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Abstract: Let G be a graph with n vertices and uj,us,..., pn be
the Laplacian eigenvalues of G. The Laplacian-energy-like graph invari-
ant LEL(G) = Y_[_, \/I&i, has been defined and investigated in [1]. Two
non-isomorphic graphs G; and G2 of the same order are said to be LEL-
equienergetic if LEL(G;) = LEL(G>2). In [2], three pairs of LEL-equienergetic
non-cospectral connected graphs are given. It is also claimed(?l that the
LEL-equienergetic non-cospectral connected graphs are relatively rare. It
is natural to consider the question: Whether the number of the LEL-
equienergetic non-cospectral connected graphs is finite? The answer is neg-
ative, because we shall construct a pair of LEL-equienergetic non-cospectral
connected graphs of order n, for all n > 12 in this paper.

1 Imntroduction

Let G = (V, E) be a simple connected graph with n vertices and m edges.
In general, if m = n + ¢ — 1, then G is called a c-cyclic graph. Specially, a
1-cyclic graph, i.e., m = n, is known as a unicyclic graph.
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Let the adjacency matrix, degree matrix of G be A(G) = [ay], D(G) =

diag{d(v1),d(vs), -+ ,d(vn)}, respectively. The Laplacian matriz of G is
L(G) = D(G) — A(G). Let A1, As,...,An be the adjacency spectrum of
G, and pi,pg, ..., pn be the Laplacian spectrum of G. The Lapalacian
characteristic polynomial of G is denoted by (G, A), i.e., ®(G, A)=det(A]—
L(G)).
( ’I)‘zxe energy E(G) of a graph G is defined® as E(G) = 1, |A:|. This
quantity has a long known application in molecular-orbital theory of or-
ganic molecules (see [3-5]) and has been much investigated (see [6-9]). Two
non-isomorphic graphs G; and G of the same order are said to be equiener-
getic 19 if E(G,) = E(G,). Clearly, cospectral graphs are equienergetic,
but such case is of no interest. In [11}, a pair of equienergetic non-cospectral
connected graphs of order n for n > 8 is given. For other results on
equienergetic graphs see [12-14] and the references therein.

The Laplacian energy LE(G) of a graph G has been defined 1] as
LE(G) = Y, |ui—*2|. Similarly as the graph energy, two non-isomorphic
graphs G; and G; of the same order are said to be LE-equienergetic if
LE(G,) = LE(G;) (see [2]). The Laplacian-energy-like invariant of a
graph G, denoted as LEL(G) = Y_;_, /i, has been defined and inves-
tigated in [1]. In [2], two non-isomorphic graphs G; and G3 of the same
order are said to be LEL-equienergetic if LEL(G,) = LEL(G2). The
quantities E(G), LE(G; and LEL(G) were found to have a number of
analogous properties!!'?®, for the (chemical) application background of the
LEL-equienergetic graphs see [1-2].

In [2], a pair of LE-equienergetic non-cospectral connected graphs of
order n for n > 4 and three pairs of LEL-equienergetic non-cospectral con-
nected graphs are given. It is also claimed(?] that the LEL-equienergetic
non-cospectral connected graphs are relatively rare. It is natural to con-
sider the question: Whether the number of the LEL-equienergetic non-
cospectral connected graphs is finite? The answer is negative, because we
shall construct a pair of LEL-equienergetic non-cospectral connected graphs
of order n, for all n > 12 in this paper. Moreover, we identify a pair of
LE-equienergetic non-cospectral connected unicyclic graphs of order =, for
alln>7.

2 Main results

Theorem 2.1 There exists a pair of LE-equienergetic non-cospectral, con-
nected unicyclic graphs of order n, for alln > 7.

Proof. Let G; and G be the connected unicyclic graphs as shown in Fig.
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1. By an elementary calculation, we have

(1a) ®(G1,A) = AA-1)""T(A=3)(A2=3A+1)(A3 - (n+1)A%2+(3n -
5)A —n).

(28) ®(Ga,A) = A(A—1)""8(A2=5X+5)(A3—(n+1)A2+(3n—5)A—n).

By equalities (1a) and (2a), it is easy to see that LE(G,) = LE(G.)
foralln>7.

G2
Fig. 1

Let G; U G2 denote the graph consisting of two (disconnected) compo-
nents G and Gj, and kG denote the graph consisting of k¥ (k > 0 be an
integer) copies of the graph G. The join G, V G of graphs G; and G,
is the graph having vertex set V(G; V G3) = V(G; U G3) and edge set
E(G1V Gy) = E(G1)UE(G2) U {(u,v) 1w € V(G1),v € V(G2)}. Let K,,,
K n-1 denote the complete graph, and the star of order n, respectively.
Specially, K; denotes an isolated vertex.

Lemma 2.1 [16] If an isolated vertez is connected by edges to all the ver-
tices of a graph G of order n, then the Laplacian eigenvalues of the resultant
graph are as follows: one of the eigenvalues is n + 1, the other eigenvalues
can be obtained by incrementing the eigenvalues of the old graph G by 1
ezcept the lowest one, and 0 as another eigenvalue.

Example 2.1 The Laplacian spectrum of K, U2K] is (2,0,0,0), then the
Laplacian spectrum of (K2 U2K;) V K; 45 (5,3,1,1,0) by Lemma 2.1.

Theorem 2.2 (1) Let Hy = (K3 U K16 U (n —11)K;) V K} and Hy =
(Ki7 U K12 U (n — 12)K,) V K, then H, and H; is a pair of LEL-
equienergetic non-cospectral, connected graphs of order n, for all n > 12.
(2) Let Hy = (7K3 U (n—22)K1) V K) and Hy = (Ks U (n-—9)K1) v K,
then H3 and Hy is a pair of LEL-equienergetic non-cospectral, connected
graphs of order n, for alln > 22. (3) Let Hs = (4K7 U 4K3 U (n—41)K,)
V K; and He = (K17 U (n — 18)K;) V K), then Hs and Hs is a pair
of LEL-equienergetic non-cospectral, connected graphs of order n, for all
n>41. (4) Let H; = (20K, U 5K3 U (n — 56)K1) V K and Hs = (K1,
U (n—12)K)) V K,, then H; and Hg is a pair of LEL-equienergetic non-
cospectral, connected graphs of order n, for all n > 56.
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Proof. In the proof of this Theorem, we use S(G) to denote the Laplacian
spectrum of G. Recall that S(K,) = (n,n,-+,n,0), and S(Kyn-1) =

n-1

(n,1,1,---,1,0), where n > 2.

n—2

(1) By Lemma 2.1, we have S(H;) = (n,8,4,4,2,2,2,2,2,1,1,---,1,0),
(L A

n-10
S(H,) =(n,9,4,2,2,2,2,2,2,2,1,1,---,1,0). Thus, LEL(H:) = LEL(H;).
N e’

n—11
(2) By Lemma 2.1, it follows that S(H3) = (n,4,4,--- ,4,1,1,---,1,0),
n-16
and S(Hy) = (n,9,9,---,9,1 ,1,0). Thus, LEL(H:;) = LEL(H,).
hw——/ ‘,g_r
Mo
(3) Lemma 2. llmphesthat S(Hg) =(n,8,8, -+ ,8,4,4,---,41,1,---,1,0),
&_W‘ P ,_%4 ”
n—

and S(Ho) = (18,18, -, 18, L1, ,1,0). Thus, LEL(Hs) = LEL(Hg).
‘,.._/

n—18

(4) Lemma 2. llmphesthatS(H-,) =(n,4,4,---,4,3,8,---,31,1,---,1,0),
V v n:32
and S(Hg) = (n, 12,12,---,12,1,1,- 1 0). Thus LEL(H-,) LEL(Hp).
10 n-12

It is well-known that Y. ; #; = 2m (for example, see [1]). This implies
that H, and H; are two 9-cyclic graphs. Thus, we have

Corollary 2.1 There exists a pair of LEL-equienergetic non-cospectral,
connected 9-cyclic graphs of order n, for all n > 12.
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