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Abstract

A star-factor of a graph G is a spanning subgraph of G such
that each component is a star. An edge-weighting of G is a function
w : E(G) — N*, where N* is the set of positive integers. Let
¥ be the family of all graphs G such that every star-factor of G
has the same weight under some fixed edge-weighting w. The open
problem of characterizing the class Q, posed by Hartnell and Rall,
is motivated by the minimum cost spanning tree and the optimal
assignment problems. In this paper, we present a simple structural
characterization of the graphs in Q2 that have girth at least five.

Key words: star-factor; girth; edge-weighting; uniform star-factor.

1 Introduction

Throughout this paper, all graphs considered are simple. We refer the
reader to (2] for standard graph theoretic terms not defined in this paper.

Let G = (V, E) be a graph with vertex set V(G) and edge set E(G).
If G is not a forest, then the length of the shortest cycle in G is called
the girth of G, denoted by g(G) and a forest is considered to have infinite
girth. If § C V(G), then G — S = G[V — §] is the subgraph of G obtained
by deleting the vertices in S and all edges incident with them. Similarly,
if B’ C E(G), then G — E' = (V(G), E(G) — E'). We denote the degree
of a vertex r in G by dg(x), and the set of vertices adjacent to z in G by
Ng(z). The minimum degree of vertices in G is denoted by §(G). A cycle
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(or path) with n vertices is denoted by C,, (or Py,). If vertices u and v are
connected in G, the distance between v and v in G, dg(u,v), is the length
of a shortest (u,v)-path in G. The diameter of G is the maximum distance
over all pairs of vertices in G. A leaf is a vertex of degree one and a stem
is a vertex which has at least one leaf as its neighbor. A star is a tree
isomorphic to K3, for some n > 1, and the vertex of degree n is called the
center of the star. A star-factor of a graph G is a spanning subgraph of G
such that each component is a star. Clearly a graph with isolated vertices
has no star-factors. On the other hand, it is not hard to see that every
graph without isolated vertices admits a star-factor. If one limits the size
of the stars used, the existence of such a star-factor is non-trivial. In [1],
Amahashi and Kano presented a criterion for the existence of a star-factor,
ie., {Ki,, - ,K1n}-factor.

An edge-weighting of a graph G is a function w : E(G) — N*, where
Nt is the set of positive integers. For a subgraph H, the weight of H un-
der w is the sum of all the weight values for edges belonging to H, i.e.,
w(H) = Zeepyw(e). An edge-weighting of G is good if every star-factor
of G has the same weight under w. Motivated by the minimum cost span-
ning tree and the optimal assignment problems, Hartnell and Rall posed
an interesting general question: for a given graph, does there exist an edge-
weighting function w such that a certain type of spanning subgraph always
has the same weight? In particular, they investigated the following narrow
version of the problem in which the spanning subgraph is a star-factor.

Star-Weighting Problem (Hartnell and Rall [3]): Characterizing all
graphs which admit a good edge-weighting?

To start the investigation, one may consider the special case where w
is a constant edge-weighting function, i.e., all edges in G are assigned the
same weight. In this case, two star-factors of G have the same weight if
and only if they both have the same number of edges. For simplicity, we
assume that all edges are assigned weight one.

Let % be the family of all graphs G such that every star-factor of G
has the same number of edges. Clearly, two star-factors of G have the same
number of edges if and only if they have the same number of components.
Hartnell and Rall (3] classified the family of graphs in % that have girth
at least five. In [6], the authors characterized the family of graphs in %
whose members all have girth three and minimum degree at least two.

We say that a vertex subset S dominates a vertex v of G if v € SUNg(S),
and that S is a dominating set of G if every vertex of G is dominated by S.
The cardinality of a smallest dominating set is called the domination num-
ber of G and denoted by v(G). A matching M of G is a set of independent
edges of G. The number of edges in M is called the size of M and denoted
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by |M|. If G has no matching M’ such that |M’| > |M], then M is called
a mazimum matching, and the size of a maximum matching is called the
matching number of G and denoted by v(G). Recently, Kano, Wu and Yu
(4] show a relationship between the family % and parameters v(G), ¥(G).

Theorem 1. ([4]) A connected graph G € % if and only if v(G) = v(G).

In [5], Randerath and Volkmann characterized all the graphs with equal
domination number and matching number. With Theorem 1, the family
% are largely characterized. However, there is no progress reported for
uniformly weighted star-factors with non-constant function.

Denote by (2 the class of all graphs that admit a good edge-weighting.
From the definition of edge-weighting, we see that w(e) > 1 for every
edge e of G. In this paper, we attempt to initiate the study of uniform
star-factors with a general (i.e., non-constant) edge-weighting function and
obtain a structural characterization of the graphs in Q that have girth at
least five.

2 Main Results

Our attack on this problem is very closely followed that of the original
problem in [3], with the appropriate modifications to the more general
problem. It is interesting to note that the characterization for any edge-
weighting function (Theorem 6) largely overlaps with that for a constant
edge-weighting function, with only one additional case. We start with a
few easy observations and lemmas.

Figure 1. An example

Clearly, if G € %, then G € Q. But the converse is not true. Figure
1 is an example which is star-factor uniform but requiring a non-constant
edge-weighting function. If we let all the edges have the same weight, then
we can find two star-factors with 10 edges and 7 edges, respectively. So
G ¢ %. But if assigning a non-constant edge-weighting function w as
follows:
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_ [ 2 ee{abc}
w(e) —{ k ecE(G) - {abc}
then it is not hard to verify that all the star-factors of G have the same
weight under w, where k € N*.

Note that if H is a spanning subgraph of G, then any star-factor of H
is also a star-factor of G. This fact implies the following lemma which will
be used frequently in reducing the problem of determining membership in
Q to its spanning subgraphs.

Lemma 1. Let F be a subset of E(G) such that G — F has no isolated
vertices. If one of the components in G — F is not in , then G ¢ Q.

The above lemma implies that if G is in €2, then so is G — F. The basic
idea to show that a graph does not belong to € is to decompose G into
several components without isolated vertices and then simply find one of
them not belonging to .

Observation 1. Let Ps = v1vou3v4vsvs be a component of G and G € §Q.
Then w(vavy) = w(vavs) + wlvavs) for any good edge-weighting w of G.

Proof. Let S be a star-factor of G — Ps with weight z. Then S U
{v1v2, v3v4,v5v6} and S U {v1vov3, v4vsv6} are two star-factors of G. Since
G € Q, z+w(v1v2) +w(vavy) +w(vsve) = z+w(vi1ve) +w(vova)+w(veavs) +
w(vsvg), i.e., w(vavg) = w(vova) + w(vqvs). ]

In fact, Observation 1 holds even if one of vz and vs has more than
one leaf as its neighbors. Using Observation 1 and Lemma 1, we have the
following observation.

Observation 2. Let C be a cycle. If |C| =6 or |[C| > 8, then C is not in
Q.

We investigate the graphs, in €, with girth at least five but without
leaves first.

Theorem 2. If G is a graph with minimum degree at least two and girth
siz, then G ¢ Q.

Proof. Let C be a cycle of order six in G and F = {ujuz | vy € V(C),uz €
V(G)-V(C)}. Since the girth of G is six and §(G) 2 2, there are no isolated
vertices in G — F. Hence G ¢ § by Lemma 1 and Observation 2. 0

Using a similar technique, it is easy to see the following theorem.

Theorem 3. If G is a graph with minimum degree at least two and girth
at least eight, then G ¢ (0.
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Theorem 4. If G is a graph with minimum degree at least two and girth
seven, then G € § if and only if G is a T-cycle.

Proof. Let G be a 7-cycle, and w(e) = k for each e € E, where k € N*,
Then it is easy to check that G € Q.

On the other hand, assume G € §? but G is not a 7-cycle. Let C =
V1U203v4v5V6v7 be a cycle in G. Without loss of generality, assume that vy
has a neighbor u not on C. Let Fy = {uyu2 | u; € V(C),u2 € V(G) -
V(C)}. Since the girth of G is seven and §(G) > 2, there are no isolated
vertices in G — Fj. We see that C, as a component in G — Fj, is a cycle
of length seven. Since G € , then all edges in the cycle C must have the
same weight. Let Fo = {ujuo | v1 € {v1,v2,v3,v4,vs5,06},u2 € V(G) —
{v1,v2,v3,v4,vs,v8}. Then there are no isolated vertices in G — F; again.
But Ps = v1v2v3v4v56, 8s a component in G — F3, is a path of order six.
Since G € Q, w(v3vs) = w(veuz) +w(vavs) by Observation 1. Hence all the
weights of edges in the cycle C must be 0, a contradiction. O

Lemma 2. Let G be a graph with an induced cycle of order five such that
four of the vertices are of degree two and the fifth is a stem. Then G does
not belong to 1.

Figure 2. The component H

Proof. Suppose G belongs to 2, and w is a good edge-weighting func-
tion. Let C = vyvousvavs be a 5-cycle in G with a stem vs. Let X =
{X1, X2, , Xn} be the set of leaves adjacent to vs and F = {ujvs | u; €
V(G) = (X U {v1,v4})}. A component H of G — F is isomorphic to the
graph shown in Figure 2 (weights are indicated). Since G — F has no iso-
lated vertices, H € Q. Thus all star-factors of H have the same weight
under w and we have
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Ty +zot- -tz tatcte
T+ T2+ +2Zntat+ctd
Ty+T2+ - +zTatbtcte
= T +Z2+ - +Tn+b+d

From the above equation, we have ¢ = 0, a contradiction. O

Lemma 3. Let G be a graph in 2 with an induced 5-cycle. If ezactly one of
the vertices on this 5-cycle has degree at least three, then all of its neighbors
not belonging to this 5-cycle must be stems.

Proof. Let v be a vertex of degree at least three on the 5-cycle. Assume v
has a neighbor z not on the 5-cycle and z is not a stem. By Lemma 2, z is
not a leaf. Let F be the set of edges incident with = except vz. The graph
G - F has no isolated vertices, and the vertex v is a stem belonging to an
induced 5-cycle that satisfies the hypothesis of Lemma 2. Thus G does not
belong to 2, a contradiction. O

Theorem 5. If G is a graph with girth five and minimum degree at least
two, then G € Q if and only if G is a 5-cycle.

Proof. If G is a 5-cycle, clearly G € ) under a constant weight function.

Next consider a graph G, in §, with girth five and minimum degree at
least two but G is not isomorphic to Cs. Let C = vjvav3v4v5 be a cycle
in G. Assume, without loss of generality, that vs has a neighbor « not on
C. Let F = {ujug | u1 € {v1,v2,v3,v4,v5},u2 € V(G) = (V(C)Uu)}. If
we delete all edges in F' from G, then no isolated vertices are created in
G - F since the girth of G is five,s0 G— F € Q and u is a stem in G — F
by Lemma 3.

Vs Vs
m V4 (1 Vq
V2 V3 V2 U]
(a) (%)
Figure 3.

Moreover, u has at most two leaves as its neighbors are in G — F,
and they are adjacent to v or (and) vz in G. Without loss of generality,
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assume that all neighbors of u except vs in G — F are leaves. Let H be
the component containing the cycle C in G — F, and H’ be the induced
subgraph of G with V(H). Then G — V(H') and H’ have no isolated
vertices, and so H' € Q by Lemma 1. If there is exactly one leaf as a
neighbor of u in H, then H’ is shown in Figure 3(a). Otherwise, H' is
isomorphic to the graph shown in Figure 3(b). It is not hard to check that
both graphs are not in 2, a contradiction to G € Q. O

From the four theorems above, we obtain the following corollary.

Corollary 1. If G is a graph with minimum degree at least two and girth
at least five, then G € Q if and only if G is a 5-cycle or 7-cycle. Moreover,
all edges of G must have the same weight under every good edge-weighting
of G.

Next, we attempt to determine all members in § which have girth at
least five and with leaves. To derive our main theorem, we need the follow-
ing lemmas.

Lemma 4. Let G be a graph of girth five. Suppose that G contain a 5-cycle
C that has no stem of G and there exist two adjacent vertices of degree at
least three. Then G does not belong to .

U4

V2
v3 v3 n
V2
wo V4 Vs
(a) (b)

Figure 4.

Proof. Assume G € 2 and let C = vyvouzv4vs be the 5-cycle in G such
that v, and v, both have degree at least three. Let F; be the set of all
edges not on C but incident with one of v3,v4 and vs. Since the girth of
G is five, then no pair of vertices on C have a common neighbor not on C,
and thus G’ = G — F; has no isolated vertices. Furthermore, neither v;
nor vz is a stem in G'. Let G” be the graph obtained by deleting all edges
incident with v; but not on C from G’. Then none of the stems created
in G” is a neighbor of vo. However, by Lemma 1, G” belongs to 2 and so
by Lemma 3 all neighbors of v; not on C, in G”, must be stems. Thus all
neighbors of v2 not on C in G’ must be stems. A similar argument yields
that all neighbors of v; not on C in G’ must be stems. Let w; and wq be
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stems adjacent to v; and vs, respectively, in G'. Then there exists at most
one common neighbor of degree two between w; and ws since the girth of
G is five. Let X be the set of leaves adjacent to w; or we in G’ and Fp =
{urug | w1 € {v1,v2, w1, w2}, u2 € V(G') — ({v1,v2, w1, w2,v3,v5} U X)}.
Then G' — F, (or (G’ — F3) U uw, if there exists a common neighbor u of
degree two between w; and ws) has no isolated vertices and a component
H in G' = F; (or (G' — F3) Uuw,) is isomorphic to the graph shown in
Figure 4(a). By Lemma 1, H belongs to Q. It is easy to show that H ¢ Q
by Observation 1, a contradiction. a

Lemma 5. Let G be a graph of girth five. Suppose that G contain a 5-
cycle C = v1vu3vavs in which no vertex is a stem and two nonadjacent
vertices v; and vz of C have degree at least three. If G belongs to Q, then
all neighbors of vy and vs not belonging to C must be stems.

Proof. Assume that v; has a neighbor z not on C but z is not a stem. By
Lemma 4, v, v4 and vs must all have degree two in G. Let F be the set
of all edges other than zv;, that are incident with z, and let G; =G - F.
Since z is not a stem in G, G; € Q. If v is not a stem in G, let F} be
the set of edges, not in C, but incident with v3. Then G; — F; is in Q,
but it contains a 5-cycle satisfying the conditions of Lemma 2. Therefore
v3 is a stem in G;. Moreover, we note that vz has exactly one leaf, say
y, as its neighbor in Gy since g(G) = 5. Thus, we derive an induced
subgraph H with vertices vy, va,vs, v, s, and y shown in Figure 4(b).
Let Fy = {ujug | u; € V(H),uz € V(G) — V(H)}. Then G — F; has no
isolated vertices and H is a component. Thus H € Q by Lemma 1. But by
Theorem 5, H ¢ , a contradiction. ]

Lemma 6. Let G be a graph with an induced cycle C of order i (where
i = 6 or 7) such that all the vertices on C are of degree two except one
which is a stem. Then G ¢ Q.

Proof. Similar to the proof of Lemma 2. ]

Lemma 7. Let G be a graph with an induced cycle C of order i (where
i =6 or 7) such that all the vertices on C are of degree two except one of
degree at least three. Then G ¢ Q.

Proof. Let v; be a vertex on the cycle C of degree at least three. If v; is
a stem, then by Lemma 6, G does not belong to 2. Otherwise, let F; be
the set of edges incident with v; but not on the cycle C. Then the graph
G — F, has no isolated vertices and has the cycle C as a component.

Case 1. C is a 6-cycle. Then G ¢ 2 by Observation 2.
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Case 2. C is a T-cycle. If G € R, then all the edges on C must have the
same weight by Corollary 1. We delete edges vyvp and v,v7 from G, and
obtain Ps = vov3v4usvevr as a component of G — {vivz,v1v7}. Moreover,
G — {v1v2, v1v7} contains no isolated vertices since v; is not a stem. Hence
w(vqvs) = w(vavs) + w(vsve) by Observation 1. But w(vyvs) = w(vauy) =
w(vsvs), 50 w(vavs) = w(vzvy) = w(vsve) = 0, a contradiction.

Now we present and prove our main result.

Theorem 6. Let G be a connected graph of girth at least five. Then G €
if and only if G is

1) a Cs, or

2) a Cq, or

3) 6(G) =1 and each component of the graph obtained by removing the
leaves and stems from G is one of the following:

3a) e 5-cycle with at most two vertices of degree three or more in G.
Furthermore, if there are two such vertices, then they are non-adjacent on
the 5-cycle; .

3b) a star K1,m (m 2> 2). Moreover, the center of K1 m has degree m
in G;

3c) an edge; or

3d) an isolated vertez.

Proof. If G has girth at least five and §(G) > 2, then the theorem follows
from Corollary 1.

Next, suppose G contains at least one leaf and G € Q. Let L be the set
of leaves of G and S = N(L) the set of stems.

If G — (LU S) has a component which is a 5-cycle C, then, by Lemmas
4 and 5, there are at most two vertices of C with degree greater than two
in G (and if there are two such vertices, they are nonadjacent on C) and
all of their neighbors not on C must be stems.

Hence we now consider those components of G — (L U S) that have no
5-cycles. If H is such a component, then g(H) > 6. We shall show that the
dieameter of H is at most two.

Case 1. The diameter of H is three.

It is easy to show that H is not a tree. Since g(H) > 6, there exists a
path P = abcd in H such that a is adjacent to a stem s of G and d is not
a leaf in H.

Claim 1. d is adjacent to at least one stem in G.

Otherwise, all neighbors of d, in G, are not stems. But d is not a
leaf in H, so there is another path of length 3 or 4, disjoint from P in
H, joining a and d because g(H) > 6 and the diameter of H is three.

399



Therefore the two paths form a 6-cycle or 7-cycle, denote it by C. Let
B = {uyuz | vy € V(C),us € V(G) — (V(C) Us)}. Since g(H) > 6, then
G; = G — F; induces no isolated vertices and has a component satisfying
the hypothesis of Lemma 7, a contradiction to G € by Lemma 1. Hence
d is adjacent to at least one stem s’ in G.

Claim 2. There exists no common neighbor of degree two between s
and d, or s’ and @, or a and d in G.

Since g(G) > 5, there is at most one common neighbor u between s
and d. If dg(u) = 2, then dy(a,u) = 4 since g(H) > 6, a contradiction
to the fact that the diameter of H is three. The same arguments can be
applied to vertices s’ and a. Moreover, g(H) > 6 implies that there exists
no common neighbor of degree two between a and d in G either.

Claim 8. There exists no common neighbor of degree two between s
and ¢, or s’ and bin G.

Let X and Y be the sets of leaves adjacent to vertices s and s’ in G,
respectively. Suppose there is a common neighbor u of degree two between s
and c. Let F> = {ujuz | v1 € {a,b,c,u,s},u2 € V(G)-({a, b, c,u,s}UX)}.
Then the graph G2 = G — F; has no isolated vertices and has a component
satisfying the hypothesis of Lemma 2, so G ¢ 2, a contradiction. Similarly,
we can show that there exists no common neighbor of degree two between
s’ and b in G, either.

Clearly, there is at most one common vertex between s and s’ since
g(G) > 5. If there is no common neighbor between s and s’ or the com-
mon neighbor is of degree at least three in G, let F3 = {ujup | u; €
{a,b,¢c,d,s,5'},u2 € V(G) — ({a,b,¢,d,s,8'} UX UY)} and G3 = G - F;
otherwise (i.e., there exists a common neighbor v of degree two between
s and s’ in G), let G3 = G — (F3 U sv). By Claims 2 and 3, we see that
G3 has no isolated vertices but has a component isomorphic to the graph
shown in Figure 5(a). Applying Observation 1, we have

w(ab) = w(as) + w(bc). 1)

w(ed) = w(ds’) + w(be). (2
Since G € 2, we also have

w(as) + w(ds’) + w(bc) = w(ad) + w(cd). (3)

Combining (1), (2) and (3), we have w(bc) = 0, a contradiction. Thus
the diameter of H can not be three.

Case 2. The diameter of H is at least four.



(a) (b) (c)
Figure 5.

Since g(H) > 6, there exists a path abcde in H so that a is adjacent to
a stem s of G.

Claim 4. There are no common neighbors of degree two between a and
d,oraande,orbandeinG.

Clearly there are no common neighbors of degree two in G between a
and d, or b and e since g(H) > 6.

Say there is a common neighbor u between vertices a and e. Let Fy
be the set of edges incident to the cycle Cs = abedeu but not on it. Then
G4 = G — Fy has no isolated vertices but has a 6-cycle as a component.
Hence G ¢ §2 by Observation 2, a contradiction.

Claim 5. There are no common neighbors of degree two between s and
c,ord,oreinG.

Applying the same technique as in the proof of Claim 3, we can see that
there is no common neighbor of degree two between s and c.

Suppose u is a common neighbor of degree two between s and d. Let
Z be the set of leaves adjacent to vertex s in G and F5 = {wuz | u; €
{a,b,¢,d,s,u},u2 € V(G) — ({a,b,¢,d,s,u} U Z)}. Then Gs = G — F;
has no isolated vertices but has a component satisfying the hypothesis of
Lemma 6, a contradiction to G € § by Lemma 1.

Say there is a common neighbor v of degree two between vertices s and
e. Let Fg = {wyuz | u1 € {a,b,¢,d,¢,,v},up € V(G) - ({a,b,c,d,e,s,v}U
Z)}. Then, by Claim 4 and the fact that there are no common neighbors
of degree two between s and ¢, or s and d, G¢ = G — Fg has no isolated
vertices but contains a component satisfying the hypothesis of Lemma 6, a
contradiction to G € Q.

Claims 4 and 5 yield that there are no common neighbors of degree
two between any two vertices of {s,a,b,c,d,e}. Let Fy = {ujuy | u; €
{a,b,¢,d,s},u2 € V(G) - ({a,b,¢,d,s} U Z)}. Then G7 = G — F; has no
isolated vertices and has a component H’ isomorphic to the graph shown
in Figure 5(b). By Observation 1, we see

w(ab) = w(as) + w(bc). 4)



On the other hand, let Fz = {viu2 | u1 € {a,b,c,d,e,s},uz € V(G) —
({a,b,c,d,e,s} U Z)}. Then Gg = G — Fg has no isolated vertices and
has a component H” isomorphic to the graph shown in Figure 5(c). Then
H" € Q and so

w(ab) = w(as), w(bc) = w(cd). (5)

Equations (4) and (5) imply that w(bc) = w(cd) = 0, a contradiction.
Thus the diameter of H can not be more than three.

Hence the diameter of H is at most two, i.e., H is either an isolated
vertex or isomorphic to a star, say Ky m. For m > 2, let the vertices of H
be ¢, by, ba, -+ , bm where ¢ has degree m in H. For each 1 < i < m, let s;
be a stem of G adjacent to b;.

Claim 6. If m > 2, then c does not have a neighbor, in G, which is a
stem.

Figure 6.

Otherwise, let s be one such neighbor and let L; and L, be the sets of
leaves adjacent to s; and s in G, respectively. If there exists a vertex u
adjacent only to vertices in {s1,52,...,5m,b1,b2,...,bm} and to at least
one vertex of {si,82,...,3m}, then we can delete all edges which are ad-
jacent to u except one siu (for some 1 < k < m). Thus we obtain a
spanning subgraph of G without isolated vertices, and v is a leaf adja-
cent to sy. Hence we may assume that there are no vertices which are
only adjacent to vertices {s1,52,...,5m,b1,b2,...,bm}. For the same rea-
son, we may assume no vertices only adjacent to vertices s and s;,1 <
it <m. Let Fg = {uluZ | u € {cablsbﬂa"' ybm, 81,82, ,Sm,S},’uz €
V(G) - ({c,b;,bz,--- ybm, 81,82, y8SmyS} UL ULa U+ ULyp U L)}
Then Gg = G — Fy has no isolated vertices, since g(G) > 5, but has a
component H" isomorphic to the graph shown in Figure 6. Let the total
weight of all edges incident with the leaves in Ly UL U--- ULy U L, be
w'. Since H" € Q, then by Observation 1, we have



w(eh;) = w(bis;) + wles), 1 <i<m. (6)
Since G € Q, we also have

w' +w(chy) +w(eb2)+- - - +w(chm) = w’ +w(cs) +w(bys1) +- - -+ w(bmSm).
()

Equations (6) and (7) imply m = 1, a contradiction to m > 2.

From Claim 6, we conclude that the center c of the star H = K} m (m >
2) has degree m in G.

Therefore, if 6(G) = 1 and G € Q, then every component of G— (LU S)
is one of 3a) - 3d).

Conversely, assume G has the specified structure. In the following, we
construct a good edge-weighting function.

Case 1. No component of G — (LU S) is K 3.
In this case, all edges of G are given the same weight and it follows from
the characterization in [3] that all star-factors have the same weight.

Case 2. K, appears as a component of G — (LU S).
For each K;) = uv of G — (LU S), assign edge-weights for the edges
incident to Ng(u) U Ng(v) as follows:

a e€ {ur |z € N(u)},e#uwv
w(e)={ b ec{vr|zeN@w}e#uw
a+b e=uv

where a,b > 0. All other edges are assigned the same weight.

Let T be any star-factor of G. Then T contains exactly one edge incident
to each leaf of G. For each component which is a 5-cycle or an isolated
vertex, it can be dealt with as in Case 1. For H = uv, T contains an edge
uv or an edge joining a stem s; to  and an edge joining another stem s;
to v. Since w(uv) = w(us;) + w(vsz), we conclude that every star-factor
of G has the same weight.

This completes the proof. O

Remark. The main theorem has classified all graphs in Q with girth at
least five. The families remaining to be determined are graphs of girth
three or four. It seems that the structure of these families are much more
complicated, but it would be an interesting topic to investigate.
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