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Abstract

For an integer k > 1 and a graph G = (V, E), a subset S of the
vertex set V is k-independent in G if the maximum degree of the
subgraph induced by the vertices of S is less or equal k — 1. The
k-independence number 8x(G) of G is the maximum cardinality of a
k-independent set of G.

A set S of V is k-Co-independent in G if S is k-independent in
the complement of G. The k-Co-independence number wx(G) of G
is the maximum size of a k-Co-independent set in G. The sequences
(Bx) and (wr) are weakly increasing.

We define the k-chromatic number or k-independence partition
number xi(G) of G as the smallest integer m such that G admits
a partition of its vertices into m k-independent sets and the k-
Co-independence partition number 6x(G) of G as the smallest in-
teger m such that G admits a partition of its vertices into m k-Co-
independent sets. The sequences (xx) and (6 ) are weakly decreasing.

In this paper we mainly present bounds on these four parameters.
Some of them are extensions of well-known classical results.

Keywords: k-independence, k-Co-independence, k-chromatic num-
ber, k-Co-independence partition number.

1 Terminology and introduction

We consider finite, undirected and simple graphs G = (V, E) of order |V| =
n(G) and size |E| = m(G). The open neighborhood of & vertex v € V
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is No(v) = {u € V | wv € E}, ie, the set of all vertices adjacent with
v. If § C V(G), then Ng(S) = UyesNg(v) is the open neighborhood of
S. The closed neighbourhoods of v and S are Ng[v] = Ng(v) U {v} and
Ng[S] = Ng(S) U S. The degree of a vertex v of G is dg(v) = |Ng(v)|. By
A(G) and §(G) we denote the maximum degree and the minimum degree
of G. If § C V, then G[S) denotes the subgraph induced by the vertex set
S.IfScVandzeV\S, then we denote by ds(z) the number of edges
from z to S.

Let G, = (V1,E1) and G2 = (V2, E3) be two disjoint graphs. Their
union G = G; U G2 has the vertex set V = Vi UV and the edge set
E = E, UE,. Their join G; + G2 consists of G; UG together with the edge
set {uv|u € V4, v € V2}. The composition G = G1[(G2] hes V =V, x V; as
its vertex set and u = (u,uz) is adjacent with v = (v1,v2) whenever (u;
is adjacent with v;) or (u1 = v; and u, is adjacent with vz). The cycle of
order n is denoted by Cj,.

For any parameter u(G) associated to a graph property P, we refer to
a set of vertices with property P and cardinality u(G) as a u(G)-set. An
independent set S is a set of vertices whose induced subgraph has no edge.
In [11, 12] Fink and Jacobson defined a generalization of the concepts of
domination and independence. For an integer £ > 1 and a graph G =
(V,E), a subset D of V is k-dominating if every vertex in V\D has at least
k neighbors in D. The k-domination number 7x(G) of G is the minimum
cardinality of a k-dominating set of G. A subset S of V' is k-independent in
G if A(G[S]) < k. The k-independence number 8;(G) of G is the maximum
cardinality of a k-independent set of G. Since every k-independent set is
(k + 1)-independent, the sequence (By) is weakly increasing and thus

B(G) = B1(G) < B2(G) < ... £ Ba(G) < Ba+1(G) =n.

More details and results on k-independence and k-domination can be
found in [2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 14, 18).

A set S C V(G) is k-Co-independent in G if S is k-independent in the
complement G of G; that is A(G[S]) < k. The k-Co-independence number
wi(G) of G is the maximum size of a k-Co-independent set in G. Also the
sequence (wy) is weakly increasing and so

W(G) = wi1(G) Lwa(G) < ... Lwn—5-1(G) < wn-5(G) =n.

We define the k-chromatic number or k-independence partition number
xx(G) of G as the smallest integer m such that G admits a partition of
its vertices into m k-independent sets and the k-Co-independence partition
number 8 (G) of G as the smallest integer m such that G admits a partition
of its vertices into m k-Co-independent sets. The sequences (xx) and (6k)
are weakly decreasing and therefore

x(G) = x1(G) 2 x2(G) 2 ... 2 xa(G) > xa+1(G) = 1.
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as well as
0(G)=6,(G)26:(G)>...> 6, :_,(G)>0._,(G)=1.

For k = 1, the k-chromatic number of G is the chromatic number x(G) of
G, and the k-Co-mdependence partition number of G is the clique partition

number §(G) of G.
Since a k-Co-independent set S of G is a k-independent set of G, we

deduce that A(G[S]) < k and A(G[S])+6(G[S]) = |S|]-1. Thus 6(G[S]) >
IS| -k - 1 Equlvalently, a set S is a k-Co-independent set if §(G[S]) >

S| -

Observation 1 Every graph G satisfies wi(G) = Bi(G) and 0:(G) =
xx(G).

When no confusion can arrise, we often write: V, E, n, d(v), N(v), A,
6, ... for V(G), E(G), n(G), dg(v), Ng(v), A(G),5(G), .

In this paper we present lower and upper bounds on Sx(G), wk(G),
xk(G) and 6x(G). The special case ¥ = 1 mostly leads to well known

classical results.

2 Relations between [y, wg, xx, Ok

It is well known that w(G) < x(G) and B(G) < 8(G) for every graph G. In
the following we extend these inequalities.

Theorem 1 If G is a graph such that k < min(A(G), A(G)), then
wi(G) < (2k - 1)xx(G).

Proof. Let S1,5,,.. -»Sx.(c) be a partition of the vertex set V into

Xk (G) k-independent sets. If B is a wy, (G)-set of G, then A(G[B]) < k—1.1f
we define A; = BNS; foralli = 1,2,...,xx(G), then 4; isa k—mdependent
setinGaswellasinGor A; =0 for i=1,2,...,x:(G). Thus A(G[A]) <
k-1 and A(G[4;]) < k—1. Since 2m(G[A,]) = EveA‘, dgia,)(v) < A (k-
1) and 2m(G[A;]) = > veA dgray(v) < |Ail (k — 1), we obtain

[A:] (J4q} - 1)
2

This implies |A4;| < 2k — 1, and we deduce that

=m(G[Ai]) + m(G[A]) < |4 (k- 1).

xx(G) xx(G)

wi(G) = Z IBNSi| = ) |4l < (2k - 1)xk(G).

i=1
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This completes the proof of Theorem 1. m

The complement of the composition G = Cop[Mak—1], where Ma,_; is
a (k — 1)-regular graph of order 2k — 1 with k an odd intger and C, the
cycle of order 2p, is extremal for Theorem 1, because wi(G) = p(2k — 1)
and xx(G) =p.

Observation 1 and Theorem 1 imply the next corollary.
Corollary 1 If G is a graph such that k < min(A(G), A(G)), then
Bk(G) < (2k - 1)6k(G).

Let k be an odd integer, and let G = G1[G2] be the composition, where
G, is a graph such that 8(G1) = 6(G1) and G is a (k — 1)-regular graph
of order 2k — 1. Then we can see that G satisfies fi(G) = (2k — 1)0xk(G).

In the book of C. Berge [1] we can find the inequalities x(G)B8(G) = n
and x(G) + B(G) < n + 1 for every graph. In the following we generalize
these results.

Observation 2 If G is a graph with k < A(G), then
xk(G)Bk(G) 2 n.

Proof. Let S1,852,...,5y.(c) be a partition of the vertex set V into
x+(G) k-independent sets. Since every S; is a k-independent set, we con-
clude that n = |S;| + |S2| + . .. + |Sx| < Xk(G)Br(G). m

Let n > 2 be an even integer, and let H, be an (n — 2)-regular graph of
order n (that means that H, is a complement of the union of 3 copies of

K3). Since Bx(Hpx) = k and xx(Hpx) = p when k is even, the graph Hpy
is extremal for Observation 2.

Observations 1 and 2 imply the next corollary.
Corollary 2 Let G be a graph. If k < A(G), then
0r(GYwi(G) = n.
Corollary 3 Let G be a graph. If k < A(G), then
xk(G) + Be(G) = 2v/n.

36



Proof. Observation 2 leads to xx(G) + 8x(G) > xx(G) + x:(ZG)' A

simple calculation shows that the minimum of the function f(z) = z + -Z-

is 2¢/n when 0 < z < n. Hence we arrive at xx(G) + 8:(G) > xx(G) +

2 > 2y/n, and the desired bound is proved. m
xx(G)

Let k > 2 be an even integer, and let Hy2 be a (k? — 2)-regular graph of
order k?. Since Bx(Hy2) = k and xx(Hy2) = k, the graph Hyz is extremal
for Corollary 3.

Corollary 4 Let G be a graph. If k < A(G) then
0x(G) + wi(G) 2 2v/n.
Theorem 2 Let G = (V, E) be a graph of order n. If k < A(G), then
kxe(G) + Bk(G) S n+2k - 1.
Proof. Let § be a Bx(G)-set of G. Then V\S can be partioned into

S
—-IVI: I sets of size at most k. Hence those sets are k-independent sets.

Since ['V\SI] = lIV\SI — lJ + 1, we deduce that

k k
@< ] 1 ¢ I8
BUCE SRS YOES I

This inequality chain yields to kxx(G)+ Bx(G) < n+2k—1, and the desired
bound is proved. m

Let k be an odd intger, and let Ma,_; be a (k—1)-regular graph of order
2k—1. If we define G = Kp41+Max—1, then we observe that 8k (G) = 2k—1
and xx(G) = p + 2. It follows that kxx(G) + Bx(G) = n(G) + 2k — 1, and
thus the bound of Theorem 2 is sharp.

Observation 1 and Theorem 2 imply the next result.
Corollary 5 Let G be a graph. If k < A(G), then
kOx(G) + wi(G) < n+2k—-1.
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Corollary 6 Let G be a graph. If k < A(G), then

(n+ 2k —1)?
xe(G)Bk(G) £ ~———

Proof. Theorem 2 leads to 8 (G) < n+2k—1—kxi(G). Thus we obtain
x£(G)Br(G) < xk(G)(n+2k—1—kxi(G)). A simple calculation shows that
—1)2
the maximum of the function f(z) = z(n + 2k — 1 - kz) is (n+2k-17
when 1 < z < n. Thus xk(G)Bk(G) < xk(G)(n + 2k - 1 - kxk(G)) <
(n+ 2k —1)? .
4k )

The star K2« (that is a connected graph of order n = 2k + 1 with 2k
vertices of degree one) is extremal for Theorem 2 and Corollary 6, because
Be(K1,2x) = 2k, xe(K1,26) = 2, kxx(G) + Bx(G) = 4k = n + 2k — 1 and

(2k + 142k —1)?

xk(G)Bk(G) = 4k = P
Corollary 7 Let G be a graph. If k < A(G), then
+2k —1)?
0x(G)wr(G) < @—Zk__)—

3 Bounds for B, wk, Xk, Ok

The next result by Favaron [9] is the main tool for the proofs of our next
two theorems.

Theorem 3 (Favaron [9] 1985) If G is a graph, then every k-independent
set D of G such that k|D| — |E(G[D))| is mazimum is a k-dominating set
of G.

Theorem 4 Let G be a graph. If k < A(G), then

xx(G) < é(—Gk)—-'-—k

Proof. Let $1,52,...,5, be a partition of the vertex V' such that 5,
is a k-independent set and a k-dominating set of G. In addition, let S;

i—1
be a k-independent set and a k-dominating set in G[V — ;L_JlSj]. In view

of Theorem 3, such a partition exists. Then dg,(z) > k for every vertex
z € Sp and each i € {1,2,...,p — 1}. This implies that dg(z) 2 k(p — 1)
for each z € Sp, and consequently A > k(p—1) > k(xx(G) — 1). This leads
to the desired upper bound for x£(G). m
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Let G=v+H.+HE+...+HE, where H} is a copy of a (k— 2)-regular
graph H;. of even order k for every i = 1,2,...,p. Then G is extremal for
Theorem 4, because xx(G) = p+ 1 and A(GIZ +k = pk: k =p+1
Corollary 8 Let G be a graph. If k < A(G), then

ou(e) < AEL*E,

Theorem 4 and Observation 2 immediately imply the following well
known bound given by Hopkins and Staton [15].

Corollary 9 (Hopkins and Staton [15] 1986) If G is a graph, and 1 < k <

A(G) then
Be(G) > (HPTD

Theorem 5 If G is a graph such that A(G) > k, then

2m(G) . (k—2\® 3k-2
< —_—
Xk(G)—\/ k2 +(2k)+ 2%
Proof. Let 51,S3,...,S, be a partition of the vertex set V such that S;

is a k-independent set and a k-dominating set of G - In addition, let S; be a
k-independent set and a k-dominating set of G[V — tL_JISJ'] fori=2,3,.

By Theorem 3, such a partition exists. Since S; 1s a k-dommatmg set of
GV - U S,] fori =1,2,...,p -1, it follows that dg,(z) > k for each

zeV - jEISj and each ¢ = 1,2,...,p — 1. Furthermore, we observe that
|Si| 2 k for each ¢ =1,2,...,p — 1, and therefore we obtain
m(G) 2 k|Sz| + 2k|S3| + ... + (p —~ 2)k|Sp-1| + (p — 1)k|Sp)
>kE1+2+...+(p=-2)+k(@-1)

_Bo-1)p-2)+2%pE-1)
— :

and thus

2m(G) > k(p — 1)(k(p — 2) +2)
(k-2) k=2 k-2
Zkz(("_l) N +2k)((’"1)"7'W)

20 (p-1-152)"- (15
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Which implies that

om(G) (k-2\° k-2
\/ K2 +( o% ) 2Pl

The last inequality and a simple calculation lead to

om(G) . (k—-2\> 3k—2
x:c(G)Sps\[k2 +< 2k) + =5

and hence the theorem is proved. m

Let t, k be integers such that k¥ > 1 and ¢ > 2, and let G be a complete
t-partite graph with the partite sets V1, V5,...,V; such that |[V1| = |Vo| =
v..|Vi-1] = k and |V;| = 1. Then n(G) = k(t — 1) + 1, xx(G) =t and
2m(G) = k(t — 1)(k(t — 2) + 2). This leads to

om(G) | (k-2\°_, B3k-2
\/ P +(2k)—t 2%

., |amG) | (k=2\" k-2
x,c(G)—t—‘/ = +( o ) + =

This example shows that Theorem 5 is best possible.

and thus

Since A(G) = k(t — 1), this example also shows that Theorem 4 is best
possible.

Corollary 10 If G is a graph such that A(G) 2 k, then

ek(G)S&/2m(§)+(k—2>2+3k—2.

k2 2k 2k

Theorem 5 immediately implies the following well known bound given
by P. Hansen [13].

Corollary 11 (Hansen [18] 1979) If G is a graph, then

x() < 1/2m(G) + 7 + -;-



Lemma 1 Let n,p > 1 and r,t > 0 be integers such that n = tp+r and
r<p. Ifz1,22,...,2p 2 1 are integers with °7_| z; = n, then

i

> a? >2 T . (1)

t=1

Proof. Assume, without loss of generality, that ; > zo > ... > Zp.
First we will show that the sum in (1) is minimum when z; < :r:,, + 1.
Suppose that £; 2> z, + 2 and deﬁne:z:1 =z -1,z,=zp,+1and z} = z;
for 2 <7 < p— 1. Obviously, 1 Z; =n but

Dat=d el =l - (e -1 +al— (g, +1)?
=2(.’L‘1 —:L‘p—l)22.

Consequently, the sum in (1) is minimum when z; < Zp+1. Thenz; =t

(n—r)
P

, We obtain

forr+1<i<pandz;=t+1for1<i{<r Usingt=

4
Y oat= Zr:(t+1)2+ i t?
i=1

i=1 i=r+l
=r(t+1)% + (p — r)t?
=t(pt+2r)+r

= 2;—r-(n—r+27-)+r

_ n2_,,.2

+T’

and the proof of Lemma 1 is complete. m

Theorem 6 Let G be a graph of order n, and assume that n = txx(G) +r
with integerst 2 0 and 0 < 7 < xx(G). If k < A(G), then

n? — r? n?
xk(G) = max {n2 =2m(G)+(k — 1)n — 7’ n? — 2m(G) +(k ~ l)n} - @
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Proof. Let S),8,,...,5, be a partition of V into p = x«x(G) k-
independent sets. Applying Lemma 11, we obtain

n(n - 1) = 2m(G) + 2m(G) = 2m(G) + i 2m(G[Si])

i=1

P P r
> 2m(G) + Y_ IS:l(1S:| — k) =2m(G) + D ISil> =k D ISl
i=1 i=1 i=1
n2 —r?
> 2m(G) — kn + . +7. (3)

Using p = xk(G), this easily leads to
n? —r?

> .
(G2 G T (k=D =r
In addition, we deduce from (3) that

(4)

2

2 _,2
T +r22m(G)—kn+?’p—,

n(n-1) > 2m(G) — kn +

and this yields

; N n2
x(G) 2 n2 - 2m(G) + (k— )n’

Combining (4) and (5), we obtain the desired bound (2). m

(5)

Let p, k,r be integers such that k > 1, p > 2and r < p and let G =
H) +HE  +...+HL, + Kt + K[ +. . .+ K}, be a complete p-partite
graph with the partite sets H} .\, HZ, 1, ..., Hi 1, Ki T K[ ¥2, ..., K}; where
Hj,, is a copy of a (k — 1)-regular graph Hi4 of even order k + 1 and
K} is a copy of a clique K of order k. We can see that n = kp +r,
xx(G) = p and 221'n(Gg =n(n—-1)—r(k+1). A simple calculation shows

n—r
n2-2m(G)+(k-1)n—r

Let Hp(k41) be a (p(k + 1) — 2)-regular graph of order p(k+ 1) with k
odd. Then Hy(k+1) is also an extremal graph for Theorem 6.

that = p. Then G is extremal for Theorem 6.

Because of 6x(G) = xx(G) and 2m(G) +2m(G) = n? —n, inequality (2)
implies the next corollary.

Corollary 12 Let G be a graph of order n, and assume that n = 10x(G)+r
with integers t > 0 and 0 < 7 < 6(G). If k < A(G), then

n? — 12 n2

2m(G) + kn—r1" 2m(G) + kn} )

0(G) 2 max{
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The following well known bound given by Meyers and Liu [16] is a special
case of Theorem 6.
Corollary 13 (Meyers and Liu [16] 1972) If G is a graph of order n, then

2
X6) 2 e

4 Nordhaus-Gaddum type results

In their now classical 1956 paper [17], Nordhaus and Gaddum established
the inequality x(G) + x(G) < n + 1. Improvements and generalizations
of this inequality can be found in Section 9.1 of the monograph (14] by
Haynes, Hedetniemi and Slater.

Theorem 7 (Chartrand, Schuster [4] 1974) For any graph G of order n,
we have:

B(G)+B@G) <n+1and

n
BE@HE) <[],

Next we present generalizations of these inequalities.

Theorem 8 If G is a graph of order n such that k < min(A(G), A(G)),
then

Be(G)+ B(G) £n+2k—1 and
2
B0 < BHZEZL

Proof. Let S be a B(G)-set of G, and let B be a £,(G)-set of G. If
A= BnNS, thenn > |S| +|B| - |A|. Since |A| < 2k — 1 (see the proof
of Theorem 1), it follows that Bx(G) + Bx(G) < n + 2k — 1, and the first
inequality is proved. This implies that

(n+2k = 1)° > (B(G) + Bu(@))”
= (6(G) - Bu(@)” + 46:(G)Bk (D)
> 4Bk(G)Bk(G),

and this leads to the second inequality. m
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Let k be an odd integer, and let Max—; be a (k — 1)-regular graph of
order n = 2k — 1. We can see that Bk(Mg;, 1) + Be(Mak—1) = n+2k — 1

n+ 2k
and Bi(Mak-1)Bk(Mzk-1) = (217
for the first and the second inequality of Theorem 8.

. Therefore Mo, is extremal

Theorem 9 If G is a graph of order n such that k < min(A(G), A(G)),
then

xk(G)xx(C) 2 5{'_— and

xx(G) + xx(G) 2 2\/ 2k

Proof. Let Sy,852,...,5.(c) be 2 partition of the vertex set V into
Xx(G) k-independents sets Then each S; is a k-Co-independent set of
G and Theorem 1 1mphes that |S;| < we(G) < (2k — 1) xx(G). Therefore

we obtain n = Z |S.~| < (2k — 1) xx(G)xx(G),and the first inequality is
i=1

proved. Now it follows that

7S 4xx(G)xx(G)

< (xx(G) - Xk(a)) + 4xx(G)xx(G)

= ((G) + (@)’

and this leads to the second inequality. ®

2k

Let k be an odd integer, and let G = Cy [Mak-1) be the composition,
where C; is the cycle of order 4 and Mpi_; is a (k — 1)-regular graph of
order 2k — 1. Then this composition is extremal for the first and the second

inequality of Theorem 9.

Since A(G) = n — §(G) — 1, Theorem 4 yields the following Nordhaus-
Gaddum bound.
Corollary 14 Let G be a graph of order n. If k < min(A(G), A(G)), then

x6(G) +x: (@) < 28— 5(G)k+ nt2k-1

If A(G)+A(G) < n, then 0 S A(G) - 6(G) < 1.
So, if A(G) — 6(G) = 0, then xx(G) + xx(G) < n+ 2kk - 1’

And if A(G) — 6(G) = 1, then x(G) + xx(G) < 2 ";czk.




Conjecture 1 If G is a graph of order n, then

xk(G) + xx(G) < [n_%él_c—_l'l .
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