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Abstract

A graph is said to be edge-transitive if its automorphism group
acts transitively on its edge set. In this paper, all connected cubic
edge-transitive graphs of order 12p or 12p? are classified.
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1 Introduction

Throughout this paper a graph means a finite, connected, simple and undi-
rected graph. For a graph X, denote by V(X), E(X) and Aut(X) the
vertex set, the edge set and the automorphism group of X, respectively.
For u,v € V(X), denote by {u,v} or uv the edge incident to v and v in X.
An s-arc in a graph X is an ordered (s + 1)-tuple (vo,v1,**+ ,Vs—1,s) Of
vertices of X such that v;_; is adjacent to v; for 1 <4 < s and vi_1 # vip
for 1 <i < s—1. A graph X is said to be s-arc-transitive if Aut(X) is
transitive on the set of s-arcs in X. In particular, O-arc-transitive means
vertez-transitive, and 1-arc-transitive means arc-transitive or symmetric. A
subgroup of Aut(X) is s-regular if the subgroup acts regularly on the set of
s-arcs in X, and X is said to be s-regular if Aut(X) is s-regular. A graph X
is edge-transitive if Aut(X) acts transitively on E(X), and semisymmetric
provided that X has regular valency and is edge- but not vertex-transitive.

In his classical work [41, 42], Tutte showed that every cubic symmetric
graph is s-regular for some s < 5. Following this pioneering work, cubic
graphs with high levels of symmetry have been extensively studied over 6
decades by many authors. For example, Djokovié¢ and Miller [13] proved
that there are seven types of arc-transitive group action on finite cubic
graphs, characterized by the stabilizers of a vertex and an edge. Conder
and Nedela [11] gave a more detailed classification of finite cubic symmet-
ric graphs, by determining exactly which combinations of types are real-
izable for arc-transitive subgroups of the full automorphism group. Gold-
schmit [25] extended Djokovié and Miller’s work to all cubic edge-transitive
graphs. Foster [4] produced a list of cubic symmetric graphs on up to 512
vertices. Based on Djokovié and Miller’s classification, an exhaustive com-
puter search by Conder and Dobcsényi [6] resulted in a complete list of
cubic symmetric graphs on up to 768 vertices. Recently, a similar method
based on Goldschmidt’s classification was used to compile a list of all cu-
bic semisymmetric graphs on up to 768 vertices [7]. For more results re-
garding cubic graphs with high levels of symmetry, we refer the reader to
[9, 10, 15, 16, 22, 21, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40].
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This paper is devoted to the classification of cubic edge-transitive graphs
with given orders. Let p be a prime. From Cheng and Oxley [5] we can
obtain a classification of cubic edge-transitive graphs of order 2p. Feng
et al. [17, 18, 20] classified all cubic symmetric graphs of order kp or kp?
with 4 < k < 10, and they [19] also classified cubic symmetric graphs of
order 2p?. Folkman (23] proved that there is no cubic semisymmetric graph
of order 2p or 2p?, while Malnic et al. [34] classified cubic semisymmetric
graphs of order 2p®. From Du and Xu [14] we can see that there is no
cubic semisymmetric graph of order 6p or 10p. The classification of cubic
semisymmetric graphs of order 6p? was given by Lu et al. [29], and Alaeiyan
et al. [1, 2] proved that there are no cubic semisymmetric graphs of order 8p
or 8p?. Recently, Hua and Feng [26] classified cubic semisymmetric graphs
of order 8p®. In this paper, we classify all cubic edge-transitive graphs of
order 12p or 12p?. The main result is the following theorem.

Theorem 1.1 Let p be a prime and let X be a connected cubic edge-
transitive graphs of order 12p or 12p%. Then X is isomorphic either to the
2-regular graphs F024,F048,F060,F084 or F108, or to the 4-regular graph
F204.

2 Preliminaries

In this section, we describe some preliminary results which will be used later
in the paper. Throughout this paper we denote by Z,, the cyclic group of
order n as well as the ring of integers modulo n, by Z* the multiplicative
group of Z, consisting of numbers coprime to n, respectively. For two
groups M and N, N < M means that N is a subgroup of M, and N < M
means that /N is a proper subgroup of M, and N x M denotes a semidirect
product of N by M. For a subgroup H of a group G, denote by Ce(H) the
centralizer of H in G and by Ng(H) the normalizer of H in G.

Let X be a cubic graph and let G < Aut(X) act transitively on the
edges of X. Let N be a normal subgroup of G. The quotient graph Xy
of X relative to N is defined as the graph with vertices the orbits of N'
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in V(X) and with two orbits adjacent if there is an edge in X between
those two orbits. We introduce two propositions, of which the first one is a
special case of [27, Theorem 9).

Proposition 2.1 Let G be transitive on V(X). Then G is an s-regular
subgroup of Aut(X) for some integer s. If N has more than two orbits in
V(X), then N is semiregular on V(X), X is a cubic symmetric graph with
G/N as an s-regular group of automorphisms, and X is a regular N-cover
of Xn.

The next proposition is a special case of [29, Lemma 3.2].

Proposition 2.2 Let G be intransitive on V(X). Then X is a bipartite
graph with two partition sets, say Vo and V1. If N is intransitive on the bi-
partition sets, then N is semiregular on both Vo and V1, Xy is a cubic graph
with G/N as an edge- but not vertez-transitive group of automorphisms and

X is a regular N-cover of Xn.
By [18, Theorem 6.2], we have the following proposition.

Proposition 2.3 (18, Theorem 6.2 Let X be a connected cubic symmetric
graph of order 4p or 4p? for a prime p. Then X is isomorphic to the 2-
regular hypercube Qs of order 8, the 2-regular generalized Petersen graphs
P(8,3) or P(10,7) of order 16 or 20 respectively, the 3-regular Dodecahe-
dron of order 20 or the 3-regular Cozeter graph of order 28.

3 Proof of Theorem 1.1

Lemma 3.1 Let p > 7 be a prime and n a positive integer. Then there

exists no connected cubic edge-transitive graphs of order 4p™ with n < 2.

Proof. Suppose to the contrary that X is a connected cubic edge-transitive
graph of order 4p™. By Proposition 2.3, X is not arc-transitive. It follows
that X is semisymmetric and hence it is bipartite. Let A = Aut(X). By
[41, 42] and [34, Proposition 2.4], |A| | 2° - 3. p* with ¢ =1 or 2. Assume
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that A is non-solvable. Then A has a non-abelian simple composite factor
T1/T;. Since |T1/T3| | 29 -3 p* and p > 11, by [24, pp.12-14], Ty /T2 2 As
or PSL(2,7), forcing p < 7, a contradiction. Thus, A is solvable. Let N
be a minimal normal subgroup of A. Then N is an elementary abelian
2- or p-group. Clearly, N is intransitive on each partition set of X. By
Proposition 2.2, N is semiregular on V(X), implying that |N| | 2p* with
t =1 or 2. Therefore, N & Z, or Z:, witht =1 or 2. Assume that N = Z,.
Let M be a maximal normal 2-subgroup of A. Then M is intransitive on
each partition set of X. By Proposition 2.2, M is semiregular on V(X),
implying M = N = Z,. Let T/M be a minimal normal subgroup of A/M.
By the maximality of M, T/M is an elementary abelian p-group. Let P,
be a Sylow p-subgroup of T'. Since M & Z,, one has T = P, x M and P,
is characteristic in T. Then P, < A since T < A. Thus, A always has a
minimal normal p-subgroup. Without loss of the generality, assume that
N &Z,or Zf,. If N is a Sylow p-subgroup of A, then the quotient graph
Xn of X relative to N is a cubic edge-transitive graph of order 4. It fol-
lows that Xy = K, contradicting that X is bipartite. As a result, one
may conclude that there exists no connected cubic edge-transitive graphs
of order 4p. Further, N & Z, is the maximal normal p-subgroup of A and
|X| = 4p®. Then the quotient graph Xy of X relative to N is a cubic
edge-transitive graph of order 4p. A contradiction occurs again. 0O

Lemma 3.2 Let p > 7 be a prime and X a connected cubic graph of
order 12p or 12p®. If A < Aut(X) acts transitively on the edge-set of X,
then A is non-solvable.

Proof. Suppose to the contrary that A is solvable. Let H be a minimal
normal subgroup of A. Then H must have more than two orbits on V(X)
and the quotient graph Xy of X relative to H is still a cubic graph with
A/H as an edge-transitive group of automorphisms. It follows that H =
Z3,L3,Zyp or Zp X Zp. If H = Z3, then the quotient graph Xz has order
4p or 4p?, which is impossible by Lemma 3.1. Assume that H & Z,. Let
T be a maximal normal 2-subgroup of A. Then T is intransitive on each
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partition set of X. By Proposition 2.2 and 2.1, T is semiregular on V' (X),
implying T = H = Z,. Let K/T be a minimal normal subgroup of A/T.
By the maximality of T, K/T is an elementary abelian g-group with ¢ =3
or p. Let Q be a Sylow g-subgroup of K. Since T' = Z3,onehas K = Q@ xT
and Q is characteristic in K. Then Q < A because K Q A. If ¢ = 3 then @
is a normal 3-subgroup of A. This is impossible. Thus, @ is a p-subgroup,
and hence A always has a minimal normal p-subgroup. Without loss of the
generality, assume that H 2 Z, or Z2. If H is a Sylow p-subgroup of A4,
then the quotient graph Xy of X relative to N is a cubic edge-transitive
graph of order 12. However, from [6, 7] we know that there are no cubic
edge-transitive graphs of order 12, a contradiction. As a result, one may
conclude that there exists no connected cubic graphs of order 12p with
a solvable edge-transitive automorphism group. Further, H & Z, is the
maximal normal p-subgroup of A and |X| = 12p?. Then the quotient graph
Xp is a cubic graph of order 12p with A/H as a solvable edge-transitive
group of automorphisms. This is a contradiction. O

Let G be a non-abelian simple group and Z an abelian group. We call
an extension E of Z by G a central extension of G if Z < Z(E). If E is
perfect, that is, the derived group E' = E, we call E is covering group of
G. Schur proved that for every simple group G there is a unique maximal
covering group M such that every covering group of G is a factor group of
M. This group M is called the full covering group of G, and the center of
M is called the Schur multiplier of G, denoted by Mult(G).

Proof of Theorem 1.1 Let p < 7. Then X has order 24, 36, 48, 60, 84, 108,
300 or 588. By [6, 7], X is isomorphic to the 2-regular graphs F024, F048,
F060,F084 or F108. (The notations are from [6].)

Let p > 7. Let A = Aut(X). By [41, 42} and [34, Proposition 2.4],
|A] | 29 -32 . p* with £ =1 or 2. By Lemma 3.2, A is non-solvable. Then A
has a non-abelian main factor M/N. Since |M/N| | 2°-3%.p® and p > 11, by
[24, pp.12-14], M/N is a simple group, and M/N = PSL(2,17) which has
order 24-32.17. It follows that p = 17 and 31 |N|. If £ =1, then by [6, 7],
X is isomorphic to the 4-regular F204. Let £ = 2. Then |V(X)| =12-172

330



In this case, we first prove the following claim.

Claim: A has no normal subgroups with order 2" - 32 . 17 for some integer
T,

Suppose to the contrary that T' is a normal subgroup of A with order
27 . 32.17 for some integer r. Since 172 { |T|, T has more than two orbits in
V(X). By Propositions 2.2 and 2.1, T is semiregular and hence [T | |V (X)),
that is, 27 - 32-17 | 12 172, a contradiction.

Thus, the claim is true. As a result, 17 | |[N|. Since if not, then M
has order 2" - 32 - 17, which is impossible. Since 31 |N|, N has more than
two orbits in V(X). By Propositions 2.2 and 2.1, N is semiregular and the
quotient graph Xy of X relative to NN is still a cubic edge-transitive graph.
It follows that |N| | 34, and hence N & Z;,Z34 or D34. It is easily seen
that Aut(N) is solvable. Set C = Cp(N). Then M/C is isomorphic to a
subgroup of Aut(N), implying that M/C is solvable. Let N = Dj4. Then
CNN =1 and hence C = CN/N. Since M/N is simple, CN/N 4 M/N
implies that CN/N = 1 or M/N, that is, C = 1 or PSL(2,17). Since
M/C is solvable, C = PSL(2,17) and hence M = N x C. Clearly, C is
characteristic in M. Then C < A because M < A. This is contrary to the
Claim. Let N = Z;7 or Z34. Then N < C. Since M/C is solvable and
M/N = PSL(2,17), one has 1 # C/N < M/N, implying M = C. It follows
that N is in the center of M. Let M’ be the derived subgroup of M. Since
M/N is non-abelian simple, M'N/N = M/N, implying M'/(M' N N) =
M/N = PSL(2,17). If N < M’, then M’ = M, and hence M is a covering
group of PSL(2,17), implying |N] | |[PSL(2,17)|. However, from [12] we
know Mult(PSL(2,17)) = Z,, a contradiction. Thus, N £ M’, and if
N = Z7 then M'NN =1, if N = Zg4, then M'NN =1, Z; or Zy7. If
M'NN =1 or Z; then M’ has order 2%-3%.17 or 2° - 32. 17, contrary
to the Claim. Let M’ N N = Z;;. In this case, let M” be the derived
subgroup of M’ and set L = M’ N N. Since N is in the center of M, L is
in the center of M’. Since M’/L = PSL(2,17), one has M"L/L = M'/L,
namely, M’ = M"L. If L < M" then M"” = M’, and hence M’ is a covering
group of PSL(2,17), implying L <Mult(PSL(2, 17)) & Z,, a contradiction.
Thus, L £ M” and hence L N M" = 1 because L & Z,,. It follows that
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M"=M"L/L=M'/L = PSL(2,17), and hence M’ = L x M". Since M’
is characteristic in M and M" is characteristic in M’, M" is characteristic
in M. Then M"” < A because M < A, contrary to the Claim. ]

Acknowledgements: This work was supported by the National Natural
Science Foundation of China (11101035), and the Subsidy for Outstanding
People of Beijing (2011D005022000005), and the Importation and Devel-
opment of High-Caliber Talents Project of Beijing Municipal Institutions
(IDHT201304089).

References

[1] M. Alaeiyan, M. Ghasemi, Cubic edge-transitive graphs of order 8p?,
Bull. Austral. Math. Soc. 77 (2008) 315-323.

[2] M. Alaeiyan, M.K. Hosseinipoor, Classifying cubic edge-transitive
graphs of order 8p, Proc. Indian Acad. Sci., Math. Sci. 119 (2009)
647-653.

[3] W. Bosma, C. Cannon and C. Playoust, The MAGMA algebra system
I: The user language, J. Symbolic Comput. 24(1997) 235-265.

[4] I. Z. Bouwer (ed.), The Foster Census, Charles Babbage Research Cen-
tre, Winnipeg, 1988.

[5] Y. Cheng, J. Oxley, On weakly symmetric graphs of order twice a
prime, J. Combin. Theory B 42 (1987) 196-211.

[6] M. Conder, P. Dobcsényi, Trivalent symmetric graphs on up to 768
vertices, J. Combin. Math. Combin. Comput. 40 (2002) 41-63.

[7] M. Conder, A. Malni¢, D. Marusi¢, P. Poto¢nik, A census of cubic
semisymmetric graphs on up to 768 vertices, J. Algebraic Combin. 23
(2006) 255-294.

332



(8] M. Conder, A. Malni¢, D. Marusi¢, P. Potoénik, P. PotoénikA, The
edge-transitive but not vertex-transitive cubic graph on 112 vertics, J.
Graph Theory 54 (2005) 25-42.

[9] M. Conder, A new 5-arc-transitive cubic graph, J. Graph Theory 11
(1987) 303-307.

[10] M. Conder, R. Nedela, Symmetric cubic graphs of small girth, J. Com-
bin. Theory B 97 (2007) 757-768.

[11] M. Conder, R. Nedela, A more detailed classification of symmetric
cubic graphs, Journal of Algebra 322 (2009) 722-740.

(12] J.H. Conway, R.T. Curties, S.P. Norton, R.A. Parker, R.A. Wilson,
An Atlas of Finite Groups, Clarendon Press, Oxford, 1985.

[13] D.Z. Djokovié, G.L. Miller, Regular groups of automorphisms of cubic
graphs, J. Combin. Theory B 29 (1980) 195-230.

[14] S.F. Du, M.Y. Xu, A classification of semisymmetric graphs of order
2pg, Comm. Algebra 28 (2000) 2685-2715.

[15] Y.-Q. Feng, J.H. Kwak, One-regular cubic graphs of order a small
number times a prime or a prime square, J. Austral. Math. Soc. 76
(2004) 345-356.

[16] Y.-Q. Feng, J.H. Kwak, s-Regular cubic graphs as coverings of the
complete bipartite graph K3 3, J. Graph Theory 45 (2004) 101-112.

[17] Y.-Q. Feng, J.H. Kwak, Classifying cubic symmetric graphs of order
10p or 10p?, Sci. in China A 49 (2006) 300-319.

(18] Y.-Q. Feng, J.H. Kwak, Cubic symmetric graphs of order a small num-
ber times a prime or a prime squre, J. Combin. Theory B 97 (2007)
627-646.

[19] Y.-Q. Feng, J.H. Kwak, Cubic symmetric graphs of order twice an odd
prime power, J. Aust. Math. Soc. 81 (2006) 153-164.

333



[20] Y.-Q. Feng, J.H. Kwak, K.S. Wang, Classifying cubic symmetric
graphs of order 8p or 8p?, Eur. J. Combin. 26 (2005) 1033-1052.

[21] Y.-Q. Feng, K.S. Wang, s-regular cyclic coverings of the three dimen-
sional hypercube Qa, Eur. J. Combin. 24 (2003) 719-731.

[22] Y.-Q. Feng, J.-X. Zhou, Semisymmetric graphs, Discrete Math. 308
(2008) 4031-4035.

[23] J. Folkman, Regular line-symmetric graphs, J. Combin. Theory 3
(1967) 215-232.

[24] D. Gorenstein, Finite Simple Groups, Plenum Press, New York, 1982.

[25] D. Goldschmidt, Automorphisms of trivalent graphs, Ann. Math. 111
(1980) 377-406.

[26] X.-H. Hua, Y.-Q. Feng, Cubic semisymmetric graphs of order 8p3, Sci.
China Math. 54 (2011) 1937-1949.

[27) P. Lorimer, Vertex-transitive graphs: symmetric graphs of prime va-
lency, J. Graph Theory 8 (1984) 55-68.

(28] P. Lorimer, Trivalent symmetric graphs of order at most 120, Eur. J.
Combin. 5 (1984) 203-218.

[29] Z.P. Lu, C.Q. Wang, M.Y. Xu, On semisymmetric cubic graphs of
order 6p?, Sci. in China A 47 (2004) 11-17.

(30} A. Malnig, D. Marusig, S. Miklavi¢, P. Poto¢nik, Semisymmetric ele-
mentary abelian covers of the Mobius-Kantor graph, Discrete Math.
307 (2007) 2156-2175.

[31] A. Malnig, D. Marusi¢, P. Poto¢nik, Elementary abelian covers of
graphs, J. Algebraic Combin. 20 (2004) 71-97.

[32] A. Malnié, D. Marusi¢, P. Potoénik, On cubic graphs admitting an
edge-transitive solvable group, J. Algebraic Combin. 20 (2004) 99-113.

334



[33] A. Malni¢, D. Marusié, P. Potoénik, C.Q. Wang, An infinite family
of cubic edge- but not vertex-transitive graphs, Discrete Math. 280
(2004) 133-148.

(34] A. Malni¢, D. Marusié, C.Q. Wang, Cubic edge-transitive graphs of
order 2p®, Discrete Math. 274 (2004) 187-198.

(35] D. Marusié, Constructing cubic edge- but not vertex-transitive graphs,
J. Graph Theory 35 (2000) 152-160.

(36] D. Marusié, P. Potoénik, Semisymmetry of generalized Folkman
graphs, Eur. J. Combin. 22 (2001) 333-349.

[37) J.-M. Oh, A classification of cubic s-regular graphs of order 14p, Dis-
crete Math. 309 (2009) 2721-2726.

{38] C.W. Parker, Semisymmetric cubic graphs of twice odd order, Eur. J.
Combin. 28 (2007) 572-591.

[39] C.Q. Wang, Y.H. Hao, Edge-transitive regular Z,-covers of the Hea-
wood graph, Discrete Math. 310(2010) 1752-1758.

(40] J.-X. Zhou, Y.-Q. Feng, Edge-transitive cyclic regular covers of the
Mobius-Kantor graph, Eur. J. Combin. 33 (2012) 139-147.

[41] W.T. Tutte, A family of cubical graphs, Proc. Camb. Phil. Soc. 43
(1947) 459-474.

(42]) W.T. Tutte, On the symmetry of cubic graphs, Canad. J. Math. 11
(1959) 621-624.

335



