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Abstract. We give combinatorial proofs of some binomial and g-binomial
identities in the literature, such as

- 2n e k, 2k
(_1)Icq(9k2+3k)/2[ ] = (1 +qn) (1 +d+q ) (n > 1)’
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k=—00

and

> (3) -9 = o

k=0
Two related conjectures are proposed at the end of this paper.

1 Introduction

There are many different g-analogues of the following binomial coefficient
identity

kg;(—l) ‘ (n -2I-n2k) =27 (1.1)
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in the literature. Here is a list of such identities:
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where the g-shifted factorials are defined by (a;q¢)n = (1 — a)

(1—aq)---(1 —ag™!) and the g-binomial coefficients are defined as

(2:9)n .
KE {(q; Delgges’ | OSEED

0, otherwise.

Identities (1.2)—(1.4) can be proved by using the g-binomial theorem and
i2 = —1 or other methods. For (1.2), see Ismail, Kim and Stanton (5,
Proposition 2(2)], Berkovich and Warnaar [2, §7], and Sills [6, (3.3)]. For
(1.3), see [5, Proposition 2(3)]. The identity (1.5) corresponds to Slater’s
Bailey pair C(1). Identities (1.6) and (1.7) were discovered by Bressoud |3,
(1.1) and (1.5)}, and the former is usually known as a finite form of the first
Rogers-Ramanujan identity.

For each of the identities (1.2)-(1.7), one can change g to g~! to find
a new identity of the same type. The identities (1.2)—(1.4) are “self-dual,”
(1.6) and (1.7) are dual, and the dual of (1.5) is as follows:

S 2 2n "
k;oo(_l)qu +k [n N 2k] = q(z)(_q; q)".

This identity is known as the Bailey pair C(5) in Slater’s list.
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An identity similar to (1.1) is
[+ o]
2n 1 ifn=0
..1 k = ! ! 1-8
k_z( ) (n+3k) {2-3"-1, ifn>1, (1.8)
=—00
which also has two different g-analogues as follows:

1, ifn=0,

- 2 2n
kzz_:w(—l)kq(% +3k)/2 [n+3k] “a +qn)(?;;;:;;)::1’ fn>1, (1.9)
i (—l)kq‘g"’+9k)/2[ 2n ]
k=—o0 n+ 3k
L, ifn=0,
= ifn=1, (1.10)
oo o, 2

Like (1.2)-(1.4), Identities (1.9) and (1.10) can be proved by the ¢g-binomial
theorem. Identity (1.9) is equivalent to the Bailey pair J(2) in (8], and
can also be found in [5, Proposition 2(5)]. This identity was utilized by
Berkovich and Warnaar [2] to prove a ‘perfect’ Rogers-Ramanujan identity.

There exists another not-so-famous binomial coefficient identity similar
to (1.1) and (1.8) as follows:

(-2)~, ifn=0 (mod 3),

f: (27;9)(‘3)k =<{(-2*, ifn=1 (mod 3), (1.11)
= (-2)*71, fn=2 (mod 3).

The main purpose of this paper is to give combinatorial proofs of the
identities (1.1)—(1.4), (1.8)—(1.11), and some of their companions which
appeared in the literature, such as

> (-1)* (in:mlc) =3", (1.12)

k=—-00

However, we are unable to give combinatorial proofs of (1.5)-(1.7).
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2 Proofs of (1.1)—(1.4)

Proof of (1.1). Let S = {a1,...,a2} be a set of 2n elements, and let
F={ACS:#A=n (mod 2)},
4 = {AQ S: #(Aﬂ{ag.‘_l,agg}) =1foralli= 1,...,n}.

It is easy to see that 4 C & and #¥ = 2". For any A € &, we associate
A with a sign sgn(A) = (—1)#4-")/2 1t is clear that

(n/2]
k 2n _ _
S, 3) = D= T )+ 3 )
k=—|n/2] Ae¥ AcF\Y Ac¥

Clearly, sgn(4) = 1 for A € 4. What remains is to construct a sign-

reversing involution on the set & \ ¥4.
For any A € #\¥, choose the first number i such that #(AN{azi—1, a2})
# 1, i.e., A contains both az;—; and az; or none of them. Let A’ be a subset

of S obtained from A as follows:
A[ - A U {a2i—l7a2‘i}1 if {a'21:—11 azi} NA= @’ (2.1)
A\ {agi-1,a2}, if {azi-1,02i} C A.
It is obvious that A’ € # \ ¥4, and A — A’ is the desired involution. O

For A € S, we associate it with a weight ||A|]| = 3 ,c4a. By the
g-binomial theorem (cf. Andrews [1, Theorem 3.3])

NN o
(mo)n =) [ | (~1y727q),
pard
we have
S g4l ':]q(*:‘)_ 2.2)
ACIn) -
#A=k
Here and in what follows [n] := {1,...,n}. Now we can give proofs of
(1.2)-(1.4).

Proof of (1.2). Let {agi—1,a2:} = {—(2i-1)/2,(2i—1)/2} fori=1,...,n.
Since ag;—1 + a2; = 0, the involution in the proof of (1.1) is indeed weight-
preserving and sign-reversing. It follows that

z sgn(A)g!All = Z sgn(A)q!l4l + Z sgn(A)q!4ll
AEeF AeF\Y Ac¥

=Y sgn(A)q!4ll. (2.3)
AcY

418



It is easy to see that S is obtained from [2n] by a shift —(2n + 1)/2. By
(2.2), the left-hand of (2.3) equals

n/2)

Z Z sgn(A)gllAll

k=— ACS
L=/2] #A=n

+2k
St ) e 2
_k=-ln/2j n+ 2k q q . (2.4)

On the other hand, the right-hand side of (2.3) is given by

n —- ;e i - 2
[[(a=® 72 4 g®=1/2) = (—g;¢?)ag™""72.

i=1
After simplification, we obtain (1.2). m]

Proof of (1.3). Note that the index ¢ in (2.1) is always less than n. Other-
wise, #(AN{azi-1,a2:}) =1fori=1,...,n—1and #(AN{azn-1,a2,}) #
1, which is contradictory to the condition #A4 = n (mod 2). Thus, if we
take {agi—1,a2:} = {—i,i} for i = 1,...,n — 1 and {azn—1,82n} = {0,n},
then the involution in the proof of (1.1) is also weight-preserving and sign- -
reversing, and (2.3) still holds. Similarly as before, we obtain

/2] [ 2n n+2k+1 n=l )
> (-1 [n t 2k] (" F gt — (0 4 ) T (0 + 49,
k==|n/2| i=1
which is equivalent to (1.3). a

Proof of (1.4). Let {ag;_1,a2} = {—(2i—1)/2,(2i—-1)/2} fori =1,...,n—
1and {azn-1,a2:} = {(2n—-1)/2,(2n+1)/2}. Then § = {i—(2n—1)/2: i €
[2n]} and the previous involution yields

Ln/2]
n

k=—|n/2) +2k
n-1
- (q(2n—1)/2 + q(2n+l)/2) H(q—(Zt—l)/2 + q(2:—-l)/2)’
=1
which, after simplification, leads to (1.4). o

Similarly, if we set S = {a,...,a2n+1} be a set of 2n+ 1 elements, and
again let
F={ACS:#A=n (mod 2)},
¥={ACS: #(AN{azi—1,a2:})=1forall i = 1,...,n}
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then the same argument implies that
oo
n+ 2k
k=—00

Furthermore, letting {a2i—1,a2:} = {—(2i — 1)/2,(2i - 1)/2},i =1,...,n,
and azn41 = (21 + 1)/2, we obtain

3T (-1)k? [zn:;,lc] =(—¢;¢%)n (2.5)

k=—00

(see [5, Propositon 2(2)]); while letting {azi-1,a2:} = {—i,4},i=1,...,n,
and agn+1 = 0, we obtain

oo
_qyk 22—k (2041
2. (-1 [n+2k

k=—00

] = (=% ¢%)n-

Moreover, replacing g by ¢~} in (2.5) and using the relation

n — gk(k—n) [T
[k]q—l 1 [k]

yields

3 2_gk[2n+1 .
k._;oo(—l)quk 2k [n + 2k] — (_q; qZ)nq .
3 Proofs (1.8)~(1.10)

Recall that the symmetric difference of two sets A and B, denoted by AAB,
is the set of elements belonging to one but not both of A and B (cf. [4, p. 3]).
In other words,

AAB := AUB\(ANB) = (A\B)U(B\A).

It is easy to see that (AAB)AB = A. Here we shall use the notation AAB
to polish our description of certain involution.

Proof of (1.8). Let S = {a1,...,a2,} (n > 1), and let
P={ACS: #A=n (mod 3)}. (3.1)
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For any A € 2, we associate A with a sign sgn(A) = (—1)#A-")/3_ Then
Ln/3j
2n
> (-1)’°( ) = 3 sgn(4).
k=—|n/3] n+3k AeP
We define a subset of 2 C £ as follows:

2:={A€c ZP:#An{ay,...,001}) ¢ {i-1,i+2} fori=1,...,n—1}.
(32)

We will show that the elements of &\ 2 cancel pairwise, i.e.,

> sen(d)=0. (3.3)

AeP\2

For any A € & \ 2, there exist some numbers i < n — 1 such that #(AN
{a1,...,02i41}) € {i — 1,7 + 2}. Choose the smallest such i and let

AI = AA{al, e ,(12§+1}. (34)

Then #A' = #A+3and A' € P\ 2. It is easy to see that A — A’ is a
sign-reversing involution, and therefore (3.3) holds. It remains to evaluate
the following summation

Z sgn(A).

Ae2
For any A € 2, we claim that

#(AN{ay,...,a2i41} € {i,i+1}, foralli=1,...,n—1. (3.5)

Indeed, by definition, the statement (3.5) is obviously true for i = 1. Sup-
pose it holds for i — 1, i.e.,

#(AN{ay,...,a2i1}) € {i — 1,3},

Then
#(AN{a1,...,a2011}) € {i —1,4,i +1,i +2}.

By (3.2), we confirm our claim. In particular,
#(AN{a1,...,a2n-1}) € {n—1,n}. (3.6)

Thus by (3.1), we must have #A = n and so sgn(4) = 1. Note that we
have 2 possible choices for AN {a;}. By (3.5), we have 3 possible choices
for each AN {a2;,az2i41},%=1,...,n— 1. Finally, we only have one choice
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for AN{azn} according to (3.6) and #A = n. This proves that #2 =2-3"
and therefore completes the proof of (1.8). 0O

For A € 8, recall that its weight is defined by |JA|| =3 ,c 4 @. In order
to prove (1.9) and (1.10), we need to consider the following weighted sum
Z sgn(A)gllAl

AeP

on a particular . As one might have seen, the involution A — A’ in (3.4)
is in general not weight-preserving. Nevertheless, a little modification will
fix this problem. For any A € £\ 2, choose the same 7 as in (3.4), and let
A" be constructed as follows:

e a; € A" if and only if a; ¢ A;

® apj,azi+1 € A" if agj,a2j 11 € A(G=1,...,i—-1);

® agj,azj41 ¢ A” if agj a1 €A(G=1,...,i—1);

® ay; € A" and agj41 ¢ A" ifagj € Aandag; 1 ¢ A(G=1,...,i—1)
® ay; ¢ A” and agjy) € A" ifag; ¢ Aandagj 1 €A (j=1,...,i—1);
e a.€A”ifandonly ifar € A (21 +2 < k <2n).

It is clear that #A” = #A' = #A + 3. Furthermore, if we putting a; =
az;j + azj+1 = 0 then A — A” is a weight-preserving and sign-reversing
involution. Now we can give proofs of (1.9) and (1.10) by selecting the set
{1, ...,a2,} properly.

Proof of (1.9). Let a; = 0, azn = n and {ag;,a2i41} = {~i,i} for i =

1,...,n — 1. Then the above involution A — A” gives
> se(A)4l =0,
AeP\2
or
3 sgn(4)gl = 3 sgn(A)glAl. (3.7)
AeP? Ac2

By (2.2), the left-hand of (3.7) may be written as

Ln/3} Ln/3}
2n n+43k+1
Haijl — ~1)* ( ) g—(n+3k)n
) Y sen(A)g Y. (-1 [n+3k]q 1 g .

== ACS ==
k=l #A=n+3k k==1n/3]
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Let

2" = {A - {al,... ,agn_l}:
#(Aﬂ{al,...,agi.,.l}) ¢ {i—l,i+2}, i=1,...,n— 1}.

Then (3.5) also holds for A € 2*. Moreover, for i =1,...,n — 1, we have
three choices for each AN{a3i,a2:+1}, namely, {az:}, {azi+1}, {a2i, 62i41} if
#(Aﬂ{al, vy agi..l}) =1i-1, and @, {azi}, {a2,~+1} if #(Aﬂ{al, v ,ag,-_l})
= 1. Noticing that as; + ag;11 = 0, we have

n-1

YoMi= T gy 3 gl = o T] (¢ + a7 + ).
Ac2- Ac 2" Acg° i=1
#A=n—1 #A=n
It is not hard to image that there should exist a bijection from {4 €
2*:#A =n—-1} to {A € 2*: #A = n} which preserves the weight.
Indeed, our definition of the involution A+ A” on &\ 2 can be simulta-
neously applied to 2*, which yields the desired bijection. It follows that

n—1
Z (I"A” = Z q”A” = H (q" + q-i + qo)_
A" AE2" t=1

#A=n-1 #A=n
Since
2={Ae2": #A=n}H{AU{am}: Ac 2", #A=n—1)

(a2n = n in this proof), the right-hand of (3.7) equals

n-1
dodMl= 37 gl gr S glMil= (1407 [[(6 +a7F + ¢

A€e2 Ac2" Ac2* i=1
#A=n #A=n—1
The proof then follows after simplification. m]
Proof of (1.10). Suppose n > 3. Let a1 =0, agn—g = n — 1, agn_; = n,
azn = n+1 and {az;,az241} = {-4,i} for i = 1,...,n — 2. For any

A€ P\ 2, we claim that

#(AN{e1,...,a2n-1}) € {n —2,n +1}.
Otherwise, we have

#Ae{n-2,n-1,n+1,n+2},
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which is contrary to the definition (3.1). Therefore, the index 7 we choose
for (3.4) is indeed less than n — 1. Since ag; +a2i41 =0 (1 <1< n—2)
here, the previous involution A — A” is still weight-preserving and sign-
reversing, and thus (3.7) holds again. In this case, the left-hand of (3.7)

equals

Ln/3J
2n n+8k+1y oo _
N e
k=—{n/3}

To evaluate the right-hand side of (3.7), we introduce

D* = {A - {al,...,azn,a}:
#(AN{ay,...,ann}) ¢ {i-Li+2}, i=1,...,n—2}.

Then the same argument as 2* implies that

n—2
Z qllAiI = Z quAII + Z qllAlI =92 H q +q—t +qo) @3. 8)
Ac2+ Ac2* i=1

#A=n— F#A=n-2

Moreover, our definition for the involution A — A” on & \ 2 can also be
applied to 2*, and we have

n—2
Z gall= 3~ qlall= H(q +q7 + ). (3.9)
Ac2*
Iy el #A=n-2

It is easy to see that the right-hand of (3.7) equals

I gl = T gl (geana 4 gean-1 4 goan)

Ae2 Ac2*
#A=n—1

+ z q||A|| (qazn-2+azn-1 +q02n-z+02n + qaﬁn—l"‘a?n) .
Ace2*
#A=n-2
Substituting (3.8) and {@a2n.—2,82n-1,02n} = {n—1,n,n+1} into the above
equation, we complete the proof of (1.10). m}

No doubt that we may define the involution A — A” on the set {a4,...,
azn+1}- Let {ay,...,a2n} be as in the proof of (1.9). Then putting azn41 =
—n we obtain

2 on+1]  (¢%¢%)
1)k g9k —3k)/2 [ ] =2 in 3.10
,c;w( y'e n+ 3k (¢ 9)n (3.10)
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while putting az,4+1 = n + 1 we get

o 3. 3
_1ykgok+3ky2 (20 + 1] _ (€7¢°)n—1 n ) ntl S
2, (W' o] = Gstar e e @z

=—00

(3.11)

Both (3.10) and (3.11) are g-analogues of (1.12). Finally, we point out that
the following two identities:

ad 2 2n 3; 3 —
Z (_l)kq(Qk +9k)/2 [n } - (@°8°)n lqn-lx(n > 0),

W +3k+1] (g
i (_l)kq(9k2+3k)/2[ n+1 ] _ (2% 4%)n
W n+3k+1 (¢ D)n

appearing in [5] can also be proved in the same way.

4 Proofs of (1.11)

First Proof. By the binomial theorem, we have

(vVa+i)" = T (:) 3k/2jn-k

k=0
=i g (2';)(—3)" +i" 13 g (21:1 1)(—3)'=. (4.1)

On the other hand, there holds
N —on (e Lo T\ _on (. T . . 0T
(\/?_»+1) =2 (cos6 +lsm6) =2 (cos ; +isin 5 ) (4.2)
Comparing (4.1) and (4.2), we immediately get (1.11) and its companion

) n 0, ifn=0 (mod3),
> <2k + 1)(-3)’° =q(=2)*" ifn=1 (mod3), (4.3)
k=0 (-1)"2"1, ifn=2 (mod 3).
]
Second Proof. Let I = {a,b,c,d, e} denote an alphabet. For a word w =
wy -+ wn € I'*, its length n is denoted by |w|. For any z € T', let |w|, be

the number of z’s appearing in the word w. Let W,, denote the set of words
w = w; - --w, € I'* satisfying the following conditions:
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() Jwla + Jwls + |wle = [wla.
(i) If we remove all e’s from w, then each d is in the even position.

It is easy to see that there are (j;)3* words w € W, such that jwly = k,

and so n/2)
S (5)8F = 3 (-1

k=0 wew,

We call (—1)!%l4 the sign of the word w. In what follows, we shall construct
an involution on W,, which is sign-reversing for all non-fixed points.

For any word w = wy---wp, € Wy, let u; = wai_owsziws;, @ =
1,...,[n/3]. According to the conditions (i) and (i), the subwords u;
have at most 43 cases. Let us classify them into three types as follows:

X : ade, bde, cde, aed, bed, ced, ead, ebd;

Y: eee, aee, bee, cee, eae, ebe, ece, eea, eeb, eec, dee, ede, eed,
ecd, ada, adb, adc, bda, bdb, bde, cda, cdb, cde, dad, dbd, dcd;

Z: eda, edb, edc, dea, deb, dec, dae, dbe, dce.

We claim that all the words in W,, with a u; of type Y cancel pairwise.
Indeed, for such a word w, choose the smallest number ¢ such that u; is of
type Y. Then we obtain a word w’ by replacing u; by u}, where u; «— u}
is determined by the following table:

eee — ecd | aee — ada | bee «— adb | cee — a,d_c eae «— bda
ebe «— bdb | ece «—— bdc | eea —— cda | eeb — cdb | eec — cdc
dee — dad | ede «— dbd | eed «—— dcd

It is clear that w’ € Wy, |w'la = |w|qs £ 1, and hence w — w' is a sign-
reversing involution.

On the other hand, for any word w € W, we claim that if no u; in w is
of type Y, then no u; in w is of type Z. In fact, by the definition of w, u;
must be of type X or Y. By the condition (ii), none of dd, ded, deed can
appear in w and therefore no u; of type X in w can be followed by a u; of
type Z. This proves the claim. It follows that the remained words in W,
are just those all u; are of type X, and vice versa. Namely,

Z (_1)lwid — Z

weEW, weW,
all u; is of type X

(=1)lle, (4.9)

Consider the right-hand side of (4.4) (RHS(4.4) for short). Note that each
u; has 8 possible choices. We have the following three cases:

426




e If n =0 (mod 3), then |w|q = n/3 and RHS(4.4) = (—8)"/3,

e Ifn =1 (mod 3), then w must be ended by a letter e, jw|g = (n—1)/3,
and RHS(4.4) = (—8)(»—1)/3,

o If n =2 (mod 3), then w may be ended by ee, ad, bd, or cd, and
RHS(44) = (_8)(n—2)/3 + 3(_1)(n+l)/38(n—2)/3 = (_z)n—l.

This completes the proof. ]

The combinatorial proof of (4.3) is exactly analogous. We need only to
replace the condition (i) by |w|q +[w|s + {w|. = jw]s — 1, and change “even”
to “odd” in the condition (ii).

It is difficult to find g-analogues of (1.11) and (4.3). However, the math-
ematics software MAPLE hints us to propose the following two interesting
conjectures.

Conjecture 4.1 Letl,m,n >0 and € € {0,1}. Then

tn/2J

_1yk 20k pomk| T 2\k
22%( 1)*q [2k+€](1+4+q)

is divisible by (1 + q)L(n+2)/41 (1 4 g2)l(n+4)/8]
Conjecture 4.2 Let m,n > 0 and € € {0,1}. Then

n/2}

_1yk2k342mk| T 2vk
kg( 1)*q [2k+e](1+q+q)

is divisible by (1 + q)l"/2 (1 + g2)l™/4),
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