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Abstract: In this paper we deal with a special kind of hypergraph de-
composition. We show that there exists a decomposition of the 3-uniform
hypergraph AKS® into a special kind of hypergraph K 23) — e whose leave
has at most two edges for any positive integers v > 4 and .
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1 Introduction

A hypergraph H is a pair (V, E), where V is a finite set of vertices, E is a
family of subsets of V' (called hyperedges or edges). A hypergraph is called
simple if E has no repeated edges. A sub-hypergraph H' = (V',E’) of
H = (V, E) is a hypergraph satisfying V' CV and E' C E.

A hypergraph is said to be t-uniform if each of its edges contains exactly
t vertices. In particular a 2-uniform hypergraph is just a graph. AKY isa
t-uniform hypergraph on the point-set V' in which the edge-set E contains
each t-subset of V' exactly A times, where v = |V| and v is called the
order of the t-uniform hypergraph. If A = 1, this hypergraph is said to be
complete. For an edge e € E, K — e denotes the hypergraph obtained
from K by deleting the edge e. From [1], we can know more information
about hypergraphs.

Let H be a t-uniform hypergraph, and I" be a set of t-uniform hyper-
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graphs. A decomposition of H into hypergraphs of I is a partition of the
edges of H into sub-hypergraphs, each of which is isomorphic to one of I'.
Such a decomposition of H into I is denoted by (H,T')-design. Hypergraph
decompositions have an interesting application in secret sharing schemes
[3]. Clearly, hypergraph decomposition is a generalization of graph decom-
position. For a more comprehensive introduction on graph decompositions,
the interested reader may refer to [10].

In what follows we always assume that K is a set of positive integers,
T is a set of simple ¢-uniform hypergraphs, and  is a set of complete
t-uniform hypergraphs, where the order of each element of 2 is from K.

A t-(v,T, \) packing is a pair (X, B), where X is a set of v points, B is
a collection of hypergraphs (called blocks) on the subsets of X, such that
for each B € B, B is isomorphic to one of I, and every t-subset of X is
contained in at most A blocks. We denote it by Py(¢,T,v). If A = 1, we
often write P(t,I',v) for P,(t,T',v). If ' only contains one hypergraph J,
we write Py (¢, {J},v) simply as Py(t, J,v).

A Py(t,T,v) (X,A) is called mazimum (denoted by MP,(¢,T',v)) if
there does not exist any Py(t,T,v) (X,B) with JA| < |B|. The pack-
ing number is the number of blocks in an MPy(t,T',v) and denoted by
Dy\(t,T,v). If A = 1, we often write D(¢,T,v) for D1(,T,v).

For any t-subset e = {z1,Z2,...,7¢} of X, let m(e) be the number
of blocks containing e. The leave of a packing Pi(t,I',v) is the t-uniform
hypergraph spanned by all t-subsets e of X with multiplicity A — m(e).

If the leave of a packing Py (¢,T',v) is null, such a packing is called a ¢-
wise balanced I' design with indez A and denoted by Sx(t,T’,v). Obviously,
if T only contains one hypergraph J, then an Sx(t,J,v) is an M Py(¢, J, v).
If we replace I" by €, then an Sy(t,Q,v) is denoted by Si(¢, K, v), which
corresponds to the traditional concept of t-wise balanced design (¢-BD) [2].
Therefore the t-wise balanced I" design can be regarded as a generalization
of the t-wise balanced design.

The purpose of this paper is to determine the packing number of M P (3,
K 23) — e,v). A simple counting argument shows that Dy (3, K 23) —e,v) <
[M(v — 1)(v — 2)/18]. For brevity, let di(3, Kf’ —e,v)=|M(w-1)(v -
2)/18). Since there are three edges in a hypergraph Kf‘) — e, then if
Di(3, Kf’) —e,v) = d\(3, Kf’) — e,v), that means the leave of an M P, (3,
K® — e,v) has at most 2 edges and vice versa. Feng and Chang (5] gave
the following result.

Lemma 1.1 ([5])) An S(3,K§3) —e,v) exzists if and only if v =0,1,2 (mod
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9) and v > 9.

Lemma 1.1 implies that D(3, Kf’) —e,v) = d(3, K§3’ —e,v) when v =
0,1,2 (mod 9) and v > 9. In this paper, direct and recursive constructions
are discussed for these designs and we shall establish that

Theorem 1.2 An MP,(3,K ga) — e, v) with dy(3, K‘gs) — e,v) blocks ezists
Jor any positive integers v > 4 and ), its leave has at most 2 edges.

2 Recursive constructions

In this section we shall introduce some auxiliary designs and establish some
fundamental results which will be used later. The reader is referred to [2]
for more information on design theory.

Let n and t be positive integers. Suppose that X is a set of points, B
is a collection of hypergraphs on the subsets of X (called blocks), and G
is a partition of X into n non-empty subsets (called groups or holes). A
group divisible (I, t)-design is a triple (X, G, B), where for each B € B, B is
isomorphic to one of T, such that each block intersects any given group in at
most one point, and each t-subset of X from ¢ distinct groups is contained
in a unique block.

The type of group divisible (T, t)-design is defined as usual. Then type
g1'92% -+ - g% denotes that there are a; groups of size g;, 1 < ¢ < m. For
brevity, a group divisible (T', t)-design of type g{*g5? - - - g™ can be denoted
by GDD(¢,T', v) of type g{'g5? - - g%, where v = 3" | a;g;. If ' contains
only one hypergraph J, we write GDD(¢, {J},v) simply as GDD(%, J, v).

If we replace I by €, then a GDD(¢,,v) is denoted by GDD(¢, K, v),
which corresponds to the traditional concept of group divisible ¢-design (t-
GDD) [13]. Therefore the group divisible (T, ¢)-design is a generalization
of the group divisible ¢t-design. A 2-GDD is simply called a GDD. Further-
more, if all the n groups have the same size g, the GDD(¢, K, v) is called an
H design, denoted by H(n, g, K,t). The reader may refer to [2, 8, 12, 13]
for more information on these designs.

The following results are useful in the following sections.

Lemma 2.1 ([7]) Forn > 2, a GDD(2,3,gn) of type g" exists if and only
if (n —1)g =0 (mod 2) and n(n — 1)g? =0 (mod 3).
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Lemma 2.2 ([4]) Let g, u, and m be nonnegative integers. There exists
a GDD(2,3,v) of type g*m? if and only if the following conditions are all
satisfied:

(1) fg>0,thenu>23,oru=2andm=g,oru=1andm=0, or
u=0;

(2) m<g(u—1) orgu=0;

(3) g(v—1)+m =0 (mod 2) or gu = 0;
(4) gu=0 (mod 2) orm =0;

(5) 39%u(u — 1)+ gum =0 (mod 3).

Let v, m, A and t be positive integers, and s be a nonnegative integer.
Suppose that X isaset of v =s+3)_ ___ aig: points, S is a subset of X of
size s (called stem), T is a partition of X\ S of type gf* - - - g3 (called groups
or branches), G; is a group in 7, 1 < ¢ < I, a;, and A is a collection
of hypergraphs on the subsets of X (called blocks). A candelabra (I',t)-
system with index A of type (g7'--- g% : s) is a quadruple (X, 5,7, A),
where for each A € A, A is isomorphic to one of I, such that every t-subset
T c X with [T N (SUG;)| <t for all ¢ is contained in A blocks and no
t-subset of S U G; is contained in any block. Such a system is denoted by
CSa(t,T,v) of type (g7* - - - g% : 8). If A = 1, we often write CS(¢,T, v) for
CS(t,T',v). If T contains only one hypergraph J, we write CSx(t, {J},v)
simply as CS\\(¢, J,v).

If we replace ' by 2, then a CS\(¢,T',v) is denoted by CSx(t, K, v),
which corresponds to the traditional concept of candelabra t-design [13].

Thus the candelabra (T, t)-system is a generalization of the candelabra t-
system. The reader is referred to [6, 8, 9, 11, 13] for more information on

this design.

By the definition of the candelabra (I", t)-system, we know that if (X, B)
is an Sx(t,T,v), then the quadruple (X, 9, {{z} : z € X}, B) is a CSx(t,T,
v) of type (1Y : 0), thus by Lemma 1.1, we have

Corollary 2.3 There ezists a CS(3, Kf”) —e,v) of type (1 : 0) for any
positive integer v=0,1,2 (mod 9) and v > 9.

Furthermore, if v = 0 (mod 2) we can also have the following corollary:

Corollary 2.4 There exists a CS(3, Kf') — e,v) of type (2% : 0) for any
positive integer v = 0,2, 10 (mod 18) and v > 10.
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Let v and s be nonnegative integers such that s < v. A t-(v,I,})
packing with a hole of size s is a triple (X, S,B), where X is a set of
v points, S is a subset of X of size s (called hole), B is a collection of
hypergraphs (called blocks) on the subsets of X, such that for each B € B,
B is isomorphic to one of I, and every t-subset T' ¢ X with [T N S| <
t is contained in at most A blocks and no t-subset of S is contained in
any block. We denote it by HPy(¢,T,v,s). If A = 1, we often write
HP(t,T,v,s) for HP,(t,T',v,s). If T only contains one hypergraph J, we
write HPy(t,{J},v,s) simply as HP,(t, J,v,s).

An HP,\(t,T,v,s) (X, S, A) is called mazimum (denoted by HM P, (¢, T,
v, 8)) if there does not exist any HP,(t,T,v,s) (X, S, B) with |A| < |B]. If
in an HPy(t,T,v,s), every t-subset T C X with |T'N S| < ¢ is contained
in exactly A blocks, then we denote it by HS,(¢,T,v,s). Clearly, if s < t,
then an HM P, (t,T', v, s) is also an MP,(¢, T, v).

The following three constructions are simple but very useful.

Construction 2.5 If there exists an HS(t,T,v,s) ( S(t,[',v) or CS(t,
T,v) ), then there also ezists an HS\(t,T',v,s) (Sa(t,T',v) or CS»x(t,T,v))
for each positive integer A.

Construction 2.6 If there exist an HS\(t,T,v,s) and an MP\(t,T,s),
then there exists a Py(t,I',v) whose leave has the same number of edges as
that of M Py(¢t,T,s).

Construction 2.7 Suppose that there ezists a CS\(t,T,v) of type (g3* - --
Imi' gt 1 8). If there exist an HSA(t,T, g; + 8,8) for each 1 <i<m—1
and an MP\(t,T',gm + 8), then there exists a Py(t,T,v) whose leave has
the same number of edges as that of MPA(t,T, g + 3).

Construction 2.7 shows that it is useful to find some CS\(¢, T, v)s with
a stem of size s. For the purpose of determining the packing number

of MP,\(3,K, f’) —e,v), in what follows we always assume that t = 3 and
I'=K, 53) —e. For brevity, in the following if we refer to M P, (3, K ,§3) —e,v),
that always means the M P,(3, K 53) — e,v) with d,(3, Kf” — e, v) blocks.
In this case, the leave of an MP,(3, K}s) — e,v) has at most 2 edges.
Conversely, if the leave of a Py(3, K, 23) — e,v) has at most 2 edges, then it
must be an MPy(3, K® — ¢, v).

A simple computation shows that the number of blocks in an HM P (3,
K — e,v,5) is at most [Afu(v — 1)(v — 2) — s(s — 1)(s — 2)]/18). In this
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paper, for brevity, in the following if we refer to HM P\(3, K §3) —e,v,8),
that always means the HM P (3, Kﬁa)-e, v, 8) with [A[v(v-1)(v—2)—s(s—
1)(s — 2)]/18] blocks. In this case, the leave of an HMP)(3, K¥) - e,v,s)
has at most 2 edges.

In the following we denote the copy of Kﬁs) — e with vertices a, b, ¢, d
and edges {a, b, ¢}, {a,b,d}, {a,c,d} by (a, b, c,d). The notation A(a,b, c,d)
means that (a, b, ¢, d) replicate A times.

Construction 2.8 Suppose that there exists a CS\(3, K, 23) —e,v) of type
(g3 --- g% : 0). If there is a GDD(2,3,v) of type gi* --- gar, then there
is a CSx(3, Ksa) —e,v + 8) of type (g5 --- g% : 8) for each nonnegative
integer s.

Proof Suppose that (X,0,G,A) is a CSA(S,KP — e,v) of type (g3 ---
g% : 0). Let § = {001,002,...,00,} and X NS = . We can construct
a GDD(2,3,v) (X,G,B) of type g1 :--ga~ by the assumption. Define
the multisets Ao, = {A(c0i,8,b,¢) : {a,b,c} € B} for 1 < i < s and
C = (UigigsAoo;) U A. Tt is readily checked that (X U S,5,G,C) is a

CSa(3, Kéa) —e,v + 3) of type (g5* :-- g% : 8). m}

Construction 2.9 Suppose that there ezist an M PA(3,K£3) - e,v) and
a GDD(2,3,v) of type g% -+ gmmi'gL,, 9i <3 foreach 1 <i < m-1.
If there ezist an HS)\(3,K,£3) —e,gi+s,s) foreach1 <i <m-—1 and
an HMP,\(3,K§3) — e,09m + S,9m), then there is a P)(3, Kf) —e,v+ 8)
whose leave is the union of the leaves of the M P,\(3,K§3) — e,v) and the
HMP,(3, Kf’) —€,gm + 8,9m). If the number of the edges in the union of
leaves is at most 2, then the resultant packing is an M Py(3, K, 23) —e,v+8).

Proof Suppose that (X,.4) is an MP,(3, Kﬁ” - ev). Let S = {00y,
002, ..., 005} and X NS = §. By the assumption, we can construct a
GDD(2,3,v) (X,G, B) of type g§* - - - g g3, With Go € G and |Go| = gm.
Define the multiset Ao, = {A(00i,a,b,¢) : {a,b,c} € B} where1 <i<s.
For each group G € G and G # Go, let (GUS, S, Ag) be an HSx(3,K{®) —
e,gi +5,8). Let (Go U S,Go, Ag,) be an HMP»(3,KS> — €, 9m + 8, 9m)-
Define the multiset C = (Uigi<sAoo;) U (UgegAg) U A. Then it is readily
checked that (XUS,C) is a P5(3, K, 53) —e,v+8), whose leave is the union of
the leaves of the M P, (3, KEB) —e,v) and the HMP\(3, Kf') —e,9m=+8,gm).
Clearly, if the number of the edges in the union of leaves is at most 2, then
the resultant packing is an M P(3, Kf’) —e,v+3). (]
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3 Constructions for small orders

In this section we give some designs with small orders, which can be used
for the master designs and ingredient designs in Constructions 2.5-2.9. For
positive integer n, let I, = {0,1,...,n —1}.

Lemma 3.1 There exist an M P(3, Kf’)-e, 5) and an HS(3, Kia)—e, 5,3).

Proof Let X = I5. The blocks for this design are (2,0,1,3), (3,0,1,4)
and (4,0,1,2). Clearly, this design is also an HS(3, K> — e, 5,3) with the
hole {2, 3,4}. D

Lemma 3.2 There exists an M P)(3, Kf’) -e,6), A€ {1,2,3}.

Proof Let X = Ig. The blocks for these designs are given below.

A=1: (0,1,2,3), (0,1,4,5), (1,2,3,4), (2,0,4,5),
(3, 0’ 4’ 5)’ (57 1, 2’ 3)‘

A=2: 20,1,2,3), 2(0,1,4,5), 2(1,2,3,4), (2,0,4,5),
(3’ 074’ 5)’ (410’ 2’ 3), (5’ 0’ 21 3)) (5) 11 2, 3))
(5) 1)2’4)7 (5’ 1’3’4)'

A=3: 3(0’ 112’ 3)a 3(0: 1,4,5), 2(1: 2,3, 4): (1, 21 3, 5)’
(1,2,4,5), (2,0,4,5), (2,3,4,5), (3,0,4,5),
(31 1,4, 5); 2(4: 0,2, 3): 2(5: 0,2, 3): (5’ 1,2, 4):
(5a 1,3, 4)

Lemma 3.3 There exisis an HMP(3,K§3) —e,7,4).

Proof Let X = I; and S = {0,1,2,3}. The blocks for this design are
given below:

(0,1,4,5), (0,2,4,6), (1,2,4,6), (2,3,4,6), (3,0,4,6),
(3,1,5,6), (4,1,3,5), (5,0,2,3), (5,2,4,6), (6,0,1,5).

It is easy to check that the leave of this design has one edge {1,2,5}. O

Lemma 3.4 There erists an HS(3,K§3) -ev,v—2),ve{l1,17}.
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Proof Let X = Z,_oU {oo1,002}. Base blocks for these designs are given
below. All other blocks are obtained by developing these base blocks by
+1 modulo (v — 2), where 00; + 1 = oo; for i = 1,2.
v=11: (001,0,1,3), (002,0,1,3), (0, 001, 002, 4).
v=17: (001,0,1,4), (001,0,2,7), (002,0,1,4),
(00210)2a 7), (0» °°11°°2:6)'

Lemma 3.5 There exists an MP(3, K, 23) -eT).

Proof By Lemma 3.3, there exists an HM P(3,K§3) - e,7,4) with the
hole S = {0,1,2,3}. Then we can get the required design by adding the

block (0, 1,2, 3) to the block set of the HMP(3,K{®) —e,7,4). It is easy to
check that the leave of this design has two edges {1,2,3} and {1,2,5}. O

Lemma 3.8 There ezists an M P (3, K,§3’ —e,15), A € {2,3}.

Proof By Lemmas 1.1 and 3.4, there exist an S(3,K£3) —e,11) and an
HS(3, Kf’” —e,11,9). Applying Construction 2.5, we have an S)(3, K, 23) -
e, 11) and an HS\\(3, Kﬁa) —¢,11,9). By Lemma 3.2 there exists an

MP;,(3, K§3’ — e,6) for each A € {2,3}. By Lemma 2.1 there exists a
GDD(2,3,6) of type 23. Applying Construction 2.9 with s = 9 we can

get a PX(3,K§3) — ¢,15). Clearly the needed HMP; (3, Kf’) —e,11,2) is
SA(3, K. ﬁs) — e,11). Checking the leave of the resultant Py (3, K f) —e,15),
we can find that what we have constructed is an M P) (3, K§3) —e,15). O

Lemma 3.7 There exists an HS(3, Kia) —e8+1,s) for each s = 1,3
(mod 6) and s > 3.

Proof Suppose that (X, {{z} : z € X},B) is a GDD(2,3, s) of type 1°

by Lemma 2.1. Let A = {(c0,a,b,¢) : {a,b,c} € B}. It is readily checked
that (X U {oo}, X, A) is an HS(3, K —¢,s +1,3). o

Lemma 3.8 There exists an MP(3,K£3) —e,8).
Proof By Lemma 3.7, there exists an HS(3, Kﬁa) - ¢,8,7). Apply-

ing Construction 2.6, we have an MP(3, KF) — ¢,8), where the needed
MP(3, Kf” —e,7) is from Lemma 3.5. o
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4 Thecaseof A\=1

In this section we shall prove that the packing number of an M P(3, K, ,§3) -
e,v)isd(3,K f’) —e, v) for any positive integer v > 4. A simple computation
give the following lemma.

Lemma 4.1 If there ezists an MP(3, K> — e,v) with d(3, K> — e,v)
blocks, then the number of edges in the leave is

0 v=0,1,2 (mod 9),
b= 1 v=3,4,5(mod9),
2 v=6,7,8 (mod 9).

Lemma 4.2 There exists an M P(3, K‘(la) —e,v) for positive integer v = 13
(mod 18).

Proof By Lemma 1.1, there exists an S(3, K 23) —e,v—23) for each positive
integer v = 13 (mod 18). By Lemma 2.2, there exists a GDD(2,3,v — 3)
of type 2% 41, Applying Construction 2.9 with s = 3, we can get a
P(3, Kfn — e, v) whose leave is just the leave of the HMP(3, K f”) —-e,7,4)
which has unique edge. The needed HS(3, K\¥) —¢,5,3) and HMP(3, K{®
—e,7,4) come from Lemmas 3.1 and 3.3. m]

Lemma 4.3 There ezists an M P(3, Kf’) — e, 14).

Proof By Lemma 3.7, there exists an HS(3, Kia) —e,14,13). Apply-
ing Construction 2.6, we have an M P(3, K 4(3) — e,14), where the needed
MP(3, K£3) —¢,13) is from Lemma 4.2. (]

Lemma 4.4 There ezists an M P(3, K§3) — e, v) for positive integer v = 4,
12,14 (mod 18).

Proof By Corollary 2.3, there exists a CS(3, K, 53) —e,m) of type (1™ : 0)
for each m = 1,9 (mod 18) and m > 9. By Lemma 2.1, there ex-
ists a GDD(2,3,m) of type 1™. Applying Construction 2.8, we have a
CS(3,K£3) — e,m + s) of type (1™ : s) for each nonnegative integer s.
Applying Construction 2.7 with s = 3,13, we have an M P(3, K}s) —e,v)
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for v =m+s = 4,12,14 (mod 18). The needed HS(3, Kés) -es+1,8s)
and MP(3, K, 53) —e,14) are from Lemmas 3.7 and 4.3. Clearly, the needed

MP(@3, K 23) — e, 4) exists, it has unique block. This completes the proof.
w}

Lemma 4.5 There erists an MP(3, K, 23) — e, v) for positive integer v =7
(mod 18).

Proof The conclusion follows when v = 7 by Lemma 3.5. For v = 7 (mod
18) and v > 25, there exist an MP(3, K\¥ —e,v—3) and a GDD(2, 3,v—3)
of type 2°7-4! by Lemma 4.4 and Lemma 2.2, respectively. Applying
Construction 2.9 with s = 3, we can get a P(3,K§3) — e,v). The needed
HS(3,K® —€,5,3) and HMP(3, K> ~ ¢,7,4) are from Lemmas 3.1 and
3.3. Checking the leave of the resulting P(3, Kf') — e,v), we know that
its leave is just the union of the leaves of the HM P(3, Kf’ —e,7,4) and
the MP(3,K 23) — e,v — 3), it has totally two edges. Hence the resultant
packing is an M P(3, Kf’) — e,v) for positive integer v = 7 (mod 18) and
v > 25, 0

Lemma 4.8 There ezists an M P(3, K ,§3) — e,v) for positive integer v = 3,
5,15,17 (mod 18), v > 5.

Proof The conclusion follows when v = 5 by Lemma 3.1. For v =
3,5,15,17 (mod 18) and v > 15, there exists an MP(3,K,§3) —e,v—3) by
Lemmas 1.1 and 4.4. By Lemma 2.1 there exists a GDD(2, 3, v —3) of type
2%, Applying Construction 2.9 with s = 3, we can get a P(3, Kis) —e,v).
The needed HS(3,K Y — e,5,3) and HMP(3,K\> — ¢,5,2) are from
Lemma 3.1. Checking the leave of the resulting P(3, K §3) - e,v), we know
that its leave is just the union of the leaves of the HM P(3, K,§3’ -e,5,2)
and the M P(3, K, 23) —e,v— 3), it has totally at most two edges. Hence the
resultant packing is an M P(3, K, f”—e, v) for positive integer v = 3, 5,15, 17
(mod 18) and v > 15. (]

Lemma 4.7 There exists an M P(3, Kﬁs) — e, v) for positive integer v = 6,
8,16 (mod 18).

Proof The conclusion follows when v = 6 by Lemma 3.2. By Corollary
2.3 and Lemma 2.1, there exist a CS(3, K‘ga) —e,m) of type (1™ : 0) and a
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GDD(2,3,m) of type 1™ for each m = 1,9 (mod 18) and m > 9. Applying
Construction 2.8, we have a C'S(3,K‘§3) —e,m+ s) of type (1™ : s) for
each nonnegative integer s. Applying Construction 2.7 with s = 7, we have
an MP(3,K{® — e,v) for v =m +7 = 8,16 (mod 18) and v > 16. The
needed HS(3, K> — ¢,8,7) and MP(3,K{¥ — ¢,8) come from Lemmas
3.7 and 3.8. Again, applying Construction 2.7 with s = 15, we have an
MP(3, Kﬁa) —e,v) for v =m + 15 = 6 (mod 18) and v > 24. The needed
HSB3,K® — e,16,15) and MP(3,K{? — ¢, 16) are from Lemma 3.7 and
as above, respectively. m]

Combining Lemma 1.1, Lemma 4.2 and Lemmas 4.4-4.7, we have the
following theorem.

Theorem 4.8 An MP(3,K Y — e,v) with d(3, K{>) — e,v) blocks exists
for any positive integer v > 4, its leave has at most 2 edges.

5 The case of A =2,3

In this section we shall prove that the packing number of M P,(3, K, 23) —e,
v) is da(3, Kia) — e,v) for any positive integer v > 4, A € {2,3}. For
convenience, we use the notation U to denote the union of multisets. A
simple counting gives the following lemma.

Lemma 5.1 (1). If there ezists an MP5(3, K2 — e, v) with do(3, K{¥ —e,
v) blocks, then the number of edges in the leave is

0 v=0,1,2 (mod 9),
b=<¢ 2 v=3,4,5 (mod 9),
1 v=6,7,8 (mod 9).

(2). If there ezists an MPy(3, K¥ — e,v) with d3(3, K{> — e, v) blocks,
then the number of edges in the leave is 0.

Lemma 5.2 There ezists an M P, (3, Kis) —e,v) with dA(3,K,§3) - e,v)
blocks for positive integer v=0,1,2,3,4,5 (mod 9), A € {2,3}.

Proof For v =0,1,2 (mod 9), the conclusion follows by Lemma 1.1 and
Construction 2.5. Next we deal with the case of v = 3,4,5 (mod 9). By
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Theorem 4.8 there exists an M P(3, Kﬁa) — e,v) (X, B) whose leave has
unique edge. Then (X, BUB) is an MP;(3, K.Y — e,v) with da(3, K> —e,
v) blocks. Again, by Theorem 4.8, let (X,B;), (X, B2) and (X, B3) be
three MP(3, Kf’) —e,v)s for v = 3,4,5 (mod 9) and v > 4. Without
loss of generality, suppose their leaves are {a,b,c}, {a,b,d} and {e,c,d}
respectively, where {a,b,c,d} € X. Then (X, B1UB2UB3sU{(a,b,c,d)}) is
an MP3(3, K — e, v) with d3(3, k¥ — e,v) blocks. a)

Lemma 5.3 There exists an M P5(3, K f’) —e,v) for positive integerv =17
(mod 18), X € {2,3}.

Proof Let X =I,_3, S = {z,y,2} and X NS = §. By Theorem 4.8 there
exists an M P(3, K4(3) —e,v—3) (X, .A) with the unique edge {1,2,3} in its
leave. There exists a GDD(2,3,v — 3) of type 274! by Lemma 2.2 where
the group of size 4 is {0, 1,2,3}. From the proof of Construction 2.9 with

s = 3, we can get an MP(3,K£3) —e,v) on X U S, whose leave is just the
union of the leaves of the HM P(3, Kis) -e,7,4) on SU{0,1,2,3} with
hole {0,1,2,3} and the MP(3, K{¥ — e,v - 3) (X, A). Hence, without loss
of generality, we have an M P(3,K£3) —e,v) (X US,C) whose leave has
only two edges {1,2,3} and {1,2,z} for any positive integer v = 7 (mod
18). Let (X U S,D) be an MP(3, Kf’) — e,v) whose leave has only two
edges, one of which is supposed to be {1,3,z} by a suitable permutation
on XUS. Then (X US,CUDU{(1,2,3,2)}) is an MP,(3, K¥ e, v) whose
leave has unique edge.

By the arguments as above, suppose that there exists an M P5(3, K 23) -
e,v) (X U S,€) whose leave being {1,3,z} by a suitable permutation on

X US. Then (X US,CUEU{(1,2,3,2)}) is an MPs(3, K\ — e,v) whose
leave is null. a

Lemma 5.4 There exists an MPy(3, K, 23) —e,v) for positive integer v = 6,
8,16 (mod 18), A € {2,3}.

Proof By Construction 2.5 and Lemma 3.7 there exist an HS)(3, K, 23) -
e,8,7) and an HSx(3,KSY — e,16,15). Applying Construction 2.6 with
s € {7,15} to get an MPA(3,K{ — €,8) and an MP\(3, K — ¢, 16),

where the needed M P, (3, Kﬁ‘"” —¢,7) and MP,(3, K,§3) — e, 15) are from
Lemmas 5.3 and 3.6. By the proof of Lemma 4.7 and Construction 2.5,
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there exists a CSX(3,K‘§3) —e,m + 3) of type (1™ : s) for m = 1,9 (mod
18), m > 9 and s € {7,15}. Applying Construction 2.7 with s = 7,15, we
have an MP5(3, K — e,v) for v = 6,8,16 (mod 18), v > 8. The needed
HS\(3, Kf’) —e,s+1,5) and MP,(3, Kf’) —e,8 + 1) are constructed as
above, where s = 7,15. By Lemma 3.2 an M P,(3, Kf’) — e,6) exists. The
assertion then follows. a

Lemma 5.5 There erists an M P,\(3,K,§3) — e,) for positive integer v =
15,17 (mod 18), A € {2,3}.

Proof By Construction 2.5 and Lemma 3.4 there exists an HS\(3, K, f”) -
e,17,15). Applying Construction 2.6 with s = 15, we have an M P, (3,

K 23) — e,17) where the needed M P, (3, Kf’) — ¢,15) is from Lemma 3.6.

v—15

By Corollary 2.4 there exists a C'S(3, Kéa) —e,v—15)of type (277 :0)
for each v = 15,17 (mod 18) and v > 33. By Lemma 2.1 there exists a
GDD(2,3,v — 15) of type 2(v=18)/2, Applying Construction 2.8, we have a
CS(3, Kﬁs) —e,v+ s~ 15) of type (2"—3&‘ : 8) for each v = 15,17 (mod 18)
and v > 33. Applying Construction 2.5, we have a CS,(3, K,§3) —ev+
s — 15) of type (2"_3& : 5). Applying Construction 2.7 with s = 15 to
get an MP)(3,K\¥) — e,v) for v = 15,17 (mod 18), v > 33. The needed
HS,\(3, Kf’) —¢,17,15) and MP,\(3,K£3) —e,17) is constructed as above.
This completes the proof. (m]

Combining Lemmas 5.2-5.5, we have the following result.

Theorem 5.6 An M P)\(3,K 23) - e,v) with d\(3, Kﬁs) —e,v) blocks ezists
for any positive integer v > 4 where A € {2,3}, its leave has at most 2
edges.

6 The proof of Theorem 1.2

For any positive integer A, let A = 3k + ¢ where k is nonnegative integer
and i =0,1,2. We distinguish two cases as follows:

Case 1: i =0, i.e., A = 3k. By Theorem 5.6 there exists an M P3(3,
Kia) - e,v) (X, A) with d3(3, K, 23) — e,v) blocks and its leave being null.
Then (X, AUAU---UA) is an MPA(3, K — e,v) with dr(3, K — e, )

373



blocks and its leave being null, where AUAU---UA is the union of k mul-
tisets A.

Case 2: i = 1,2, i.e.,, A = 3k +i. By Case 1 there exists an M P3(3,
K —e,v) (X, A) with da(3, K — e,v) blocks and its leave being null.
By Theorems 4.8 and 5.6 there exists an M P;(3, K,§3’ —e,v) (X, B) with
&(3, K — e,v) blocks. Then (X,.AUB) is an MP5(3,K{Y — e,v) with
dx(3, K2 — e,v) blocks.

This completes the proof of Theorem 1.2.

Remark: At present, much work has been done on graph decompositions,
however, less is know on hypergraph decompositions. An interesting open
problem is to consider the decompositions of the 3-uniform hypergraphs

)\K,(,s) into other types of hypergraphs such as hypercycle and hyperpath.
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