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Abstract

It is proved that if G is a plane embedding of a K¢-minor-free
graph, then G is coupled 5-choosable; that is, if every vertex and
every face of G is given a list of 5 colours, then each of these ele-
ments can be given a colour from its list such that no two adjacent
or incident elements are given the same colour. Using this result it
is proved also that if G is a plane embedding of a Kj 3-minor-free
graph or a (K2 + (K; U K2))-minor-free graph, then G is coupled
5-choosable. All results here are sharp, even for outerplane graphs.

Keywords: Series-parallel graph; Minor-free graph; Outerplanar
graph.

1 Introduction

All graphs considered in this paper are simple; that is, they do not contain
loops or multiple edges. List-colourings, in which each element is coloured
from its own list of colours, were introduced independently by Vizing [15]
and by Erdés, Rubin and Taylor (4]. Formally, let G = (V, E, F) be a plane
graph. A list-assignment L to the elements of G is the assignment of an
unordered list L(2) of colours to each element z of G. If G has a list-
assignment L, then a coupled list-colouring is an assignment of a colour
to every vertex v and every face f from its own list L(v) or L(f) of colours.
A coupled list-colouring is proper if no two adjacent or incident elements
are given the same colour. Furthermore, G is coupled k-choosable if G has
a proper coupled list-colouring from all possible lists L(z) with |L(z)| > k
for every element z € VU F. The smallest integer k such that G is coupled
k-choosable is the coupled list-chromatic number or coupled choosability
chvi(G) of G. It is clear that chy¢(G) > xv(G), where xv¢(G) is the coupled
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chromatic number. The (vertex) choosability ch(G) and edge-choosability
ch’/(G) of G are defined in a similar manner.

It is well known that a graph is outerplanar if and only if it is both
K4-minor-free and K 3-minor-free. We will call a graph near-outerplane
if it is a plane embedding of a K,-minor-free graph or a K3 3-minor-free
graph. In fact, in Theorem 1.1 we will replace the class of K3 s-minor-free
graphs by the slightly larger class of (K2 + (K3 U K2))-minor-free graphs.

By an abuse of terminology we will call two elements neighbours if they
are adjacent or incident, since no two such elements can be given the same
colour. All other terminology is standard, as defined in the references: for
example (2, 19].

Ringel [12] introduced simultaneous colourings, in which more than
one type of element is coloured, and he conjectured that the vertices and
faces of a plane graph can be coloured with six colours, which was proved
by Borodin [1]. Wang and Liu [17] proved that the vertices and faces of
an outerplane graph can be coloured with five colours. (Examples that
attain this bound are given immediately after Theorem 1.1.) Simultaneous
list-colourings are considered in [5]. In this paper we will prove that if G
is a near-outerplane graph, then G is coupled 5-choosable.

Melnikov [11] conjectured that if G is a plane graph with maximum
degree A, then the number of colours needed for an edge-face colouring of
G is at most A+3. This was proved independently by Sanders and Zhao [13]
and by Waller [16]. Kronk and Mitchem [9] proposed the Entire Colouring
Conjecture, which states that if G is a plane graph, then the number of
colours needed to colour the vertices, edges and faces of G is at most A+4.
This is still an open problem for graphs with A =4 or 5; see [10] for a
proof when A < 3 and [14] for a proof when A > 6. Edge-face choosability
and entire choosability of near-outerplane graphs are considered in [6, 7],
respectively.

Theorem 1.1. Let G be a near-outerplane graph. Then chy(G) < 5.
In particular,

(i) if A =0, then chy(G) = 2;
(#1) if A =1, then chy(G) = 3;

(ti8) if A =2, then
5 if G contains an odd cycle;
chyi(G) ={ 4 if G contains an even cycle but no odd cycle;
3 if G is cycle-free.

Note that Theorem 1.1 is sharp, even for xv¢(G) and even for the smaller
class of outerplane graphs, since any graph with an odd cycle as a block



attains the upper bound. We will make use of the following two theorems.
Theorem 1.2 is a slight extension of a theorem of Dirac [3]. Theorem 1.3
summarises the results for edge choosability of near-outerplanar graphs. In
particular we will make use of the well-known result [4, 15] that ch(Cy) =
ch’(Cy) = 2, which is included in Theorem 1.3 since choosability and edge-
choosability are equivalent when A = 2.

Theorem 1.2. [18] A Ky-minor-free graph G with |V(G)| > 4 has at
least two nonadjacent vertices with degree at most 2.

Theorem 1.3. [8] If G is a near-outerplanar graph with mazimum
degree A, then ch’/(G) = x/(G) = A with the ezception that if A = 2
and G has a component that is an odd cycle, then ch’(G) = x/(G) =
3=A+1.

Clearly, Theorem 1.1 holds when A < 2; see [5]. We will now prove
Theorem 1.1 in general. In Section 2 we will prove Theorem 1.1 for plane
embeddings of K;-minor-free graphs, which is restated in Theorem 2.1. In
Section 3 we will use Theorem 2.1 to prove Theorem 1.1 for plane embed-
dings of (K2 + (K1 U K>))-minor-free graphs, which is restated in Theorem
3.1. This will complete the proof of Theorem 1.1.

2 Results for Ky-minor-free graphs

Let the bounding cycle of a 2-connected block B of a plane graph G be the
cycle of B that has the largest area inside it; that is, in a plane embedding
of B the bounding cycle forms the boundary of the outer face of B.

Lemma 2.1. [5, 6, 7] Every component C of a plane graph with
[V(C)| > 3 is either 2-connected or has an end-block B such that
no interior face of B has a block of C embedded in it.

Proof. The proof is left as an exercise for the reader. O

Let C be a component of a plane embedding of a K4-minor-free graph
G such that no interior face of C has another component of G embedded
in it. If C is 2-connected, then let B = C and let 2y be any vertex of
maximum degree in C; otherwise, by Lemma 2.1, let B be an end-block
of C with cut-vertex zy such that no interior face of B has a block of C
embedded in it.

If B contains a vertex with degree at least 3 in G, then let B; be the
graph whose vertices are the vertices of B that have degree at least 3 in G,
where two vertices are adjacent in B if and only if they are connected in
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G by an edge or by a path whose interior vertices have degree 2. It is clear
that B; is a minor of B.

If u,z € V(B), then let P, be the set of paths in B of length 1 or 2
between u and z that contain no interior vertex of degree at least 3; that is,
if vz € P,z then dg(v) = 2. Also, let py, be the number of paths in Py..

Figure 1

Lemma 2.2. Suppose that B does not contain a vertez of degree 1 or
two adjacent vertices of degree 2 in G. Then the graph B, ezists and
does not contain a vertez of degree 0. If By does not contain a vertex
of degree 1, then B; contains a vertez u of degree 2 that is adjacent
in By to x and y say, where pyz + puy = do(u) 2 3, and where pyy > 2.
Moreover, no two paths in P,y bound a region that has a path not in
P,, embedded in it, and if puy > 2, then no two paths in P,z bound a
region that has a path not in Py, embedded in it also.

Proof. If B does not contain a vertex of degree 1, then B 2 Kp, and if
B does not contain two adjacent vertices of degree 2 in G, then B is not
a cycle. So B has at least two vertices with degree at least 3, and so it
follows that B, exists and does not contain a vertex of degree 0. Since B,
is a minor of B, it follows that B; is K4-minor-free.

Suppose that B; does not contain a vertex of degree 1. Then either
B; = Ka, or, by Theorem 1.2, B; has at least two nonadjacent vertices
with degree exactly 2.

Let w be a vertex of degree 2 in B; that is adjacent in B; to z’ and y/'.
Then, by the definition of B; and since B does not contain two adjacent
vertices of degree 2 in G, it follows that puz/,puy 2 1 and pusz' + Puy =
dg(w) > 3. Furthermore, since dg(w) > 3, we may assume without loss of
generality that py, > 2.
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If no two paths in P,y bound a region that has a path not in P,
embedded in it and no two paths in P,/ bound a region that has a path
not in Py, embedded in it, then we may set w = u, 2’ =z and ¢ = y
and the proof is complete. So we may assume without loss of generality
that there is a region R bounded by two paths in P, that has a path
w...y not in Py, embedded in it. Since py, + Puy = dg(w) it follows
that every such path in R must contain z’. So z’ is embedded in R and it
follows that B\ P, is embedded in R also, and so the bounding cycle of
B consists of two paths in P,,. Let S be the subgraph of B obtained by
deleting w and all its neighbours of degree 2 in B. An example is shown in
Figure 1, where R = wvy'w, where the dashed edges may or may not be
present, and if B is an end-block, then 3’ = z,.

Since w is adjacent in B; to g/, and since B; & K33 or has at least two
nonadjacent vertices with degree exactly 2, then there is a vertex u # ¢/ in
S such that dp, (u) = 2, where u = 2’ if dp, (z') = dp, (y’) = 2. Let u be
adjacent in B; to z and y. Then, by what we have proved about w, the
result follows since every region bounded by paths in P,; or P,y is inside
the bounding cycle of B. This completes the proof of Lemma 2.2. O

We will now prove Theorem 1.1 for plane embeddings of K4-minor-free
graphs, which is restated in the following theorem.

Theorem 2.1. Let G be o plane embedding of a K4-minor-free graph.
Then chy(G) < 5.

Proof. Suppose, if possible, that G is a plane embedding of a K4-minor-
free graph with the smallest number of vertices such that chy(G) > 5.
Assume that every vertex v and every face f of G is given a list L(v) or
L(f) of five colours such that G has no proper coupled colouring from these
lists. Clearly G has neither a trivial component nor a K, component; so
every component C' of G has at least three vertices. Let C and B be as
defined before Lemma 2.2.

Claim 2.1. G does not contain a verter of degree 1.

Proof. Suppose that u is a vertex of degree 1 in G. Let H = G — u. By
hypothesis H has a proper coupled colouring from its lists. Since u has
two coloured neighbours and a list of five colours, it follows that u can be
coloured from its list. This contradiction proves Claim 2.1. O

Claim 2.2. If G contains a vertez u of degree 2, then the neighbours
of u are adjacent.

Proof. Suppose that G contains a vertex u of degree 2 that is adjacent to =
and y, where zy ¢ E(G). Let H be obtained from G by replacing the path
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zuy with the edge zy. By hypothesis H has a proper coupled colouring
from its lists. We can now colour u since it has at most four coloured
neighbours and a list of five colours. This contradiction completes the
proof of Claim 2.2. O

Claim 2.3. B does not contain a triangle ruyz, where zuyr bounds
a face in G and where u has degree 2 in G.

Proof. Suppose that B contains a triangle ruyz, where zuyz bounds a
face f in G and where u has degree 2 in G. Let H = G — u where the face
in H in which « was embedded is given the same list as the face in G that
has zuy as part of its boundary and is different from f. By hypothesis H
has a proper coupled colouring from its lists. We can now colour f and
then u since each has at most four coloured neighbours at the time of its
colouring. This contradiction completes the proof of Claim 2.3. O

Claim 2.1 implies that B % K and Claims 2.2 and 2.3 imply that B
is not a cycle; so B has at least two vertices with degree at least 3 and
dg(z0) > 3. Let By be as defined before Lemma 2.2.

Claim 2.4. B, is not Kj-minor-free.

Proof. Since B has at least two vertices with degree at least 3, it follows
that B; has no vertex of degree 0. Suppose that z is a vertex of degree 1
in B;. Then z is adjacent in B; to zo. By the definition of B, and by
Claims 2.2 and 2.3, it follows that dg(z) > 3, so that pz,, > 3, and that
zz9 € E(G) and every path in B between z and 29 is in Pr,,. So, by
the definition of B, it follows that B contains a face that is bounded by a
triangle zvzoz, where dg(v) = 2. However, Claim 2.3 shows that this is
impossible. So B; has no vertex of degree 1.

In view of Claims 2.1 and 2.2, it follows from Lemma 2.2 that B; con-
tains a vertex u of degree 2 that is adjacent in B, to = and y say, such that
there are two paths in P, that bound a face in B that is a triangle uvyu,
where dg(v) = 2. However, Claim 2.3 shows that this is impossible. This
contradiction completes the proof of Claim 2.4. O

Since B, is a minor of G, Claim 2.4 implies that G is not K4-minor-free.
This contradiction completes the proof of Theorem 2.1. O

3 Results for (K;+(K1UKz))-minor-free graphs

We will make use of Theorem 2.1. For each uncoloured element z in G,
let L’(z) denote the list of usable colours for z; that is, L'(z) denotes L(z)
minus any colours already used on neighbours of z in G.
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Let C be a component of a plane embedding of a (K, + (K; U K,))-
minor-free graph G such that no interior face of C has another component
of G embedded in it. If C is 2-connected, then let B = C and let 2 be
any vertex of maximum degree in C; otherwise, by Lemma 2.1, let B be
an end-block of C' with cut-vertex z such that no interior face of B has a
block of C embedded in it.

Lemma 3.1. Let G be o (K2 + (K1 U K3))-minor-free graph. Then
each block of G is either K4-minor-free or else isomorphic to Kj.

Proof. Suppose that B is a block of G that has a K, minor. Since
A(K4) = 3, it follows that B has a subgraph B’ that is homeomorphic
to Ky. If an edge of K, is subdivided, or if a path is added joining two
vertices of K4, then a K + (K7 U K3) minor is formed. So B’ & K, and
B=K,. 0O

a
' f
/A,Nz
.4/:,“ fs \\'
20 b
Figure 2

Lemma 3.2. Let G be a plane embedding of Ky, as shown in Figure 2.
If both f and zp are precoloured, and each of the elements a, b, ¢, fi,
f2, fa has o list of at least 3, 3, 4, 3, 4, 3 usable colours respectively,
then any given colouring of f and zo can be extended to the remaining
vertices and faces of G.

Proof. Each of the remaining elements

a,bacsf3aflaf2 (1)

has a list of at least 3, 3, 4, 3, 3, 4 usable colours respectively. Note that
these elements are equivalent to a 4-cycle abfsfia where ¢ and f; are the
interior and exterior faces.

If possible, give b and f; the same colour. At this point, each of the
remaining elements

a, f3,¢, f2 (2)

29



has a list L” of at least 2, 2, 3, 3 usable colours respectively. If possible, give
a and f3 the same colour. The remaining elements can now be coloured
in the order (2). So we may assume that L”(a) N L"(f3) = 0 so that
|L"(a) U L"(f3)] = 4. Now either |L"(f2)| > 4, or else a or f3 can be given
a colour that is not in L”(f2). In each case the remaining elements can be
coloured in the order (2). So we may assume that this is not possible so
that L'(b) N L'(f1) = 0, and, by symmetry, that L'(a) N L'(f3) = 0.

If L'(f1) = L'(f3), then either |[L'(f1)| > 4, or else fa can be given a
colour that is not in L’(f1). In each case colour f,. Since L'(a)NL'(f) =9
the remaining elements can now be coloured in the order (1). So we may
assume that L'(fi) # L'(f3), and similarly that L'(fi1) # L'(a), L'(b) #
L'(a), and L'(b) # L'(fs).

So give colours to ¢ and f2. The remaining elements are equivalent to
a 4-cycle. Since L'(a) N L'(f3) = @ and L'(b) N L'(f1) = 0, it follows that
any colour given to either c or fz is in at most two of L'(a), L'(b), L'(f1),
L'(f3). If each remaining element has a list of at least two usable colours,
then the result follows from Theorem 1.3. So we may assume that at least
one remaining element has only one usable colour in its list. This means
that each of the colours on c and f, was in the list of usable colours of one
remaining element.

Suppose that exactly one remaining element, say f, has only one usable
colour in its list. Then each of a, b, f3 has at least 2, 3, 2 usable colours in
its list respectively, and so the remaining elements can be coloured in the
order f1, a, fa, b. So we may assume that there are two remaining elements
each of which has only one usable colour in its list. Since these elements
are adjacent, then, by symmetry, we may assume that these elements are
f1 and fs. Since L'(f1) # L'(f3), and since each of a and b has at least
three usable colours in its list, it follows that the remaining elements can
be coloured in the order fi, f3, a, b. In every case the colouring can be
completed, which proves Lemma 3.2. O

We will now prove Theorem 1.1 for plane embeddings of (K2 + (K U
K3))-minor-free graphs, which is restated in the following theorem.

Theorem 3.1. Let G be a plane embedding of a (K2 + (K1 U K3))-
minor-free graph. Then chy(G) < 5.

Proof. Suppose, if possible, that G is a plane embedding of a (K2 +
(K1 U K3))-minor-free graph with the smallest number of vertices such
that chyf(G) > 5. Assume that every vertex v and every face f of G is
given a list L(v) or L(f) of five colours such that G has no proper coupled
colouring from these lists. Clearly G has neither a trivial component nor a
K, component; so every component C of G has at least three vertices. Let
C and B be as defined before Lemma 3.1.
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Claim 3.1. B 2 K.

Proof. Suppose that B & K, and let the elements of B be labelled as in
Figure 2. Then, by hypothesis, G — (B — 20) has a proper coupled colouring
from its lists in which both f and zo are coloured. So each of the remaining
elements a, b, ¢, f1, f2, f3 has a list of at least 3, 3, 4, 3, 4, 3 usable colours
respectively, and so it follows from Lemma 3.2 that G can be coloured from
its lists. This contradiction proves Claim 3.1. 0

By Lemma 3.1 and Claim 3.1, it follows that B is K;-minor-free. Claim
2.1 implies that B 2 K; and Claims 2.2 and 2.3 imply that B is not a cycle;
so B has at least two vertices with degree at least 3 and dg (20) = 3. Let B,
be as defined before Lemma 2.2. By Claim 2.4, B, is not K ;-minor-free.
However, since B is a minor of B this implies that B is not K,-minor-free.
This contradiction completes the proof of Theorem 3.1. O

Since we have now proved Theorems 2.1 and 3.1, this completes the
proof of Theorem 1.1.

Acknowledgement: this research forms part of the author’s PhD the-
sis, which was completed under the supervision of Douglas R. Woodall.

References

(1] O. V. Borodin, Solution of Ringel’s problem on vertex-face colouring
of plane graphs and colouring of 1-planar graphs (in Russian), Metody
Diskret. Analiz. 41 (1984), 12-26.

[2] O. V. Borodin and D. R. Woodall, Thirteen colouring numbers for
outerplane graphs, Bull. Inst. Combin. Appl. 14 (1995), 87-100.

[3] G. A. Dirac, A property of 4-chromatic graphs and some remarks on
critical graphs, J. London Math. Soc. 27 (1952), 85-92.

(4] P. Erdés, A. L. Rubin and H. Taylor, Choosability in graphs,
Proc. West Coast Conference on Combinatorics, Graph Theory
and Computing, Arcata, 1979, Congr. Numer. 26 (1980), 125-157.

(5] T. J. Hetherington, List-colourings of near-outerplanar graphs, PhD
Thesis, University of Nottingham, 2006.

[6] T. J. Hetherington, Edge-face choosability of near-outerplane graphs,
Bull. Inst. Combin. Appl. 54 (2008), 33-46 .

31



[7] T.J. Hetherington, Entire choosability of near-outerplane graphs, Dis-
crete Math. 309 (2009), 2153-2165.

[8] T. J. Hetherington and D. R. Woodall, Edge and total choosability of
near-outerplanar graphs, Electr. J. Combin. 13 (2006), #R98, 7pp.

[9] H. V. Kronk and J. Mitchem, The entire chromatic number of a normal
graph is at most seven, Bull. Amer. Math. Soc. 78 (1972), 799-800.

[10] H. V. Kronk and J. Mitchem, A seven-colour theorem on the sphere,
Discrete Math. 5 (1973), 253-260.

[11] L. S. Melnikov, Problem 9, Recent advances in Graph Theory,
(ed. M. Fiedler), Academia Praha, Prague (1975), 543.

[12] G.  Ringel, Ein  sechsfarbenproblen  auf der  kugel,
Abh. Math. Sem. Univ. Hamburg 29 (1965), 107-117.

[13] D. P. Sanders and Y. Zhao, On simultaneous edge-face colourings of
plane graphs, Combinatorice 17 (1997), 441-445.

[14] D. P. Sanders and Y. Zhao, On the entire colouring conjecture,
Canad. Math. Bull. 43 (2000), 108-114.

[15] V. G. Vizing, Vertex colourings with given colours (in Russian),
Metody Diskret. Analiz. 29 (1976), 3-10.

[16] A. O. Waller, Simultaneously colouring the edges and faces of plane
graphs, J. Combin. Theory Ser. B 69 (1997), 219-221.

[17) W. Wang and J. Lih, On the vertex face total chromatic number of
planar graphs, J. Graph Theory 22 (1996), 29-37.

[18] D. R. Woodall, A short proof of a theorem of Dirac’s about Hadwiger’s
conjecture, J. Graph Theory 16 (1992), 79-80.

[19] D. R. Woodall, List colourings of graphs, Surveys in Combinatorics,
(2001), ed. J. W. P. Hirschfeld, London Math. Soc. Lecture Note
Series 288, Cambridge University Press, (2001), 269-301.

32



