GROUPS WITH MAXIMAL IRREDUNDANT COVERS AND MINIMAL BLOCKING SETS

ALIREZA ABDOLLAHI

ABSTRACT. Let n be a positive integer. Denote by PG(n,q) the n-dimensional projective space over the finite field \mathbb{F}_q of order q. A blocking set in PG(n,q) is a set of points that has non-empty intersection with every hyperplane of PG(n,q). A blocking set is called minimal if none of its proper subsets are blocking sets. In this note we prove that if $PG(n_i,q)$ contains a minimal blocking set of size k_i for $i \in \{1,2\}$, then $PG(n_1 + n_2 + 1,q)$ contains a minimal blocking set of size $k_1 + k_2 - 1$. This result is proved by a result on groups with maximal irredundant covers.

1. Introduction and Results

Let G be a group. A set S of proper subgroups of G is called a cover for G whenever $G = \bigcup_{H \in S} H$. The cover S is called irredundant if no proper subcollection of S is a cover for G. The cover S is called an n-cover if |S| = n. The cover S is called maximal if each member of S is a maximal subgroup of the group G. The cover S is called core-free if the core of $D = \bigcap_{H \in S} H$ in G is trivial, i.e. $D_G = \bigcap_{g \in G} g^{-1}Dg$ is the trivial subgroup of G. The cover S for a group is called a \mathfrak{C}_n -cover if S is a maximal irredundant core-free n-cover.

Let n be a positive integer. Denote by PG(n,q) the n-dimensional projective space over the finite field \mathbb{F}_q of order q. A blocking set in PG(n,q) is a set of points that has non-empty intersection with every hyperplane of PG(n,q). A blocking set is called minimal if none of its proper subsets are blocking sets.

There is a well-known relationship between minimal blocking sets in PG(n,q) and irredundant covers of the abelian group \mathbb{F}_q^{n+1} , the direct product of n+1 copies of \mathbb{F}_q (see e.g., [1]). In fact a minimal blocking set of size k exits in PG(n,q) if and only if an irredundant k-cover for \mathbb{F}_q^{n+1} whose all members are hyperplane exists (see e.g., Proposition 2.2 of [1]).

The main results of this note are the following. Theorem 1.1 is inspired by the proof of Lemma 3.1 of [3].

Theorem 1.1. Let $C_1 = \{M_1, \ldots, M_m\}$ and $C_2 = \{N_1, \ldots, N_n\}$ be irredundant m-and n-covers for two groups G_1 and G_2 , respectively. Suppose that M_1 and N_1 are normal subgroups of G_1 and G_2 , respectively; and assume that a and b are elements of $G_1 \setminus M_1$ and $G_2 \setminus N_1$, respectively, such that M_1a and N_1b have the same order p for some prime number p. Then

$$C = \{(M_1 \times N_1)\langle (a,b)\rangle, M_i \times G_2, G_1 \times N_j \mid i = 2, \ldots, m; \ j = 2, \ldots, n\}$$

²⁰⁰⁰ Mathematics Subject Classification. 20D60; 51E21.

Key words and phrases. Maximal irredundant covers; minimal blocking sets .

is an irredundant (n+m-1)-cover for $G_1 \times G_2$ with intersection $D_1 \times D_2$, where $D_1 = \bigcap_{i=1}^m M_i$, $D_2 = \bigcap_{j=1}^n N_i$ and $(M_1 \times N_1) \langle (a,b) \rangle$ is the subgroup of $G_1 \times G_2$ generated by $M_1 \times N_1$ and the element (a,b). In particular, if both C_1 and C_2 are maximal, then C is a maximal cover for $G_1 \times G_2$.

Corollary 1.2. Let $PG(n_i, q)$ contain a minimal blocking set of size k_i for $i \in \{1, 2\}$. Then $PG(n_1 + n_2 + 1, q)$ contains a minimal blocking set of size $k_1 + k_2 - 1$.

2. Proofs

Proof of Theorem 1.1. It is clear that C is an (m+n-1)-cover for $G_1 \times G_2$. We now prove that C is irredundant. First, $(M_1 \times N_1)\langle (a,b) \rangle$ is an irredundant member of C: for C_1 and C_2 are both irredundant, there exist elements $x \in M_1 \setminus \bigcup_{i=2}^m M_i$ and $y \in N_1 \setminus \bigcup_{j=2}^n N_i$. It follows that the element (x,y), among the members of C, belongs only to $(M_1 \times N_1)\langle (a,b) \rangle$ and so $(M_1 \times N_1)\langle (a,b) \rangle$ is an irredundant member. Now we show that each $M_i \times G_2$ is an irredundant member for the cover (for each $i=2,\ldots,m$). Without loss of generality and for convenience, we prove only the latter statement for i=2, the other cases are similar. Let $x_0 \in M_2 \setminus \bigcup_{i=1}^m M_i$ and

 $y_0 \in N_1 \setminus \bigcup_{j=2}^n N_j$. Then (x_0, y_0) , among the members of \mathcal{C} , could only possibly belong to $(M_1 \times N_1) \langle (a, b) \rangle$. If it is possible, then $x_0 \in M_1 a^{\ell}$ and $y_0 \in N_1 b^{\ell}$ for some integer ℓ . Since $x_0 \notin M_1$, $a^{\ell} \notin M_1$ and so p does not divide ℓ . This implies that $b^{\ell} \notin N_1$. Thus $y_0 \in N_1 \cap N_1 b^{\ell} = \emptyset$, a contradiction. Thus $M_2 \times G_1$ is an irredundant member of \mathcal{C} . By a similar argument, one may prove that each $G_1 \times N_j$ is an irredundant member for the cover (for each $j = 2, \ldots, n$). This completes the proof of irredundancy of the cover \mathcal{C} .

Now by Lemma 2.2(b) of [2], $D_1 = \bigcap_{i=2}^m M_i$, $D_2 = \bigcap_{j=2}^n N_j$ and

$$\bigcap_{S\in\mathcal{C}} S = \big(\bigcap_{i=2}^m M_i \times G_2\big) \bigcap \big(\bigcap_{j=2}^n G_1 \times N_j\big).$$

It follows that the intersection of the cover C is $D_1 \times D_2$.

For the last statement, note that it follows from the hypothesis that $|G_1:M_1|=|G_2:N_1|=p$, as we are assuming both M_1 and N_1 are maximal. Thus $(M_1\times N_1)\langle (a,b)\rangle$ has prime index p in $G_1\times G_2$ and so it is a maximal subgroup of $G_1\times G_2$. The other members of the cover $\mathcal C$ are clearly maximal subgroups of $G_1\times G_2$. This completes the proof of the last statement.

Corollary 2.1. Let $V(n_i,q)$ (i=1,2) be the n_i -dimensional vector space over the finite field of order q. If $C_1 = \{M_1, \ldots, M_m\}$ and $C_2 = \{N_1, \ldots, N_n\}$ be irredundant m- and n-covers for the abelian groups $V(n_1,q)$ and $V(n_2,q)$, respectively; and assume that a and b are arbitrary elements of $G_1 \setminus M_1$ and $G_2 \setminus N_1$, respectively. Then

$$C = \{(M_1 \times N_1)\langle (a,b)\rangle, M_i \times V(n_2,q), V(n_1,q) \times N_j \mid i=2,\ldots,m; \ j=2,\ldots,n\}$$
 is an irredundant $(n+m-1)$ -cover for $V(n_1,q) \times V(n_2,q)$ with intersection $D_1 \times D_2$, where $D_1 = \bigcap_{i=1}^m M_i$ and $D_2 = \bigcap_{j=1}^n N_i$. In particular, if all members of C_1 and C_2 are hyperplanes of the corresponding spaces, then all members of C are hyperplanes of $V(n_1,q) \times V(n_2,q)$.

Proof of Corollary 1.2. It follows from Proposition 2.2 of [1] and Corollary 2.1.

Acknowledgement. The author is grateful to the referee for his/her helpful comments. This research was in part supported by a grant from IPM (No. 87200118). This research was also partially supported by the Center of Excellence for Mathematics, University of Isfahan.

REFERENCES

- [1] A. Abdollahi, M.J. Ataei and A. Mohammadi Hassanabadi, Minimal blocking sets in PG(n, 2) and covering groups by subgroups, to appear in Comm. Algebra, 36 (2008).
- [2] R. A. Bryce, V. Fedri, L. Serena, Covering group with subgroups. Bull. Austral. Math. Soc., Bull. Austral. Math. Soc., 55 (1997) 469-476.
- [3] M. J. Tomkinson, Groups covered by finitely many cosets or subgroups, Comm. Algebra, 15 (1987) No. 4, 845-859.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ISFAHAN, ISFAHAN 81746-73441, IRAN; AND SCHOOL OF MATHEMATICS, INSTITUTE FOR RESEARCH IN FUNDAMENTAL SCIENCES (IPM), P.O.BOX: 19395-5746, TEHRAN, IRAN. E-MAIL: abdollahi@member.ams.org a.abdollahi@math.ui.ac.ir