A Note on Upper Generalized Exponents of Tournaments

Xuemei Ye

School of Mathematics and Computer Science, Fujian Normal University, Fuzhou 350007, P.R.China.

Abstract. For any $n \ge 7$, we prove that there exists a tournament of order n, such that for each pair of distinct vertices there exists a path of length 2.

Keywords. tournament, upper generalized exponent, upper generalized exponent set 2010 Mathematics Subject Classification: 05C20.

1. Introduction

Let T be a tournament (a digraph in which every pair of distinct vertices is joined by exactly one arc). We denote the in-neighborhood and out-neighborhood of a vertex u in T by $N_T^-(u)$ and $N_T^+(u)$ respectively.

Let D be a digraph with vertex set V(D) and arc set E(D). D is called primitive if there exists positive integer p such that for each ordered pair of vertices u and v there is a walk of length p from u to v (notation $u \xrightarrow{p} v$). The minimum such p is called the exponent of D.

Definition 1.1^[1]. Let D be a digraph and X be a subset of V(D). The "set exponent" $\exp_D(X)$ is defined to be the smallest positive integer p such that for each vertex y of D there exists a walk of length p from at least one vertex in X to y.

Definition 1.2 [1]. Let D be an arbitrary digraph of order n and $1 \le k \le n$ then we define

$$F(D,k) = \max \left\{ \exp_D(X) \mid X \subseteq V(D), |X| = k \right\}.$$

F(D,k) is called the "k" upper generalized exponent "of D.

Let PT_n be the set of all primitive tournament of order n, and let $E(n,k) = \{F(T,k) | T \in PT_n\}$ be the upper generalized exponent set for primitive tournament of order n.

In [4], Zhou and Shen gave the upper generalized exponent sets for

tournaments on $n(n \ge 7)$ vertices (as the following theorem).

Theorem 1.1^[4]. For $n \ge 7$ and $4 \le k \le n-1$ or $n \ge 24$ and k = 2,3,

$$E(n,k) = \begin{cases} \{2,3,4,\dots,n+1\} & k=2, \\ \{2,3,4,\dots,n-k+2\} & 3 \le k \le \lfloor n/2 \rfloor + 1, \\ \{1,2,3,4,\dots,n-k+2\} & \lfloor n/2 \rfloor + 2 \le k \le n-1. \end{cases}$$

We notice that in this theorem, the limit $n \ge 7$ is necessary on the condition that $4 \le k \le n-1$, but it must be strengthened to $n \ge 24$ for k = 2, 3. It was proved but not constructed that $2 \in E(n,2)$ in [4]. In order to show $2 \in E(n,2)$, one needs to find a tournament T on n vertices with F(T,2) = 2. And it was also pointed out in [2] for some special $n (n \ge 7 \text{ and } n \equiv 3 \pmod{4})$, F(T,2) = 2. In this paper, we will prove that $2 \in E(n,2)$ for any $n \ge 7$.

2. Main Results

Let $n \ge 7$, the notation T_n is used to denote the specified digraph of order n with $V(T_n) = \{1, 2, 3, \dots, n\}$ and

$$E(T_n) = \begin{cases} \{(i, i + k \pmod{n}) | 1 \le i \le n, k = 1, 2, 4, 6, \dots, n - 5, n - 3\} & \text{if } n \text{ is odd}, \\ E(T_{n-1}) \cup \{(i, n) | 3 \le i \le n - 1, i \ne n - 2\} \cup \{(n, 1), (n, 2), (n, n - 2)\} & \text{if } n \text{ is even.} \end{cases}$$
Note: We assume that $n = n \pmod{n}$.

It is obvious that T_n contains the subgraph T_{n-1} if $n(n \ge 7)$ is even.

Lemma 2.1. For any $n \ge 7$, T_n is a tournament.

Proof. There are two cases to consider.

Case 1. $n(n \ge 7)$ is odd. Let $X = \{1, 2, 4, 6, \dots, n-5, n-3\}$ and $Y = \{n-k | k \in X\}$ hence $X \cap Y = \emptyset$ and $X \cup Y \cup \{n\} = \{1, 2, 3, \dots, n\}$. For any $i, j \in V(T_n)$ and $i \ne j$, if $j \notin N_{T_n}^+(i) = \{i+k \pmod n \mid k \in X\}$ which implies $j \ne i+k \pmod n$ for any $k \in X$, there exists $t \in Y$ such that $j \equiv i+t \pmod n$. Since $t \in Y$ there exists $k \in X$ such that t = n-k, thus $j \equiv i+n-k$ (mod n), so $i \equiv j+k \pmod n$ and hence $i \in N_{T_n}^+(j)$. It is easy to see that $j \in N_{T_n}^+(i)$ and $i \in N_{T_n}^+(j)$ are impossible to be established at the same time. Consequently T_n is a tournament.

Case 2. $n(n \ge 7)$ is even. T_n contains the subgraph T_{n-1} which is a tournament. According to the constructing of T_n , it is easy to see that T_n is a

tournament.

The proof is completed.

Theorem 2.1. Let $n \ge 7$, there exists a path of length 2 for each pair of distinct vertices i, j in T_n .

Proof. There are two cases to consider.

Case 1. $n(n \ge 7)$ is odd. For $\{i, j\} \subseteq V(T_n)$, we are going to prove that there exists $i \xrightarrow{2} j$. Since $j \in V(T_n) \setminus \{i\}$ we only need to prove that

$$V(T_n) \setminus \left\{ i \right\} \subseteq \bigcup_{t \in N_{T_n}^+(t)} N_{T_n}^+(t).$$

For
$$i+1 \pmod n$$
, $i+2 \pmod n$, $i+4 \pmod n \in N_{T_n}^+(i)$,
$$N_{T_n}^+(i+1 \pmod n) = \left\{i+1+k \pmod n \mid k=1,2,4,6,\cdots,n-3\right\}$$
$$= \left\{i+k \pmod n \mid k=2,3,5,7,\cdots,n-2\right\},$$
$$N_{T_n}^+(i+2 \pmod n) = \left\{i+2+k \pmod n \mid k=1,2,4,6,\cdots,n-3\right\}$$
$$= \left\{i+k \pmod n \mid k=3,4,6,8,\cdots,n-1\right\},$$
$$N_{T_n}^+(i+4 \pmod n) = \left\{i+4+k \pmod n \mid k=1,2,4,6,\cdots,n-3\right\}$$
$$= \left\{i+k \pmod n \mid k=1,2,4,6,\cdots,n-3\right\}$$
$$= \left\{i+k \pmod n \mid k=5,6,8,10,\cdots,n-1,1\right\}.$$
Hence $V(T_n) \setminus \{i\} = N_{T_n}^+(i+1 \pmod n) \cup N_{T_n}^+(i+2 \pmod n) \cup N_{T_n}^+(i+4 \pmod n)$

Case 2. $n(n \ge 7)$ is even. We know that T_n contains the subgraph T_{n-1} . According to Case 1 T_{n-1} there is a path of length 2 from each vertex i to each vertex $j \ne i$. Now we only need to prove the existence of $n \xrightarrow{2} j$ and $j \xrightarrow{2} n$ for any $j \in V(T_{n-1})$. In other words, we only need to prove $V(T_{n-1}) \subseteq$

 $\subseteq \bigcup_{k\in N_{T_n}^+(l)} N_{T_n}^+(k).$

$$\bigcup_{t\in N_{T_n}^+(n)} N_{T_n}^+(t) \quad \text{and} \quad V(T_{n-1}) \subseteq \bigcup_{t\in N_{T_n}^-(n)} N_{T_n}^-(t) \cdot$$

① If
$$t \in N_{T_n}^+(n)$$
,

$$N_{T_n}^+(t) = N_{T_{n-1}}^+(t) = \left\{ t + k \pmod{n-1} \mid k = 1, 2, 4, 6, \dots, n-6, n-4 \right\}.$$
For $1, 2, n-2 \in N_{T_n}^+(n)$, $N_{T_n}^+(1) = \left\{ 2, 3, 5, 7, \dots, n-5, n-3 \right\}$, $N_{T_n}^+(2) = \left\{ 3, 4, 6, 8, \dots, n-4, n-2 \right\}$, $N_{T_n}^+(n-2) = \left\{ n-1, 1, 3, 5, \dots, n-5 \right\}.$
Hence $V(T_{n-1}) = N_{T_n}^+(1) \cup N_{T_n}^+(2) \cup N_{T_n}^+(n-2) \subseteq \bigcup_{t \in N_{T_n}^+(n)} N_{T_n}^+(t).$
② If $t \in N_T^-(n)$,

$$\begin{split} N_{T_n}^+(t) &= N_{T_{n-1}}^+(t) \bigcup \left\{ n \right\} = \left\{ t + k (\text{mod } n - 1) \mid k = 1, 2, 4, 6, \cdots, n - 6, n - 4 \right\} \bigcup \left\{ n \right\}, \\ N_{T_n}^-(t) &= V(T_n) \setminus \left(N_{T_n}^+(t) \bigcup \left\{ t \right\} \right) = \left\{ t + k (\text{mod } n - 1) \mid k = 3, 5, 7, \cdots, n - 5, n - 3, n - 2 \right\}. \end{split}$$

For $3,4,5,7 \in N_{T_n}^-(n)$, $N_{T_n}^-(3) = \{6,8,\cdots,n-2,1,2\}$, $N_{T_n}^-(4) = \{7,9,\cdots,n-3,n-1,2,3\}$, $N_{T_n}^-(5) = \{8,10,\cdots,n-2,1,3,4\}$, $N_{T_n}^-(7) = \{10,12,\cdots,n-2,1,3,5,6\}$.

Hence
$$V(T_{n-1}) = N_{T_n}^-(3) \bigcup N_{T_n}^-(4) \bigcup N_{T_n}^-(5) \bigcup N_{T_n}^-(7) \subseteq \bigcup_{t \in N_{T_n}^-(n)} N_{T_n}^-(t)$$
.

In conclusion, there exists a path of length 2 for each pair of distinct vertices i, j in T_n .

Corollary 2.1. If $n \ge 7$ and k = 2, 3, $F(T_n, k) = 2$.

Proof. By Theorem 2.1, we have $F(T_n, k) \le 2$. By [4, Lemma 3.4.] we have $F(T_n, k) \ge 2$. Hence $F(T_n, k) = 2$.

Base on the conclusion above, we can have the following theorem.

Theorem 2.2. For $n \ge 7$ and $2 \le k \le n-1$,

$$E(n,k) = \begin{cases} \left\{2,3,4,\cdots,n+1\right\} & k=2, \\ \left\{2,3,4,\cdots,n-k+2\right\} & 3 \le k \le \lfloor n/2 \rfloor + 1, \\ \left\{1,2,3,4,\cdots,n-k+2\right\} & \lfloor n/2 \rfloor + 2 \le k \le n-1. \end{cases}$$

Proof. For $n \ge 7$ and k = 2,3, by Corollary 2.1 we have $2 = F(T_n, k)$ $\in E(n,k)$. And by Theorem 1.1 we know that $\{3,4,\dots,n+1\} \subseteq E(n,2)$ and $\{3,4,\dots,n-1\} \subseteq E(n,3)$. By combining Theorem 1.1 we complete the proof.

References

- R. A. Brualdi & B. Liu, Generalized exponents of primitive directed graphs, J. of Graph Theory 14 (1990), 488-499.
- [2] B. Guiduli, A. Gyárfás, S. Thomassé & P. Weidl, 2-partition-transitive tournaments, J. Combin. Theory Ser. B 72 (1998), 181-196.
- [3] J.W. Moon & N. J. Pullman, On the powers of tournament matrices, J. Combin. Theory 3 (1967), 1-9.
- [4] B. Zhou & J. Shen, On generalized exponents of tournaments, *Taiwanese J. Math.* 6 (2002), 565-572.