not
L-colorable. If all a;’s are distinct, then |L(G)| = 2m + 2. We can reduce
L(G) to size t where ¢t < 2m + 2 by defining a; = 1 for some odd %, and
a; = 2 for some even j.

Sufficiency. Assume G is not L-colorable. Note that every proper
subgraph H of G is Ly-colorable. Then |L(G)| < n(G) — 1 by Lemma 2.4.
Suppose |L(G)| < n(G)—1. Lemma 2.4 implies every color is 2-frequent ex-
cept either one color of 4-frequent or two colors of 3-frequent. Let a color a;
be k;-frequent for L(u) = {a1,a2} and L(v) = {a3,a,}. Using Lemma 2.4,
we have k1 +k2 > 6 and k3+k4 > 6 which leads to a contradiction regardless
of L(u) N L(v). O

Theorem 2.10. Let G = 0p,q,r,s where G is not isomorphic to 62,22 2m-
Then
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(a) there is H C G, H € §s such that F(H) +2(n(G) — n(H)) 2 n(G) -2,
(b) F(G) = maxuce,Hesuss {F(H) +2(n(G) — n(H))}-

Proof. (a) Assume p < ¢ £ 7 < 5. If Opgr # 02,22m, then let H =
Bp,q,r, Otherwise let H = 0,,,. We have H C G,H € §s such that
F(H) +2(n(G) — n(H)) 2 n(G) - 2.

(b) Assume that F(G) > maxnce,Hegugs {F(H)+2(n(G)—n(H))}.
Then every proper subgraph H of G is Ly-colorable. From (a) and Lemma 2.4,
F(G) = n(G) — 1. We use a similar argument to the proof of Theorem 2.9
(c) to reach a contradiction. O

Theorem 2.11. Let G = W(ry, 73,73, 81, S2,83). Then the followings hold.
(a) There is H C G, H € §5 such that F(H) +2(n(G) —n(H)) 2 n(G) - 2.
Moreover, if 3 <t < n—2, then G is not (2,t)-choosable.

(b) If G € §s, then F(G) = n(G)—1 > maxpcg,Heg,ugs { F(H)+2(n(G) -
n(H))}.

(c) If G ¢ s, then F(G) = maxuce,Hez,u5s {F(H) + 2(n(G) — n(H))}.

Proof. (a) Assume that s; = minj<i<a{ri,s:}. Consider the graph H =
G—{w1, w2, ..., ws,—1}. Note that H is a 8y, r,+s3,rs+s, that is not isomor-
phic to 8,2 2m. Then F(H) > r2+s3+73+352—2. Thus F(H)+2(n(G) —
n(H)) = F(H)+2(31 -1)2ri+re+r3+s2+s3ts -4 =n(G) -2
Theorem 2.8 implies G is not (2,t)-choosable for 3 <t < n(G) — 2.

(b) Let G € F¢. Define L(a) = {1,2}, L(b) = {1,3}, L(c) = {1,4},
L(d) = {1,5}, L(u1) = {2,6}, L(ur—1) = {r + 8,5}, L(w;) = {i + 4,1+ 5}
for2<i<r—2,L(z) = {3,7 +4},L(25—1) = {r + s+ 1,4}, and L(z;) =
{i+r+2,j+r+3tfor2<j<s-2

One can check that |[L(G)| = n(G) — 1 > maxgce,Hes 0z {F(H) +

2(n(G) — n(H))} and G is not L-colorable. Thus every proper subgraph
H of G is Ly-colorable. Lemma 2.4 implies that |L(G)| < n(G). Hence
F(G) = n(G)—1. The observation that G is bipartite and F(G) = n(G)—1
completes the proof.

(c) Assume that F(G) > maxgce,Hes,ugs {F(H)+2(n(G)-n(H))}.
Then every proper subgraph H of G is Ly-colorable. From (a) and Lemma 2.4,
F(G) = n(G) — 1. Assume 7, > s;. Note that the graph H = G —
{z1,22,...,Zr,~1} is N0t 62 2 2, unless G is isomorphic to W(ry,1,1,2k,1,1)
or W(ry,1,1,2, k1, k) where ky+ks is even. If H is not 6 2,2m, then F(H)+
2(n(G) —n(H)) = n(G) — 1. If G is isomorphic to W(ry,1,1,2, k1, k) and
k1 > 1, then we can find H = 6) 3,4, € &5 such that F(H') + 2(n(G) —
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n(H')) > n(G) — 1. Now it suffices to consider only W(p, q,7,p,q,7) where
g,722and W(1,1,7,1,1,s).

Suppose G = W (p, q,7,p,q,7) whereq,r > 2. From (a) and Lemma 2.4,
F(G) = n(G) — 1 and every color is 2-frequent except either one color of
4-frequent or two colors of 3-frequent. Let a color a; be k;-frequent for
L(a) = {a1,a2}, L(c) = {as,a4}, and L(d) = {as,as}. Using Lemma 2.4,
we have ki1 + kg > 5 for each i = 1, 2, 3. Note that L(a) N L(d) =
L(c) N L(d) = 0, otherwise we have a contradiction. By Lemma 2.4, we
may assume that aj;—; appears in exactly 2 lists of its neighbors for each
i=1,23. Ifa) =as, then k; > 4. If a; # a3, then a;,as, and ag are
distinct 3-frequent colors. We have contradictions in both cases.

Consider G = W(1,1,r,1,1,3) ¢ §s where s < 7. Let H = C,,,
for s is odd, H = 65,5, for r is odd, s > 4, and H = C; for r = 3,5 = 2.
In all cases, H € §, U s and F(H) + 2(n(G) — n(H)) > n(G) — 1 which
completes the proof. O

3 (2,t)-choosabilities of non-2-choosable graphs

From now on, we let G be a non-2-choosable graph.

Lemma 3.1. (a) If G is not bipartite, then f(G) = 2.
(b) Let G be a non-2-choosable bipartite graph. Then either f(G) = 3 or
f(G) =4 and Ky, (m > 4) is the core of G.

Proof. (a) Obvious.

(b) Since G is non-2-choosable bipartite, G is not (2,2)-choosable
and G has a subgraph H € § = |J;_, & by Theorem 1.1. Then f(G) < 4
by Lemma 2.2, Theorems 2.5, 2.6, 2.8 and 2.9. Moreover f(G) < 3 if
H # 632,22. Suppose f(G) = 4. Then H = 24 . If the core of G is
not Kz, then G contains a subgraph H' € Uf=2 3 with f(H') = 3. By
Lemma 2.2, we have 4 = f(G) < f(H') = 3 which is a contradiction.
Hence Kam (m > 4) is the core of G. 0

Lemma 3.2. For a graph G and its 2-list assignment L, denote the in-
equality |L(G)| < maxyce,nes{F(H) + 2(n(G) — n(H))} by (A). If each
G that is not L-colorable but every proper subgraph K of G is Ly -colorable
satisfies the inequality (A), then each G’ and its list assignment L', where
G’ is not L' -colorable, G’ also satisfies the inequality (A) for G and its
list assignment L'.
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Proof. Let G be a graph that is not L'-colorable and |L'(G')| = F(G').
Consider a minimal subgraph G of G' that is not L'G-colorable. Then
F(G) = |L'(G)| < IL'(G) + 2(n(G') - n(G)) < maxpce,nes{F(H) +
2(n(G) — n(H))} + 2(n(G') — n(G)) < maxpce yeg{F(H) +2(n(G') -
n(H))}. O

Theorem 3.3. F(G) < maxpgce,nez{F(H)+2(n(G) —n(H))} ifG isa
non-2-choosable graph.

Proof. By Lemma 3.2, it suffices to show that each graph G that is not
L-colorable but every proper subgraph K is Lx-colorable, has |L(G)| <
maxgce Hez{F(H) + 2(n(G) — n(H))}. Since G is not 2-choosable, the
graph G contains H € § as a subgraph by Theorem 1.1. If H € § is a core
of G, then the inequality immediately follows. We now suppose otherwise.
Case 1: H € F2 U §s.

Using Theorems 2.5, 2.6 and Lemma 2.4, we have F(H) + 2(n(G) —
n(H)) 2 (n(H) - 1) + 2(n(G) — n(H)) 2 n(G) — 1 2 |L(G)|-

Case 2: H € §4.

Suppose n(G) > n(H). Using Theorem 2.9 and Lemma 2.4, we have
F(H)+2(n(G)—n(H)) 2 n(H) -2+ 2n(G) —2n(H) = n(G) -1 2 |L(G)|.
Now suppose that n(G) = n(H) and there is e € E(G) — E(H). If G
contains C3 € §, then F(C3)+2(n(G)—n(Cs)) = 2+2n(G)-6 > n(G)-1 >
|L(G)|. If G does not contain C3, then G contains subgraph H " in Case 1.
Case 3: H = W(r, 73,73, 51, 52, 83).

If n(G) > n(H), then F(H) + 2(n(G) — n(H)) 2 n(H) — 2+ 2n(G) -
2n(H) = 2n(G) — n(H) — 2 2 n(G) > |L(G)|- Suppose that n(G) = n(H)
and there is e € E(G) — E(H). Then G contains subgraph H " in Case 1.
Now suppose that G = H. Thus F(G) = maxH:gG'H:eg{F(H')+2(n(G)—
n(H')} by Theorem 2.11.

Case 4: H =0, 4., where H is not isomorphic to 82,2 2,2m.

If n(G) > n(H), then F(H) + 2(n(G) — n(H)) 2 n(H) — 2+ 2n(G) -
2n(H) = 2n(G) — n(H) — 2 2 n(G) > |L(G)|. Now suppose that n(G) =
n(H) and there is e € E(G) — E(H). Then G contains 6y p,4,rs OF 2
subgraph in previous cases. Suppose G contains H "= 01,p,q- Then H ‘eg
and F(H') + 2(n(G) — n(H')) > n(G) > |L(G)|. Now we suppose G = H.
Thus F(G) = maxg ¢ g g {F(H') + 2(n(G) — n(H')} by Theorem 2.10.
Case 5: H € §s.

If H is not the core of G, then G contains a subgraph in previous cases.

Case 6: H € 3.
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If H is not the core of G, then G contains a subgraph in previous cases.
O

Combining Lemma 2.1 and Theorem 3.3, we have the following corol-
lary.

Corollary 3.4. F(G) = maxycg, nez{F(H) + 2(n(G) — n(H))}.

Theorem 3.5. For f(G) <t < F(G), there is a (2,t)-list such that G is
not L-colorable.

Proof. Let H be a subgraph of G such that F(G) = maxyce,nez{F(H)+
2(n(G) — n(H))}. By Lemma 2.2, Theorems 2.3, 2.5, 2.6, 2.8, 2.9, and
2.11, we have (2, t)-list such that G is not L-colorable for each ¢ satisfying
F(H) <t < F(H) +2(n(G) — n(H)) = F(G). I f(H) - f(G) < 1, then we
have the desired result. Suppose f(H) — f(G) > 2, then G is not bipartite
and H = 03,22. Let C be a smallest odd cycle. Suppose V(H) C V(C).
Then C has a chord e € E(H). Consequently, we have an odd cycle smaller
than C which is a contradiction. If V(C) does not contain V(H), then G
is not (2, 3)-choosable by Lemma 2.2. o

4 Application

In (1] Chareonpanitseri, Punnim, and Uiyyasathian proved that an n-vertex
graph is (2, t)-choosable for 2n — 6 < t < 2n —4 if and only if it is triangle-
free. Furthermore, they proved that a triangle-free graph with n vertices
is (2,2n — 7)-choosable if and only if it does not contain K33 — e where e
is an edge.

From Corollary 3.4 and Theorem 3.5, we have that G is (2,2n — k)-
choosable if and only if 2n—k > 2 and G does not contain (minimal) H € §
with 2n(H) — F(H) < k. Let G be an n-vertex graph and ¢t > 2. From
Table 1, we can conclude the followings:

1. If ¢ > 2n - 3, then G is (2,t)-choosable.

2. A graph G is (2,t)-choosable for 2n — 6 < t < 2n — 4 if and only if G
does not contain Cs.

3. A graph G is (2,t = 2n — 7)-choosable if and only if G does not
contain C3 or W(1,1,2,1,1,2).
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4. A graph G is (2,t = 2n — 8)-choosable if and only if G does not
contain 03, W(l, 1,2,1, 1,2), Cs, 04 . 04, 92‘2,2,2, or 01,3,3.

5. A graph G is (2,t = 2n — 9)-choosable if and only if G does not
contain Cs, W(1,1,2,1,1,2), Cs, Cy - Cy, 022,2,2, 61,33, Cs - Po - Cy,
or W(1,1,4,1,1,2).

One can characterize (2, 2n — k)-choosable graphs for any k by this process.

2n(H) — F(H) minimal H € §
1 _
2 _
3 i
1 Cs
5 _
6 _
7 WQ,1,2,1,1,2)
8 Cs, Cy - Cy, 022,22, 01,33
9 Cy-P-Cy, W(1,1,4,1,1,2)

Table 1: Minimal graphs H € § with 2n(H) — F(H) =1,2,...,9
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