On the maximum packing problem of $MP_{\lambda}(3, K_4^{(3)} - e, v)$

Yan Wu, Yanxun Chang Institute of Mathematics Beijing Jiaotong University Beijing 100044, P. R. China yxchang@bjtu.edu.cn

Abstract: In this paper we deal with a special kind of hypergraph decomposition. We show that there exists a decomposition of the 3-uniform hypergraph $\lambda K_v^{(3)}$ into a special kind of hypergraph $K_4^{(3)} - e$ whose leave has at most two edges for any positive integers $v \geq 4$ and λ .

Keywords: hypergraph decomposition; t- (v, Γ, λ) packing; leave; packing number; group divisible (Γ, t) -design; candelabra (Γ, t) -system

1 Introduction

A hypergraph H is a pair (V, E), where V is a finite set of vertices, E is a family of subsets of V (called hyperedges or edges). A hypergraph is called simple if E has no repeated edges. A sub-hypergraph H' = (V', E') of H = (V, E) is a hypergraph satisfying $V' \subseteq V$ and $E' \subseteq E$.

A hypergraph is said to be t-uniform if each of its edges contains exactly t vertices. In particular a 2-uniform hypergraph is just a graph. $\lambda K_v^{(t)}$ is a t-uniform hypergraph on the point-set V in which the edge-set E contains each t-subset of V exactly λ times, where v = |V| and v is called the order of the t-uniform hypergraph. If $\lambda = 1$, this hypergraph is said to be complete. For an edge $e \in E$, $K_v^{(t)} - e$ denotes the hypergraph obtained from $K_v^{(t)}$ by deleting the edge e. From [1], we can know more information about hypergraphs.

Let H be a t-uniform hypergraph, and Γ be a set of t-uniform hyper-

graphs. A decomposition of H into hypergraphs of Γ is a partition of the edges of H into sub-hypergraphs, each of which is isomorphic to one of Γ . Such a decomposition of H into Γ is denoted by (H,Γ) -design. Hypergraph decompositions have an interesting application in secret sharing schemes [3]. Clearly, hypergraph decomposition is a generalization of graph decomposition. For a more comprehensive introduction on graph decompositions, the interested reader may refer to [10].

In what follows we always assume that K is a set of positive integers, Γ is a set of simple t-uniform hypergraphs, and Ω is a set of complete t-uniform hypergraphs, where the order of each element of Ω is from K.

A t- (v, Γ, λ) packing is a pair (X, \mathcal{B}) , where X is a set of v points, \mathcal{B} is a collection of hypergraphs (called *blocks*) on the subsets of X, such that for each $B \in \mathcal{B}$, B is isomorphic to one of Γ , and every t-subset of X is contained in at most λ blocks. We denote it by $P_{\lambda}(t, \Gamma, v)$. If $\lambda = 1$, we often write $P(t, \Gamma, v)$ for $P_1(t, \Gamma, v)$. If Γ only contains one hypergraph J, we write $P_{\lambda}(t, \{J\}, v)$ simply as $P_{\lambda}(t, J, v)$.

A $P_{\lambda}(t,\Gamma,v)$ (X,\mathcal{A}) is called maximum (denoted by $MP_{\lambda}(t,\Gamma,v)$) if there does not exist any $P_{\lambda}(t,\Gamma,v)$ (X,\mathcal{B}) with $|\mathcal{A}|<|\mathcal{B}|$. The packing number is the number of blocks in an $MP_{\lambda}(t,\Gamma,v)$ and denoted by $D_{\lambda}(t,\Gamma,v)$. If $\lambda=1$, we often write $D(t,\Gamma,v)$ for $D_{1}(t,\Gamma,v)$.

For any t-subset $e = \{x_1, x_2, \dots, x_t\}$ of X, let m(e) be the number of blocks containing e. The *leave* of a packing $P_{\lambda}(t, \Gamma, v)$ is the t-uniform hypergraph spanned by all t-subsets e of X with multiplicity $\lambda - m(e)$.

If the leave of a packing $P_{\lambda}(t,\Gamma,v)$ is null, such a packing is called a twise balanced Γ design with index λ and denoted by $S_{\lambda}(t,\Gamma,v)$. Obviously, if Γ only contains one hypergraph J, then an $S_{\lambda}(t,J,v)$ is an $MP_{\lambda}(t,J,v)$. If we replace Γ by Ω , then an $S_{\lambda}(t,\Omega,v)$ is denoted by $S_{\lambda}(t,K,v)$, which corresponds to the traditional concept of t-wise balanced design (t-BD) [2]. Therefore the t-wise balanced Γ design can be regarded as a generalization of the t-wise balanced design.

The purpose of this paper is to determine the packing number of $MP_{\lambda}(3, K_4^{(3)} - e, v)$. A simple counting argument shows that $D_{\lambda}(3, K_4^{(3)} - e, v) \leq \lfloor \lambda v(v-1)(v-2)/18 \rfloor$. For brevity, let $d_{\lambda}(3, K_4^{(3)} - e, v) = \lfloor \lambda v(v-1)(v-2)/18 \rfloor$. Since there are three edges in a hypergraph $K_4^{(3)} - e$, then if $D_{\lambda}(3, K_4^{(3)} - e, v) = d_{\lambda}(3, K_4^{(3)} - e, v)$, that means the leave of an $MP_{\lambda}(3, K_4^{(3)} - e, v)$ has at most 2 edges and vice versa. Feng and Chang [5] gave the following result.

Lemma 1.1 ([5]) An $S(3, K_4^{(3)} - e, v)$ exists if and only if $v \equiv 0, 1, 2$ (mod

9) and $v \ge 9$.

Lemma 1.1 implies that $D(3, K_4^{(3)} - e, v) = d(3, K_4^{(3)} - e, v)$ when $v \equiv 0, 1, 2 \pmod{9}$ and $v \geq 9$. In this paper, direct and recursive constructions are discussed for these designs and we shall establish that

Theorem 1.2 An $MP_{\lambda}(3, K_4^{(3)} - e, v)$ with $d_{\lambda}(3, K_4^{(3)} - e, v)$ blocks exists for any positive integers $v \geq 4$ and λ , its leave has at most 2 edges.

2 Recursive constructions

In this section we shall introduce some auxiliary designs and establish some fundamental results which will be used later. The reader is referred to [2] for more information on design theory.

Let n and t be positive integers. Suppose that X is a set of points, \mathcal{B} is a collection of hypergraphs on the subsets of X (called blocks), and \mathcal{G} is a partition of X into n non-empty subsets (called groups or holes). A $group\ divisible\ (\Gamma,t)$ -design is a triple $(X,\mathcal{G},\mathcal{B})$, where for each $B\in\mathcal{B}$, B is isomorphic to one of Γ , such that each block intersects any given group in at most one point, and each t-subset of X from t distinct groups is contained in a unique block.

The type of group divisible (Γ, t) -design is defined as usual. Then type $g_1^{a_1}g_2^{a_2}\cdots g_m^{a_m}$ denotes that there are a_i groups of size g_i , $1 \leq i \leq m$. For brevity, a group divisible (Γ, t) -design of type $g_1^{a_1}g_2^{a_2}\cdots g_m^{a_m}$ can be denoted by $\text{GDD}(t, \Gamma, v)$ of type $g_1^{a_1}g_2^{a_2}\cdots g_m^{a_m}$, where $v = \sum_{i=1}^m a_i g_i$. If Γ contains only one hypergraph J, we write $\text{GDD}(t, \{J\}, v)$ simply as GDD(t, J, v).

If we replace Γ by Ω , then a GDD (t,Ω,v) is denoted by GDD(t,K,v), which corresponds to the traditional concept of group divisible t-design (t-GDD) [13]. Therefore the group divisible (Γ,t) -design is a generalization of the group divisible t-design. A 2-GDD is simply called a GDD. Furthermore, if all the n groups have the same size g, the GDD(t,K,v) is called an H design, denoted by H(n,g,K,t). The reader may refer to [2, 8, 12, 13] for more information on these designs.

The following results are useful in the following sections.

Lemma 2.1 ([7]) For n > 2, a GDD(2,3,gn) of type g^n exists if and only if $(n-1)g \equiv 0 \pmod{2}$ and $n(n-1)g^2 \equiv 0 \pmod{3}$.

Lemma 2.2 ([4]) Let g, u, and m be nonnegative integers. There exists a GDD(2,3,v) of type g^um^1 if and only if the following conditions are all satisfied:

- (1) if g > 0, then $u \ge 3$, or u = 2 and m = g, or u = 1 and m = 0, or u = 0:
- (2) $m \le g(u-1)$ or gu = 0;
- (3) $g(u-1) + m \equiv 0 \pmod{2}$ or gu = 0;
- (4) $gu \equiv 0 \pmod{2}$ or m = 0;
- (5) $\frac{1}{2}g^2u(u-1) + gum \equiv 0 \pmod{3}$.

Let v, m, λ and t be positive integers, and s be a nonnegative integer. Suppose that X is a set of $v = s + \sum_{1 \leq i \leq m} a_i g_i$ points, S is a subset of X of size s (called stem), T is a partition of $X \setminus S$ of type $g_1^{a_1} \cdots g_m^{a_m}$ (called groups or branches), G_i is a group in T, $1 \leq i \leq \sum_{j=1}^m a_j$, and A is a collection of hypergraphs on the subsets of X (called blocks). A candelabra (Γ, t) -system with index λ of type $(g_1^{a_1} \cdots g_m^{a_m} : s)$ is a quadruple (X, S, T, A), where for each $A \in A$, A is isomorphic to one of Γ , such that every t-subset $T \subset X$ with $|T \cap (S \cup G_i)| < t$ for all i is contained in λ blocks and no t-subset of $S \cup G_i$ is contained in any block. Such a system is denoted by $CS_{\lambda}(t, \Gamma, v)$ of type $(g_1^{a_1} \cdots g_m^{a_m} : s)$. If $\lambda = 1$, we often write $CS(t, \Gamma, v)$ for $CS_1(t, \Gamma, v)$. If Γ contains only one hypergraph J, we write $CS_{\lambda}(t, \{J\}, v)$ simply as $CS_{\lambda}(t, J, v)$.

If we replace Γ by Ω , then a $CS_{\lambda}(t,\Gamma,v)$ is denoted by $CS_{\lambda}(t,K,v)$, which corresponds to the traditional concept of candelabra t-design [13]. Thus the candelabra (Γ,t) -system is a generalization of the candelabra t-system. The reader is referred to [6, 8, 9, 11, 13] for more information on this design.

By the definition of the candelabra (Γ, t) -system, we know that if (X, \mathcal{B}) is an $S_{\lambda}(t, \Gamma, v)$, then the quadruple $(X, \emptyset, \{\{x\} : x \in X\}, \mathcal{B})$ is a $CS_{\lambda}(t, \Gamma, v)$ of type $(1^{v} : 0)$, thus by Lemma 1.1, we have

Corollary 2.3 There exists a $CS(3, K_4^{(3)} - e, v)$ of type $(1^v : 0)$ for any positive integer $v \equiv 0, 1, 2 \pmod{9}$ and $v \geq 9$.

Furthermore, if $v \equiv 0 \pmod{2}$ we can also have the following corollary:

Corollary 2.4 There exists a $CS(3, K_4^{(3)} - e, v)$ of type $(2^{\frac{v}{2}} : 0)$ for any positive integer $v \equiv 0, 2, 10 \pmod{18}$ and $v \geq 10$.

Let v and s be nonnegative integers such that s < v. A t- (v, Γ, λ) packing with a hole of size s is a triple (X, S, \mathcal{B}) , where X is a set of v points, S is a subset of X of size s (called hole), \mathcal{B} is a collection of hypergraphs (called blocks) on the subsets of X, such that for each $B \in \mathcal{B}$, B is isomorphic to one of Γ , and every t-subset $T \subset X$ with $|T \cap S| < t$ is contained in at most λ blocks and no t-subset of S is contained in any block. We denote it by $HP_{\lambda}(t, \Gamma, v, s)$. If $\lambda = 1$, we often write $HP(t, \Gamma, v, s)$ for $HP_1(t, \Gamma, v, s)$. If Γ only contains one hypergraph J, we write $HP_{\lambda}(t, \{J\}, v, s)$ simply as $HP_{\lambda}(t, J, v, s)$.

An $HP_{\lambda}(t,\Gamma,v,s)$ (X,S,\mathcal{A}) is called maximum (denoted by $HMP_{\lambda}(t,\Gamma,v,s)$) if there does not exist any $HP_{\lambda}(t,\Gamma,v,s)$ (X,S,\mathcal{B}) with $|\mathcal{A}|<|\mathcal{B}|$. If in an $HP_{\lambda}(t,\Gamma,v,s)$, every t-subset $T\subset X$ with $|T\cap S|< t$ is contained in exactly λ blocks, then we denote it by $HS_{\lambda}(t,\Gamma,v,s)$. Clearly, if s< t, then an $HMP_{\lambda}(t,\Gamma,v,s)$ is also an $MP_{\lambda}(t,\Gamma,v)$.

The following three constructions are simple but very useful.

Construction 2.5 If there exists an $HS(t,\Gamma,v,s)$ ($S(t,\Gamma,v)$ or $CS(t,\Gamma,v)$), then there also exists an $HS_{\lambda}(t,\Gamma,v,s)$ ($S_{\lambda}(t,\Gamma,v)$ or $CS_{\lambda}(t,\Gamma,v)$) for each positive integer λ .

Construction 2.6 If there exist an $HS_{\lambda}(t, \Gamma, v, s)$ and an $MP_{\lambda}(t, \Gamma, s)$, then there exists a $P_{\lambda}(t, \Gamma, v)$ whose leave has the same number of edges as that of $MP_{\lambda}(t, \Gamma, s)$.

Construction 2.7 Suppose that there exists a $CS_{\lambda}(t, \Gamma, v)$ of type $(g_1^{a_1} \cdots g_{m-1}^{a_{m-1}} g_m^1 : s)$. If there exist an $HS_{\lambda}(t, \Gamma, g_i + s, s)$ for each $1 \leq i \leq m-1$ and an $MP_{\lambda}(t, \Gamma, g_m + s)$, then there exists a $P_{\lambda}(t, \Gamma, v)$ whose leave has the same number of edges as that of $MP_{\lambda}(t, \Gamma, g_m + s)$.

Construction 2.7 shows that it is useful to find some $CS_{\lambda}(t,\Gamma,v)$ s with a stem of size s. For the purpose of determining the packing number of $MP_{\lambda}(3,K_4^{(3)}-e,v)$, in what follows we always assume that t=3 and $\Gamma=K_4^{(3)}-e$. For brevity, in the following if we refer to $MP_{\lambda}(3,K_4^{(3)}-e,v)$, that always means the $MP_{\lambda}(3,K_4^{(3)}-e,v)$ with $d_{\lambda}(3,K_4^{(3)}-e,v)$ blocks. In this case, the leave of an $MP_{\lambda}(3,K_4^{(3)}-e,v)$ has at most 2 edges. Conversely, if the leave of a $P_{\lambda}(3,K_4^{(3)}-e,v)$ has at most 2 edges, then it must be an $MP_{\lambda}(3,K_4^{(3)}-e,v)$.

A simple computation shows that the number of blocks in an $HMP_{\lambda}(3, K_4^{(3)} - e, v, s)$ is at most $\lfloor \lambda [v(v-1)(v-2) - s(s-1)(s-2)]/18 \rfloor$. In this

paper, for brevity, in the following if we refer to $HMP_{\lambda}(3, K_4^{(3)} - e, v, s)$, that always means the $HMP_{\lambda}(3, K_4^{(3)} - e, v, s)$ with $\lfloor \lambda [v(v-1)(v-2) - s(s-1)(s-2)]/18 \rfloor$ blocks. In this case, the leave of an $HMP_{\lambda}(3, K_4^{(3)} - e, v, s)$ has at most 2 edges.

In the following we denote the copy of $K_4^{(3)} - e$ with vertices a, b, c, d and edges $\{a, b, c\}, \{a, b, d\}, \{a, c, d\}$ by (a, b, c, d). The notation $\lambda(a, b, c, d)$ means that (a, b, c, d) replicate λ times.

Construction 2.8 Suppose that there exists a $CS_{\lambda}(3, K_4^{(3)} - e, v)$ of type $(g_1^{a_1} \cdots g_m^{a_m} : 0)$. If there is a GDD(2,3,v) of type $g_1^{a_1} \cdots g_m^{a_m}$, then there is a $CS_{\lambda}(3, K_4^{(3)} - e, v + s)$ of type $(g_1^{a_1} \cdots g_m^{a_m} : s)$ for each nonnegative integer s.

Proof Suppose that $(X, \emptyset, \mathcal{G}, \mathcal{A})$ is a $CS_{\lambda}(3, K_4^{(3)} - e, v)$ of type $(g_1^{a_1} \cdots g_m^{a_m} : 0)$. Let $S = \{\infty_1, \infty_2, \dots, \infty_s\}$ and $X \cap S = \emptyset$. We can construct a GDD(2, 3, v) $(X, \mathcal{G}, \mathcal{B})$ of type $g_1^{a_1} \cdots g_m^{a_m}$ by the assumption. Define the multisets $\mathcal{A}_{\infty_i} = \{\lambda(\infty_i, a, b, c) : \{a, b, c\} \in \mathcal{B}\}$ for $1 \leq i \leq s$ and $\mathcal{C} = (\bigcup_{1 \leq i \leq s} \mathcal{A}_{\infty_i}) \cup \mathcal{A}$. It is readily checked that $(X \cup S, S, \mathcal{G}, \mathcal{C})$ is a $CS_{\lambda}(3, K_4^{(3)} - e, v + s)$ of type $(g_1^{a_1} \cdots g_m^{a_m} : s)$.

Construction 2.9 Suppose that there exist an $MP_{\lambda}(3, K_4^{(3)} - e, v)$ and a GDD(2,3,v) of type $g_1^{a_1} \cdots g_{m-1}^{a_{m-1}} g_m^1$, $g_i < 3$ for each $1 \le i \le m-1$. If there exist an $HS_{\lambda}(3, K_4^{(3)} - e, g_i + s, s)$ for each $1 \le i \le m-1$ and an $HMP_{\lambda}(3, K_4^{(3)} - e, g_m + s, g_m)$, then there is a $P_{\lambda}(3, K_4^{(3)} - e, v + s)$ whose leave is the union of the leaves of the $MP_{\lambda}(3, K_4^{(3)} - e, v)$ and the $HMP_{\lambda}(3, K_4^{(3)} - e, g_m + s, g_m)$. If the number of the edges in the union of leaves is at most 2, then the resultant packing is an $MP_{\lambda}(3, K_4^{(3)} - e, v + s)$.

Proof Suppose that (X, \mathcal{A}) is an $MP_{\lambda}(3, K_4^{(3)} - e, v)$. Let $S = \{\infty_1, \infty_2, \ldots, \infty_s\}$ and $X \cap S = \emptyset$. By the assumption, we can construct a GDD(2,3,v) $(X,\mathcal{G},\mathcal{B})$ of type $g_1^{a_1} \cdots g_{m-1}^{a_{m-1}} g_m^1$ with $G_0 \in \mathcal{G}$ and $|G_0| = g_m$. Define the multiset $A_{\infty_i} = \{\lambda(\infty_i, a, b, c) : \{a, b, c\} \in \mathcal{B}\}$ where $1 \leq i \leq s$. For each group $G \in \mathcal{G}$ and $G \neq G_0$, let $(G \cup S, S, A_G)$ be an $HS_{\lambda}(3, K_4^{(3)} - e, g_i + s, s)$. Let $(G_0 \cup S, G_0, A_{G_0})$ be an $HMP_{\lambda}(3, K_4^{(3)} - e, g_m + s, g_m)$. Define the multiset $C = (\bigcup_{1 \leq i \leq s} A_{\infty_i}) \cup (\bigcup_{G \in \mathcal{G}} A_G) \cup A$. Then it is readily checked that $(X \cup S, C)$ is a $P_{\lambda}(3, K_4^{(3)} - e, v + s)$, whose leave is the union of the leaves of the $MP_{\lambda}(3, K_4^{(3)} - e, v)$ and the $HMP_{\lambda}(3, K_4^{(3)} - e, g_m + s, g_m)$. Clearly, if the number of the edges in the union of leaves is at most 2, then the resultant packing is an $MP_{\lambda}(3, K_4^{(3)} - e, v + s)$.

3 Constructions for small orders

In this section we give some designs with small orders, which can be used for the master designs and ingredient designs in Constructions 2.5-2.9. For positive integer n, let $I_n = \{0, 1, ..., n-1\}$.

Lemma 3.1 There exist an $MP(3, K_4^{(3)} - e, 5)$ and an $HS(3, K_4^{(3)} - e, 5, 3)$.

Proof Let $X = I_5$. The blocks for this design are (2,0,1,3), (3,0,1,4) and (4,0,1,2). Clearly, this design is also an $HS(3, K_4^{(3)} - e, 5, 3)$ with the hole $\{2,3,4\}$.

Lemma 3.2 There exists an $MP_{\lambda}(3, K_4^{(3)} - e, 6), \lambda \in \{1, 2, 3\}.$

Proof Let $X = I_6$. The blocks for these designs are given below.

$$\lambda = 1: (0,1,2,3), (0,1,4,5), (1,2,3,4), (2,0,4,5), (3,0,4,5), (5,1,2,3).$$

$$\lambda=2: \quad 2(0,1,2,3), \quad 2(0,1,4,5), \quad 2(1,2,3,4), \quad (2,0,4,5), \ (3,0,4,5), \quad (4,0,2,3), \quad (5,0,2,3), \quad (5,1,2,3), \ (5,1,2,4), \quad (5,1,3,4).$$

$$\lambda = 3:$$
 3(0,1,2,3), 3(0,1,4,5), 2(1,2,3,4), (1,2,3,5), (1,2,4,5), (2,0,4,5), (2,3,4,5), (3,0,4,5), (3,1,4,5), 2(4,0,2,3), 2(5,0,2,3), (5,1,2,4), (5,1,3,4).

Lemma 3.3 There exists an $HMP(3, K_4^{(3)} - e, 7, 4)$.

Proof Let $X = I_7$ and $S = \{0, 1, 2, 3\}$. The blocks for this design are given below:

$$(0,1,4,5),$$
 $(0,2,4,6),$ $(1,2,4,6),$ $(2,3,4,6),$ $(3,0,4,6),$ $(3,1,5,6),$ $(4,1,3,5),$ $(5,0,2,3),$ $(5,2,4,6),$ $(6,0,1,5).$

It is easy to check that the leave of this design has one edge $\{1, 2, 5\}$. \square

Lemma 3.4 There exists an $HS(3, K_4^{(3)} - e, v, v - 2), v \in \{11, 17\}.$

Proof Let $X = Z_{v-2} \cup \{\infty_1, \infty_2\}$. Base blocks for these designs are given below. All other blocks are obtained by developing these base blocks by $+1 \mod (v-2)$, where $\infty_i + 1 = \infty_i$ for i = 1, 2.

$$\begin{array}{lll} v=11: & (\infty_1,0,1,3), & (\infty_2,0,1,3), & (0,\infty_1,\infty_2,4). \\ v=17: & (\infty_1,0,1,4), & (\infty_1,0,2,7), & (\infty_2,0,1,4), \\ & (\infty_2,0,2,7), & (0,\infty_1,\infty_2,6). \end{array}$$

Lemma 3.5 There exists an $MP(3, K_4^{(3)} - e, 7)$.

Proof By Lemma 3.3, there exists an $HMP(3, K_4^{(3)} - e, 7, 4)$ with the hole $S = \{0, 1, 2, 3\}$. Then we can get the required design by adding the block (0, 1, 2, 3) to the block set of the $HMP(3, K_4^{(3)} - e, 7, 4)$. It is easy to check that the leave of this design has two edges $\{1, 2, 3\}$ and $\{1, 2, 5\}$. \square

Lemma 3.6 There exists an $MP_{\lambda}(3, K_4^{(3)} - e, 15), \lambda \in \{2, 3\}.$

Proof By Lemmas 1.1 and 3.4, there exist an $S(3, K_4^{(3)} - e, 11)$ and an $HS(3, K_4^{(3)} - e, 11, 9)$. Applying Construction 2.5, we have an $S_{\lambda}(3, K_4^{(3)} - e, 11)$ and an $HS_{\lambda}(3, K_4^{(3)} - e, 11, 9)$. By Lemma 3.2 there exists an $MP_{\lambda}(3, K_4^{(3)} - e, 6)$ for each $\lambda \in \{2,3\}$. By Lemma 2.1 there exists a GDD(2,3,6) of type 2^3 . Applying Construction 2.9 with s=9 we can get a $P_{\lambda}(3, K_4^{(3)} - e, 15)$. Clearly the needed $HMP_{\lambda}(3, K_4^{(3)} - e, 11, 2)$ is $S_{\lambda}(3, K_4^{(3)} - e, 11)$. Checking the leave of the resultant $P_{\lambda}(3, K_4^{(3)} - e, 15)$, we can find that what we have constructed is an $MP_{\lambda}(3, K_4^{(3)} - e, 15)$. \square

Lemma 3.7 There exists an $HS(3, K_4^{(3)} - e, s + 1, s)$ for each $s \equiv 1, 3 \pmod{6}$ and $s \geq 3$.

Proof Suppose that $(X, \{\{x\} : x \in X\}, \mathcal{B})$ is a GDD(2, 3, s) of type 1^s by Lemma 2.1. Let $\mathcal{A} = \{(\infty, a, b, c) : \{a, b, c\} \in \mathcal{B}\}$. It is readily checked that $(X \cup \{\infty\}, X, \mathcal{A})$ is an $HS(3, K_4^{(3)} - e, s + 1, s)$.

Lemma 3.8 There exists an $MP(3, K_4^{(3)} - e, 8)$.

Proof By Lemma 3.7, there exists an $HS(3, K_4^{(3)} - e, 8, 7)$. Applying Construction 2.6, we have an $MP(3, K_4^{(3)} - e, 8)$, where the needed $MP(3, K_4^{(3)} - e, 7)$ is from Lemma 3.5.

4 The case of $\lambda = 1$

In this section we shall prove that the packing number of an $MP(3, K_4^{(3)} - e, v)$ is $d(3, K_4^{(3)} - e, v)$ for any positive integer $v \ge 4$. A simple computation give the following lemma.

Lemma 4.1 If there exists an $MP(3, K_4^{(3)} - e, v)$ with $d(3, K_4^{(3)} - e, v)$ blocks, then the number of edges in the leave is

$$b = \begin{cases} 0 & v \equiv 0, 1, 2 \pmod{9}, \\ 1 & v \equiv 3, 4, 5 \pmod{9}, \\ 2 & v \equiv 6, 7, 8 \pmod{9}. \end{cases}$$

Lemma 4.2 There exists an $MP(3, K_4^{(3)} - e, v)$ for positive integer $v \equiv 13 \pmod{18}$.

Proof By Lemma 1.1, there exists an $S(3, K_4^{(3)} - e, v - 3)$ for each positive integer $v \equiv 13 \pmod{18}$. By Lemma 2.2, there exists a GDD(2, 3, v - 3) of type $2^{\frac{v-7}{2}}4^1$. Applying Construction 2.9 with s=3, we can get a $P(3, K_4^{(3)} - e, v)$ whose leave is just the leave of the $HMP(3, K_4^{(3)} - e, 7, 4)$ which has unique edge. The needed $HS(3, K_4^{(3)} - e, 5, 3)$ and $HMP(3, K_4^{(3)} - e, 7, 4)$ come from Lemmas 3.1 and 3.3.

Lemma 4.3 There exists an $MP(3, K_4^{(3)} - e, 14)$.

Proof By Lemma 3.7, there exists an $HS(3, K_4^{(3)} - e, 14, 13)$. Applying Construction 2.6, we have an $MP(3, K_4^{(3)} - e, 14)$, where the needed $MP(3, K_4^{(3)} - e, 13)$ is from Lemma 4.2.

Lemma 4.4 There exists an $MP(3, K_4^{(3)} - e, v)$ for positive integer $v \equiv 4$, 12, 14 (mod 18).

Proof By Corollary 2.3, there exists a $CS(3, K_4^{(3)} - e, m)$ of type $(1^m : 0)$ for each $m \equiv 1, 9 \pmod{18}$ and $m \geq 9$. By Lemma 2.1, there exists a GDD(2, 3, m) of type 1^m . Applying Construction 2.8, we have a $CS(3, K_4^{(3)} - e, m + s)$ of type $(1^m : s)$ for each nonnegative integer s. Applying Construction 2.7 with s = 3, 13, we have an $MP(3, K_4^{(3)} - e, v)$

for $v=m+s\equiv 4,12,14 \pmod{18}$. The needed $HS(3,K_4^{(3)}-e,s+1,s)$ and $MP(3,K_4^{(3)}-e,14)$ are from Lemmas 3.7 and 4.3. Clearly, the needed $MP(3,K_4^{(3)}-e,4)$ exists, it has unique block. This completes the proof.

Lemma 4.5 There exists an $MP(3, K_4^{(3)} - e, v)$ for positive integer $v \equiv 7 \pmod{18}$.

Proof The conclusion follows when v=7 by Lemma 3.5. For $v\equiv 7$ (mod 18) and $v\geq 25$, there exist an $MP(3,K_4^{(3)}-e,v-3)$ and a GDD(2,3,v-3) of type $2^{\frac{v-7}{2}}4^1$ by Lemma 4.4 and Lemma 2.2, respectively. Applying Construction 2.9 with s=3, we can get a $P(3,K_4^{(3)}-e,v)$. The needed $HS(3,K_4^{(3)}-e,5,3)$ and $HMP(3,K_4^{(3)}-e,7,4)$ are from Lemmas 3.1 and 3.3. Checking the leave of the resulting $P(3,K_4^{(3)}-e,v)$, we know that its leave is just the union of the leaves of the $HMP(3,K_4^{(3)}-e,7,4)$ and the $MP(3,K_4^{(3)}-e,v-3)$, it has totally two edges. Hence the resultant packing is an $MP(3,K_4^{(3)}-e,v)$ for positive integer $v\equiv 7 \pmod{18}$ and $v\geq 25$.

Lemma 4.6 There exists an $MP(3, K_4^{(3)} - e, v)$ for positive integer $v \equiv 3$, 5, 15, 17 (mod 18), $v \ge 5$.

Proof The conclusion follows when v=5 by Lemma 3.1. For $v\equiv 3,5,15,17 \pmod{18}$ and $v\geq 15$, there exists an $MP(3,K_4^{(3)}-e,v-3)$ by Lemmas 1.1 and 4.4. By Lemma 2.1 there exists a GDD(2, 3, v-3) of type $2^{\frac{v-3}{2}}$. Applying Construction 2.9 with s=3, we can get a $P(3,K_4^{(3)}-e,v)$. The needed $HS(3,K_4^{(3)}-e,5,3)$ and $HMP(3,K_4^{(3)}-e,5,2)$ are from Lemma 3.1. Checking the leave of the resulting $P(3,K_4^{(3)}-e,v)$, we know that its leave is just the union of the leaves of the $HMP(3,K_4^{(3)}-e,5,2)$ and the $MP(3,K_4^{(3)}-e,v-3)$, it has totally at most two edges. Hence the resultant packing is an $MP(3,K_4^{(3)}-e,v)$ for positive integer $v\equiv 3,5,15,17 \pmod{18}$ and $v\geq 15$.

Lemma 4.7 There exists an $MP(3, K_4^{(3)} - e, v)$ for positive integer $v \equiv 6$, 8, 16 (mod 18).

Proof The conclusion follows when v = 6 by Lemma 3.2. By Corollary 2.3 and Lemma 2.1, there exist a $CS(3, K_4^{(3)} - e, m)$ of type $(1^m : 0)$ and a

GDD(2,3,m) of type 1^m for each $m \equiv 1,9 \pmod{18}$ and $m \geq 9$. Applying Construction 2.8, we have a $CS(3,K_4^{(3)}-e,m+s)$ of type $(1^m:s)$ for each nonnegative integer s. Applying Construction 2.7 with s=7, we have an $MP(3,K_4^{(3)}-e,v)$ for $v=m+7\equiv 8,16 \pmod{18}$ and $v\geq 16$. The needed $HS(3,K_4^{(3)}-e,8,7)$ and $MP(3,K_4^{(3)}-e,8)$ come from Lemmas 3.7 and 3.8. Again, applying Construction 2.7 with s=15, we have an $MP(3,K_4^{(3)}-e,v)$ for $v=m+15\equiv 6 \pmod{18}$ and $v\geq 24$. The needed $HS(3,K_4^{(3)}-e,16,15)$ and $MP(3,K_4^{(3)}-e,16)$ are from Lemma 3.7 and as above, respectively.

Combining Lemma 1.1, Lemma 4.2 and Lemmas 4.4-4.7, we have the following theorem.

Theorem 4.8 An $MP(3, K_4^{(3)} - e, v)$ with $d(3, K_4^{(3)} - e, v)$ blocks exists for any positive integer $v \ge 4$, its leave has at most 2 edges.

5 The case of $\lambda = 2.3$

In this section we shall prove that the packing number of $MP_{\lambda}(3, K_4^{(3)} - e, v)$ is $d_{\lambda}(3, K_4^{(3)} - e, v)$ for any positive integer $v \geq 4$, $\lambda \in \{2, 3\}$. For convenience, we use the notation $\dot{\cup}$ to denote the union of multisets. A simple counting gives the following lemma.

Lemma 5.1 (1). If there exists an $MP_2(3, K_4^{(3)} - e, v)$ with $d_2(3, K_4^{(3)} - e, v)$ blocks, then the number of edges in the leave is

$$b = \begin{cases} 0 & v \equiv 0, 1, 2 \pmod{9}, \\ 2 & v \equiv 3, 4, 5 \pmod{9}, \\ 1 & v \equiv 6, 7, 8 \pmod{9}. \end{cases}$$

(2). If there exists an $MP_3(3, K_4^{(3)} - e, v)$ with $d_3(3, K_4^{(3)} - e, v)$ blocks, then the number of edges in the leave is 0.

Lemma 5.2 There exists an $MP_{\lambda}(3, K_4^{(3)} - e, v)$ with $d_{\lambda}(3, K_4^{(3)} - e, v)$ blocks for positive integer $v \equiv 0, 1, 2, 3, 4, 5 \pmod{9}$, $\lambda \in \{2, 3\}$.

Proof For $v \equiv 0, 1, 2 \pmod{9}$, the conclusion follows by Lemma 1.1 and Construction 2.5. Next we deal with the case of $v \equiv 3, 4, 5 \pmod{9}$. By

Theorem 4.8 there exists an $MP(3, K_4^{(3)} - e, v)$ (X, \mathcal{B}) whose leave has unique edge. Then $(X, \mathcal{B} \dot{\cup} \mathcal{B})$ is an $MP_2(3, K_4^{(3)} - e, v)$ with $d_2(3, K_4^{(3)} - e, v)$ blocks. Again, by Theorem 4.8, let (X, \mathcal{B}_1) , (X, \mathcal{B}_2) and (X, \mathcal{B}_3) be three $MP(3, K_4^{(3)} - e, v)$ s for $v \equiv 3, 4, 5 \pmod{9}$ and $v \geq 4$. Without loss of generality, suppose their leaves are $\{a, b, c\}$, $\{a, b, d\}$ and $\{a, c, d\}$ respectively, where $\{a, b, c, d\} \subseteq X$. Then $(X, \mathcal{B}_1 \dot{\cup} \mathcal{B}_2 \dot{\cup} \mathcal{B}_3 \dot{\cup} \{(a, b, c, d)\})$ is an $MP_3(3, K_4^{(3)} - e, v)$ with $d_3(3, K_4^{(3)} - e, v)$ blocks. \Box

Lemma 5.3 There exists an $MP_{\lambda}(3, K_4^{(3)} - e, v)$ for positive integer $v \equiv 7 \pmod{18}$, $\lambda \in \{2, 3\}$.

Proof Let $X=I_{v-3}$, $S=\{x,y,z\}$ and $X\cap S=\emptyset$. By Theorem 4.8 there exists an $MP(3,K_4^{(3)}-e,v-3)$ (X,\mathcal{A}) with the unique edge $\{1,2,3\}$ in its leave. There exists a GDD(2, 3, v-3) of type $2^{\frac{v-7}{2}}4^1$ by Lemma 2.2 where the group of size 4 is $\{0,1,2,3\}$. From the proof of Construction 2.9 with s=3, we can get an $MP(3,K_4^{(3)}-e,v)$ on $X\cup S$, whose leave is just the union of the leaves of the $HMP(3,K_4^{(3)}-e,7,4)$ on $S\cup\{0,1,2,3\}$ with hole $\{0,1,2,3\}$ and the $MP(3,K_4^{(3)}-e,v-3)$ (X,\mathcal{A}) . Hence, without loss of generality, we have an $MP(3,K_4^{(3)}-e,v)$ $(X\cup S,\mathcal{C})$ whose leave has only two edges $\{1,2,3\}$ and $\{1,2,x\}$ for any positive integer $v\equiv 7$ (mod 18). Let $(X\cup S,\mathcal{D})$ be an $MP(3,K_4^{(3)}-e,v)$ whose leave has only two edges, one of which is supposed to be $\{1,3,x\}$ by a suitable permutation on $X\cup S$. Then $(X\cup S,\mathcal{C}\cup\mathcal{D}\cup\{(1,2,3,x)\})$ is an $MP_2(3,K_4^{(3)}-e,v)$ whose leave has unique edge.

By the arguments as above, suppose that there exists an $MP_2(3, K_4^{(3)} - e, v)$ $(X \cup S, \mathcal{E})$ whose leave being $\{1, 3, x\}$ by a suitable permutation on $X \cup S$. Then $(X \cup S, \mathcal{C} \dot{\cup} \mathcal{E} \dot{\cup} \{(1, 2, 3, x)\})$ is an $MP_3(3, K_4^{(3)} - e, v)$ whose leave is null.

Lemma 5.4 There exists an $MP_{\lambda}(3, K_4^{(3)} - e, v)$ for positive integer $v \equiv 6$, 8, 16 (mod 18), $\lambda \in \{2, 3\}$.

Proof By Construction 2.5 and Lemma 3.7 there exist an $HS_{\lambda}(3, K_4^{(3)} - e, 8, 7)$ and an $HS_{\lambda}(3, K_4^{(3)} - e, 16, 15)$. Applying Construction 2.6 with $s \in \{7, 15\}$ to get an $MP_{\lambda}(3, K_4^{(3)} - e, 8)$ and an $MP_{\lambda}(3, K_4^{(3)} - e, 16)$, where the needed $MP_{\lambda}(3, K_4^{(3)} - e, 7)$ and $MP_{\lambda}(3, K_4^{(3)} - e, 15)$ are from Lemmas 5.3 and 3.6. By the proof of Lemma 4.7 and Construction 2.5,

there exists a $CS_{\lambda}(3, K_4^{(3)} - e, m + s)$ of type $(1^m : s)$ for $m \equiv 1, 9$ (mod 18), $m \geq 9$ and $s \in \{7, 15\}$. Applying Construction 2.7 with s = 7, 15, we have an $MP_{\lambda}(3, K_4^{(3)} - e, v)$ for $v \equiv 6, 8, 16$ (mod 18), $v \geq 8$. The needed $HS_{\lambda}(3, K_4^{(3)} - e, s + 1, s)$ and $MP_{\lambda}(3, K_4^{(3)} - e, s + 1)$ are constructed as above, where s = 7, 15. By Lemma 3.2 an $MP_{\lambda}(3, K_4^{(3)} - e, 6)$ exists. The assertion then follows.

Lemma 5.5 There exists an $MP_{\lambda}(3, K_4^{(3)} - e, v)$ for positive integer $v \equiv 15, 17 \pmod{18}$, $\lambda \in \{2, 3\}$.

Proof By Construction 2.5 and Lemma 3.4 there exists an $HS_{\lambda}(3, K_4^{(3)} - e, 17, 15)$. Applying Construction 2.6 with s = 15, we have an $MP_{\lambda}(3, K_4^{(3)} - e, 17)$ where the needed $MP_{\lambda}(3, K_4^{(3)} - e, 15)$ is from Lemma 3.6.

By Corollary 2.4 there exists a $CS(3,K_4^{(3)}-e,v-15)$ of type $(2^{\frac{v-15}{2}}:0)$ for each $v\equiv 15,17\pmod{18}$ and $v\geq 33$. By Lemma 2.1 there exists a GDD(2,3,v-15) of type $2^{(v-15)/2}$. Applying Construction 2.8, we have a $CS(3,K_4^{(3)}-e,v+s-15)$ of type $(2^{\frac{v-15}{2}}:s)$ for each $v\equiv 15,17\pmod{18}$ and $v\geq 33$. Applying Construction 2.5, we have a $CS_\lambda(3,K_4^{(3)}-e,v+s-15)$ of type $(2^{\frac{v-15}{2}}:s)$. Applying Construction 2.7 with s=15 to get an $MP_\lambda(3,K_4^{(3)}-e,v)$ for $v\equiv 15,17\pmod{18}, v\geq 33$. The needed $HS_\lambda(3,K_4^{(3)}-e,17,15)$ and $MP_\lambda(3,K_4^{(3)}-e,17)$ is constructed as above. This completes the proof.

Combining Lemmas 5.2-5.5, we have the following result.

Theorem 5.6 An $MP_{\lambda}(3, K_4^{(3)} - e, v)$ with $d_{\lambda}(3, K_4^{(3)} - e, v)$ blocks exists for any positive integer $v \geq 4$ where $\lambda \in \{2, 3\}$, its leave has at most 2 edges.

6 The proof of Theorem 1.2

For any positive integer λ , let $\lambda = 3k + i$ where k is nonnegative integer and i = 0, 1, 2. We distinguish two cases as follows:

Case 1: i=0, i.e., $\lambda=3k$. By Theorem 5.6 there exists an $MP_3(3, K_4^{(3)}-e,v)$ (X,\mathcal{A}) with $d_3(3,K_4^{(3)}-e,v)$ blocks and its leave being null. Then $(X,\mathcal{A}\dot{\cup}\mathcal{A}\dot{\cup}\cdots\dot{\cup}\mathcal{A})$ is an $MP_\lambda(3,K_4^{(3)}-e,v)$ with $d_\lambda(3,K_4^{(3)}-e,v)$

blocks and its leave being null, where $A\dot{\cup}A\dot{\cup}\cdots\dot{\cup}A$ is the union of k multisets A.

Case 2: i=1,2, i.e., $\lambda=3k+i$. By Case 1 there exists an $MP_{3k}(3,K_4^{(3)}-e,v)$ (X,\mathcal{A}) with $d_{3k}(3,K_4^{(3)}-e,v)$ blocks and its leave being null. By Theorems 4.8 and 5.6 there exists an $MP_i(3,K_4^{(3)}-e,v)$ (X,\mathcal{B}) with $d_i(3,K_4^{(3)}-e,v)$ blocks. Then $(X,\mathcal{A}\dot{\cup}\mathcal{B})$ is an $MP_\lambda(3,K_4^{(3)}-e,v)$ with $d_\lambda(3,K_4^{(3)}-e,v)$ blocks.

This completes the proof of Theorem 1.2.

Remark: At present, much work has been done on graph decompositions, however, less is know on hypergraph decompositions. An interesting open problem is to consider the decompositions of the 3-uniform hypergraphs $\lambda K_v^{(3)}$ into other types of hypergraphs such as hypercycle and hyperpath.

Acknowledgement: The authors would like to thank Dr. Tao Feng for his valuable discussions on this topic. The work is supported by NSFC grant No.10771013 and 10831002.

References

- C. Berge, Hypergraphs: Combinatorics of Finite Sets, North Holland, Amsterdam, 1989.
- [2] T. Beth, D. Jungnickel and H. Lenz, Design Theory, Cambridge University Press, Cambridge, UK, 1999.
- [3] G. D. Crescenzo and C. Galdi, Hypergraph decomposition and secret sharing, Discrete Applied Mathematics (2008), doi:10.1016/j.dam. 2008.04.001.
- [4] C. J. Colbourn, D. G. Hoffman and R. S. Rees, A new class of group divisible designs with block size three, J. Combin. Theory A, 59(1992), 73-89.

- [5] T. Feng and Y. Chang, Decompositions of the 3-uniform hypergraphs $K_v^{(3)}$ into hypergraphs of a certain type, Science in China Series A: Mathematics, 50(2007), 1035-1044.
- [6] H. Hanani, On some tactical configurations, Canad. J. Math., 15(1963), 702-722.
- [7] H. Hanani, Balanced imcomplte block designs and related designs, Discrete Math., 11(1975), 255-369.
- [8] A. Hartman, The fundamental construction for 3-designs, Discrete Math., 124(1994), 107-132.
- [9] A. Hartman and K. T. Phelps, Steiner quadruple systems, in: Contemporary Design Theory, J. H. Dinitz and D. R. Stinson (eds.), Wiley, New York, 1992, 205-240.
- [10] D. Bryant and S. El-Zanati, Graph decompositions, in: CRC Handbook of Combinatorial Designs, C. J. Colbourn, J. H. Dinitz (eds.), CRC Press, Boca Raton, 2006, 477-486.
- [11] W. H. Mills, On the covering of triples by quadruples, Congr. Numer., 10(1974), 563-586.
- [12] W. H. Mills, On the existence of H designs, Congr. Numer., 79(1990), 129-141.
- [13] H. Mohácsy and D. K. Ray-Chaudhuri, Candelabra systems and designs, J. Statist. Plann. Inference, 106(2002), 419-448.