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Abstract: Let G be a simple graph with n vertices and m edges,
and let A\; and A; denote the largest and second largest eigenvalues
of G. For a nontrivial bipartite graph G, we prove that,

(i) My < yfm— 3 —2\/5, where equality holds if and only if G = Py;

(ii) If G 2 P,, then )\, < \/m - 5 —2\/ﬁ, where equality holds if

and only if G = K3 — ¢

(iii) If G is connected, then Ay < | /m — 4 cos? ( ), where equal-

ity holds if and only if G = P,, 2 < n < 5;

kil
n+1

(iv) Ag 2 \/52_ 1, where equality holds if and only if G = Pj;
(v) If G is connected and G ¥ P,, then Ao > 5— 2\/17 , wWhere

equality holds if and only if G = K33 — e.
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1 Introduction

Graphs considered in this note are finite and simple. Undefined no-
tation and terminology will follow those in [1]. Throughout this note,
G denotes a simple graph with n vertices and m edges, A(G) denotes
the maximum degree of G and A(G) denotes the adjacency matrix
of G. The eigenvalues of A(G) are called the eigenvalues of G. Since
A(G) is symmetric, all of its eigenvalues are real. We assume, with-
out loss of generality, that they are ordered in decreasing order, i.e.,
AM(G) 2 A2(G) = - -+ = M(G). When the graph G is understood in
the context, we may omit G and simply use A\ > A2 > ++- > A, to
denote the eigenvalues of G. For a graph G that is not a forest, the
girth of G is the length of the shortest cycle of G.

A bipartite graph without isolated vertices is nontrivial if it is
not isomorphic to a complete bipartite graph. In 1970, Nosal (7]
proved that if A\; > y/m, then G contains a triangle. This yields an
upper bound for );, among bipartite graphs, as stated in Theorem
1.1. We list several other bounds on the eigenvalues of a bipartite
graphs below.

Theorem 1.1 (Nosal [7], also Theorem 3.9 of [8]) If G is a bipartite
graph, then \; < /m.

Theorem 1.2 (Collatz and Sinogowitz, [2]) If G is a tree, then A1 <

Ja—1.

Theorem 1.3 (Peterovié, [8]) A connected bipartite graph G has the
property Ag < 1 if and only if G is an induced subgraph of any of the
graphs G, — Gy (see Fig. 1 of [8]).

Aside from the bounds above, little is known on the second and
the third largest eigenvalues of a nontrivial bipartite graph. In this
note, we shall investigate new bounds for the first, second, and third
largest eigenvalues of a nontrivial bipartite graph.
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2 Lower Bounds

In this section, we present some lemmas needed in the pfoofs of our
main results, and several lower bounds of the second eigenvalue of a
bipartite graph.

We denote a path of order n by P,, a cycle of order n by C,, the
vertex disjoint union of two graphs G and H by G U H, the disjoint
union of k copies of the same graph H by kH. Let Kij be the
tree of order 5 with exactly three vertices of degree 1. The joint of
two vertex disjoint graphs G and H, denoted by GV H, is the graph
obtained from GUH by adding all the edges joining a vertex in V(G)
to a vertex in V(H). For a graph G, G denotes the complement of
G. IfXC V(Cj?, we write G[X] for the subgraph of G induced by
the vertices in X.

Theorem 2.1 (Collatz and Sinogowitz, [2]) Let G be a connected
graph of order n. Then Ay > 2cos nL-i-l)’ where equality holds if
and only if G = P,.

Theorem 2.2 (Interlacing Theorem, Theorem 0.10 of [3]) For 1 <
i<n—k V' CV(G) with |V/| =k,

Ai(G) 2 M(G = V') 2 Xtk (G).

Lemma 2.3 Let G be a connected bipartite simple graph of order n.
Then one of the following holds.

(’i) Ge {Kl, Kl.n—la K2,n—21 Pn}-

(i) G contains one member in F as an induced subgraph, where
F= {Cs, KoU Py, Ko U Ko U P, Kg,g —e, Ki’3, K3‘3}.

Proof. We assume that (i) fails to establish (ii). If n < 4, then since
G is connected, simple and bipartite, G must be one of the graphs
listed in (i). Therefore we assume n > 5.

Suppose first that G is a tree. Since (i) fails, G is not a path
and so A(G) > 3. Let v € V(G) with d§v0) =t = A(G) and let
1,2, -+, Uy be the vertices adjacent to vp. If V/(G) = {vo, v1,vg, -+, 14},
then G = K),»—1 and so (i) must hold. Thus there exists u € V(G) —
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{vo,v1,v2," -+, v} such that uv; € E(G) for some ¢ € {1,2,:--,t}.
This implies that K7 5 is an induced subgraph of G, and so (ii) holds.

Now assume that G is not a tree. Let g(G) be the girth of
G. Since G is a connected simple bipartite and not a tree, g(G) €
{4,6,8,10,---}. If g(G) > 10, then K3 U Kz U P is an induced
subgraph. If g(G) = 8, then K3 U P is an induced subgraph. If
g(G) = 6, then Cjs is an induced subgraph. If g(G) = 4, then G
contains a proper subgraph isomorphic to a K3, for some p > 2.

Let H be a maximal Ko, subgraph of G (that is, H = Kj,,
but G does not have a subgraph isomorphic to K3 p41 which prop-
erly contains H as a subgraph). Let vp,v5 be the two nonadja-
cent vertices of degree p in H and let v;,v2,-:,v, be the vertices
of degree 2, which are adjacent to vp,vp in H. By the assump-
tion that (i) fails, G ¥ Kjn—2, and so there must be a vertex
u € V(G)\V(H). If v (or uvg) € E(G), then by the maxi-
mality of H, uvj (respectively, uvg) € E(G), and so Kp3 — e is
an induced subgraph of G. Now suppose that uvy ¢ E(G) and
wvy ¢ E(G). Since G is connected, we may assume that uv, €
E(G). If uvi,uvy ¢ E(G), then G[{vo,v1,v2,vp,u}] = Kj3 is an
induced subgraph of G. If uv; € E(G) but wv; € E(G), for each
i=23,...,p, then G[{vo,vp,v1,vp,u}| = Ka3 — e is an induced
subgraph of G. If uv; € E(G) for i =1,2,3,:-+,p, then when p > 3,
G[{vo, vg, v1,v2, vp, u}] = K33 is an induced subgraph of G; and when
p = 2, G[{vo,v1,v2,vp,u}] = Ka3, contrary to the maximality of
H=Kyp=Ky2C Ko3. 1

Corollary 2.4 Let G be a connected nontrivial bipartite graph. If
G % P, then G has an induced subgraph in F.

Proof. This follows directly from Lemma 2.3.1

Lemma 2.5 Let G be a graph with n > 5 vertices and with m > 1
edges. The following are equivalent.
(i) G is a complete bipartite graph.
(it) If H is an induced subgraph of G with 5 vertices, then H €

{Ks, K14, K23}

Proof. It suffices to prove that (ii) implies (i), and so we assume
that (ii) holds. First, we shall show that G must be bipartite.
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Define g;(G) to be the length of the shortest odd cycle of G, if
G has an odd cycle; and g;(G) = 1 if G does not have an odd cycle.
Note that g1(G) = 1 if and only if G is bipartite. We shall prove

that g;(G) = 1.

Suppose that ¢:(G) > 1. If g1(G) < 5, then let X C V(G) be
a set of 5 vertices that contains the vertices of a 3-cycle or a 5-cycle
of G. Then H = G[X] has an odd cycle, and cannot be any of the
three graphs listed in Lemma 2.5 (ii). Thus ¢;(G) = 2k+1 > 7,
for some integer k > 3. Let C = v1v2 - - - vgkvo41v1 be an odd cycle
of G with length 2k + 1. Let H; = G[{v;,vo,v3,v4,v5}]. Then by
Lemma 2.5(ii), H1 = Ky 3. Since the path vvyv3v4vs is & spanning
path in Hj, vivg,vovs € E(G). Therefore, G contains an odd cycle
V1V4Vs - - - Vok4+1V1 With length 2k—1, contrary to the assumption that
91(G) = 2k 4+ 1. This proves that we must have g;(G) = 1, that is,
G must be bipartite.

Now let V(G) = V1 U V;, where every edge of G has one end in
V1 and the other end in V5. Without loss of generality, we assume
that |V1| < |V2|. We shall show that G is a complete bipartite graph.

By contradiction, suppose that G is not complete. If |V;| = 1,
then Lemma 2.5(ii) trivially implies that G & K 41, contrary to the
assumption that G is not complete. Hence we assume that |V;| > 2.
Since G is not a complete bipartite graph, we may assume that there
are z € V; and y € V; such that zy € E(G). Since m > 1, we can
find 2’ € V; and 3 € V3 such that z'y’ € E(G). Note that it is
possible that z = z or y = 3/, but they cannot occur simultaneously.

Assume first that £ = 2’. Then y # y'. Since |V3| > [V4| > 2
and n > 5, we can find z” € V; — {z} and ¢ € V5 — {y,¥'}. Let
Hy; = G[{z,z",y,v, y”}L. Since E(H3) # 0,Hs ¥ Ks. Since G is
a bipartite graph with bipartition (V3,V2) and |[V(H2) N V4| = 2
and [V(Hz) N Va| = 3, Hy ¥ Ky 4. Since zy ¢ E(G), Hy ¥ Kaj3.
Therefore, z # z’. Similarly, y # y’. Hence we may assume that
z # z' and y # 3. Choose y” and argue as above with z' replacing
T, VhVe. also get a contradiction. Thus G must be a complete bipartite
graph.

Theorem 2.6 If G is a nontrivial bipartite graph with order n > 4,
then Ao(G) > \/52_ 1 , where equality holds if and only if G = Py.

Proof. Since G is a nontrivial bipartite graph, G has no isolated ver-
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tices. Thus the degree of each vertex of G is at least one and G has at
least two edges by the fact that n > 4. So G contains an induced sub-
graph isomorphic to 2K3 or Py because G is not a complete bipartite

graph. By Theorem 2.2, A2(G) > min{\2(2K32), \2(Fy4)} = \/52— 1

If n = 4 and if G is not isomorphic to Py, it is routine to check

that A2(G) > V5 - 1. If n > 5, then by Lemma 2.5, G has an
induced subgraph H of order 5 which is not isomorphic to Ka 3.

V5 —

1
—T, and so

. This proves that the

It follows from the appendix in [3] that A(H) >

by Theorem 2.2, X2(G) > Mg(H) > ‘/52_ =
equality holds if and only if G = P,. W

Theorem 2.7 Let G be a connected nontrivial bipartite graph with

5— 17
2

order n. If G % P,, then A 2 , where equality holds if

and only if G = Ko3 —e.

Proof. By Corollary 2.4, G contains an induced subgraph in 7. By
Theorem 2.2,

Ay 2> min{)\g(Oe), A9 (K2 U P4), )\Q(Kz UKy U P4), /\2(K2,3 - e), Ao (K{,SJ

5—+17
2

= M(Ko3—¢€) =

.

Suppose G ¥ K3 —e. Then n > 5 and by the appendix in

[4], A2 2 > —;/ﬁ . By the appendix in [4] again, Ay > > —2\/1_7
for all connected nontrivial bipartite graphs of order 6. Therefore,
Ay > 5= 2\/ﬁ for n > 5. Hence the equality holds if and only if
G2 Kpz—e. |
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3 Upper Bounds

In this section, we will consider upper bounds of A;, A2 and A3 for a
bipartite graph G with reasonably large number of vertices.

Lemma 3.1 (Theorem 3.4 of [8]) If G is a bipartite graph, then for
t=12,---, I-n/2-|:

Ai(G) = =Ans1-i(G).

It follows from Lemma 3.1 that if G is a bipartite graph with n
vertices and m edges, then

n (3]
2m =3 M=2F+2) 22 (1)

i=1 =2
By Theorem 1.3 and (1), the following corollary follows.

Corollary 3.2 If a connected bipartite graph G is not an induced
subgraph of any of the graphs Gy — G7 in [8] (see Fig. 1 of [8]), then

A <yvm-—1.

Theorem 3.3 Let G be a nontrivial bipartite graph with n vertices
and m edges. Each of the following holds.

5, where equality holds if and only if G =

(i) M(G) < {/m - _2
P,.

(it) If G 2 P,, then A\1(G) < \/m _3 _;/ﬁ, where equality holds

if and only if G = Ky 3 —e.

Proof. We argue by contradiction and assume that

3-v5
5

()

Al > \fm—
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Since G is a bipartite graph, it follows by (1) and by (2) that

£3 3_.5

B<Y ¥=m-Ac< R

i

[0

i}
©

and so Az < 352‘—1, contrary to Theorem 2.6. Therefore, the inequal-
ity of Theorem 3.3(i) must hold.

To prove the case when equality holds, we first note that A, (Py) =

m— 3 _2\/5. If G is not isomorphic to Py, then by Theorem 2.6,
3-+/5
Az > BB=L 1t follows that m — A > A > —2‘/-_ and so A <
m— 3 —2\/5. This proves Theorem 3.3(i).

The proof for Theorem 3.3(ii) is similar, using Theorem 2.7
instead of Theorem 2.6.H

Corollary 3.4 and Corollary 3.5 below immediately follow from
Theorem 3.3. They improve Theorem 1.2 for trees which are not

isomorphic to stars.

Corollary 3.4 If G is a forest of order n that is not a star, then
3—v6

A1 €yn—-1~- , where equality occurs if and only if G is a

path of order 4.

Corollary 3.5 If G is a forest of order n that is neither a path P,

5—+17
2

.

nor a star, then A\ < \/n -1-

We now consider the upper bounds of the second largest eigen-
value of a bipartite graph. As far as we know, little has been done
in this direction. We need one more lemma.
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Lemma 3.6 Let G be a graph with n vertices and m edges. Let
a >0 and b > 0 be two numbers, and let Ay = A\ (G), A2 = A2(G)
and A\3 = A3(G). Then each of the following holds.

(i) If n > 2 and if A1 > a, then Ay < vVm —a2.
(it) If n > 8,A\1 > a and Ay > b, then A\3 < vVm — a2 — b2.

Proof. By (1), we have
A <m—x2, and A2 <m - A2 - A2 (3)
Thus Lemma 3.6 follows directly from (3). B

Corollary 3.7 Let G be a graph with n vertices and m edges. Let
A(G) denote the mazimum degree of G, dy,dy, - ,d, the degree se-
quence of G, and x(G) the chromatic number of G. Then each of the
following holds.

(i) o < vm=A(G).
(i) Ao < 1/m-%éd§.

(it9) Yo < VM= (x(C) = 1I)2.

d?; Nosal [7],

M=

Proof. Homfmeister [5] showed that A;(G) > ,/1
i=1

Lovés and Pelikdn [6] proved that A\ (G) > /A(G); and Wilf [9]
showed that A1(G) > x(G) — 1. Thus Corollary 3.7 follows from
Lemma 3.6(i) and these prior results. Il

Theorem 3.8 Let G be a connected bipartite graph with n vertices

\/ ( y

where equality holds if and only if G = P, where 2 <n < 5.

. Thus the inequal-

Proof. By Theorem 2.1, A; > 2cos n:’:_ 1)
ity of Theorem 3.8 is proved by applying Lemma 3.6(i) with a =

n
2cos (n+1)'
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To prove equality part of the theorem, we first observe that if G

T™
+1).It

Direct

is not isomorphic to P,, then by Theorem 2.1, Ay > 2cos (n

™
n+1l’

follows by Lemma 3.6(i) again that A < \/ m — 4 cos?

computation of A2(P,) shows that Ao(FPp) = \/ m — 4 cos? (nj— 1)
if and only if 2 < n < 5. This completes the proof. H

As when n > 2, 4cos? (n: 1) > 1, it follows that the bound of

Theorem 3.8 is better than A2 < A\; < y/m from Theorem 1.1.
Turning to upper bounds of A\3(G) for a bipartite graph, we have
the following result.

Theorem 3.9 Let G be a nontrivial bipartite graph with n > 6 ver-
tices and m edges. Then

T

3-6
< —_ —_ 2 .
A3(G) £ \/m 5 4 cos —

Proof. By Theorem 2.1, A\; > 2cos( ); by Theorem 2.6,

T
n+1

Ay 2 \/52— 1. Therefore Theorem 3.9 follows from Lemma 3.6(ii)
with a = 2cos (——W—) and b= \/5—1. [ |

n+1 2
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