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Abstract

Let G be a connected graph of order n, and suppose that n =
z:;l n;, where n1,na, ..., ni are integers with at least two. A span-
ning subgraph is called a path-factor if each component of it is a
path of order at least two. In [Y. Chen, F. Tian, B. Wei, Degree
sums and path-factors in graphs, Graphs and Combin. 17 (2001),
61-71.], Chen et al. gave a degree sum condition for the existence
of a path-factor consisting of paths of order n1,n;,...,nx. In this
paper, for 2-connected graphs, we generalize this result.
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1 Introduction

In this paper, all graphs are finite undirected graphs without loops or mul-
tiple edges. For standard graph theoretic terminology not explained in this
paper, we refer the reader to [1]. Let G be a graph. For convenience,
we abbreviate |V (G)| by |G|. We denote by Ng(z) the neighborhood of
a vertex = in G, and let dg(z) := |Ng(z)|. Let H be a subgraph of G.
For z € V(G), let Ny(z) := Ng(z) NV(H), and dg(z) := |Ny(z)|. For
a positive integer k, if there exists an independent set of order k, then
we let 0x(G) denote the minimum degree sum of an independent set of &
vertices of G; otherwise we let 0x(G) := +00. Let p(G) and ¢(G) be the
order of a longest path and a longest cycle of G, respectively. We define
diff(G) := p(G) — ¢(G). A subgraph H of G is said to be k-dominating if
dy(z) > k holds for any vertex z € V(G — H). We denote by Ca cycle
C with a given orientation, and by Ca cycle C with a reverse orientation.
Let C be a cycle with a given orientation. For u,v € V(C), we denote by
uav a path from u to v along 6 The reverse sequence of uﬁv is denoted
by vCu. Forue V(C), we denote the h-th successor and the h-th prede-
cessor of w on C by u** and u~", respectively. We abbreviate u*! and u~!
by v+ and u~, respectively. For X C V(C), we define X* := {z* : z € X}
and X~ := {z~ : = € X}, respectively. Let n,n),n3,...,ni be integers.
Ifn = Z:;lng and n; > 2 (1 < i < k), then we call (ny,n2,...,n) a
k-partition of n.

In (3], M. El-Zahar proposed the following conjecture.

Conjecture 1.1 (El-Zahar [3]) Let G be a graph of order n, and (n;, na,
...,Ny) be a k-partition of n such that n; > 3 for any 1 < ¢ < k. If
8(G) > [4n1]+---+ [§n], then G has a spanning subgraph consisting of
vertex-disjoint cycles of lengths ny,na,...,nk.

Conjecture 1.1 has not been settled yet, but, concerning this conjecture,
Johansson [5] considered an analogous condition to have vertex-disjoint

paths instead of cycles. A spanning subgraph is called a path-factor if
each component of it is a path of order at least two.
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Theorem 1.2 (Johansson [5]) Let G be a connected graph of order n,
and (n1,ng, ...,nx) be a k-partition of n. If §(G) > [-lz-nlj + o+ L%nk_[,
then G contains a path-factor consisting of paths of order ny, ng,...,nk.

For integers ny,ny,...,ng, we let A(n1,ny,...,n) := |{n; : n; is even,
1 < i < k}|. For convenience, we abbreviate A(ny,ng,...,ng) by A It is
easy to see that Theorem 1.2 is equivalent to the following theorem.

Theorem 1.3 (Johansson [5]) Let G be a connected graph of order n,
and (ny,na, ...,nx) be a k-partition of n. If §(G) > (n—k + X)/2, then G
contains a path-factor consisting of paths of order ny,ns, ..., nk.

In [2], Chen, Tian and Wei gave a o3 condition for the existence of a

path-factor with given length.

Theorem 1.4 (Chen et al. [2]) Let G be a connected graph of order
n, and (ny,n, ...,nx) be a k-partition of n. If n > 3(k — A) + 4 and
03(G) 2 3(n — k + A\)/2 — 2, then G contains a path-factor consisting of

paths of order ny,na,. .., ng.
In this paper, we give a 04 condition for the existence of a path-factor

with given length.

Theorem 1.5 Let G be a 2-connected graph of order n, and (ny,na2, ..., n)
be a k-partition of n. If n > 3(k — A) + 4 and 04(G) > 2(n —k + ) = 3,
then one of the following holds;

(i) G contains a path-factor consisting of paths of order ny,na,...,n.
(i) G € {(3K1 U K;) +2K;, (3K, UK2) + K3} and k = 1.

In fact, we prove the following theorem which is more general than
Theorem 1.5.

Theorem 1.6 Let G be a 2-connected graph of order n > E:;l n;, where
ny,Ny,..., Nk are integers with at least two. If n > 3(k — \) + 4 and
04(G) 2 2(n — k + ) — 3, then one of the following holds;
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(i) G contains k vertex-disjoint paths of order ny, na,...,ng.
(if) G e {(3K1 UKz) + 2K, (3K1 UKZ) + KL, k=1andn=mn;.

Note that (3K, U K3) + 2K, and (3K, U K3) + K2 do not have a path
of order 7.

In Theorem 1.5, the lower bound of 04(G) is best possible in the fol-
lowing sense. Let (ny,ng, ..., nk) be a k-partition of n. Let m := |4n; ] +
vt 3] -1 =(n—k+X)/2-1,m22and Gy := Kmn—m. Then
n—-m>4and m <n-—msincem > 2 and n > 3(k — ) +4. Hence G
is 2-connected and 04(G1) = 2(n — k + A) — 4. Since each path contributes
at least [%n,_l vertices to the partite set of order m, G; does not have a
path-factor consisting of paths of order n,ng,...,n.

Moreover, 2-connectedness is necessary. Let G2 be a graph obtained
from 2K, and K, _, by joining one vertex of K,_» and each vertex of 2K;.
Then 04(G2) = +o0o. But Gy does not have a path-factor consisting of
paths of order nj,ns,...,nk, where (n1,n2,...,n¢) is a k-partition of n
withn; #3 forany 1 <i< k.

2 Proof of Theorem 1.6

To prove Theorem 1.6, we will use the following theorem and two lemmas.

Theorem 2.1 (Kawarabayashi et al. [6]) Let G be a 2-connected graph
of order n. If 54(G) > (4n—2)/3, then diff(G) < 1, or G has a hamiltonian
path.

In fact, the following lemma in [5] deals with only the case where |G| =
Z?=1 n;. However, the same argument works also when |G| > Z?=1 n;.

Lemma 2.2 (Johansson [5]) Let G be a graph of order n > n', and
(n1,na,...,nx) be a k-partition of n/. Suppose that G contains an (n’' —
k+))/2-dominating path. Then G contains k vertex-disjoint paths of order

nN1,N2, ...y Nk.



Lemma 2.3 (Erdds and Gallai [4]) Let G be a graph, and let C be a
cycle of G, and u,v € V(C) with u # v. If do(ut) +dc(v*) > [C| +1,
then G has a path P from u to v such that V(P) = V(C).

Proof of Theorem 1.6.

Let G be a graph satisfying the assumption of Theorem 1.6. Suppose
that G does not satisfy the statements (i) and (ii). Let n’ := Z?=1ni-
Note that n’ = k — A (mod 2). Then by Lemma 2.2, G does not have an
(n’ — k + ))/2-dominating path. Since n > 3(k — \) + 4,

04(G) 2 2(n—k+A)—-3> (4n—-1)/3. (2.1)
Then the following fact holds by Theorem 2.1 and since G contains no k
vertex-disjoint paths of order ny,ns,...,ng.
Fact 1 diff(G) < 1.

Let C be a longest cycle of G, and let Y := V(G — C). Choose such a

cycle C so that Zer dg(y) is as large as possible.
The following claim holds by Fact 1 and the maximality of |C|. The
proofs of the statements (i)—(iv) are very easy, and hence we omit the proof

of them.

Claim 2 (i) Y is an independent set.
(if) Ne(y) N Ne(y')* =0 and Ne(y) N No(y')™ =0 for any y,y' € Y.
(iii) wtvt ¢ E(G) and u~v~ ¢ E(G) for any u,v € N¢(Y).

(iv) Ner(ut)NNe:(vt)*t =0 for anyy € Y and u,v € Ne(y) withu # v,
where C' := u+C.

(v) No'(y') N Nev(vt)*t = @ for any y,y' € Y withy # v and u,v €
Nc(y) with u #£ v, where C' := ut Cu.
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Proof. If there exists w € Ng:(y')NNe:(v*)*, then P := y'wCuvyuCutw™
Cutisa path such that |P| = |C| + 2, which contradicts Fact 1. Hence
the statement (v) holds. 0O

Note that No(y) = Ng(y) for any y € Y by Claim 2 (i). Let Y; := {y €
Y : dg(y) < (n'—k+))/2—1}. Suppose that |Y;] < 1. If |Y;]| =0, then let
P := wCw~ for some w € V(C). Else if |Y;| = 1, say Y1 = {y}, then let
P .= ywa‘w‘ for some w € N¢(y). Then P is an (n’ —k+A)/2-dominating
path, a contradiction. Thus |Y;| > 2. Since 04(G) 2 2(n—k+ A) -3 >
2(n' —k+ ) -3, V1] < 3. Hence 2 < |V1| < 3. Let Y1 := {y1,...,ui}
(de(y1) < -+ < dg(y) =: t). Let Ng(w) = {uw1,u2,...,u:}. We may
assume that u;,us, ..., u; occur in this order along C. For each 1 <i<t,
let I; := ug"au,-.,.l, where 441 := u;. By Claim 2 (ii), |I;| > 2 for any
1<i<t.

Claim 3 For any 1 < i < t such that |[;| = 2, dg(u}) < t.

Proof. Forsomel<i<k,let|l;}j=2and D:= u;yzui+16ui. Then D is
a longest cycle of G such that V(D) = V(C) U {w1} — {u}}. Hence by the
choice of C, de(uf) < dg(y) =t. O

Claim 4 |I;| > 3 holds for any 1 < i <t except at most one.

Proof. Suppose that there exist 1 < i < j < ¢ such that |[;| < 2 and
|I;| < 2. By Claim 2 (i)-(iii), {1,914, u}} is an independent set. By
Claim 3, de(uf) <t and dg(u}) < t. Hence dg(y1) + da(yt) + de(uf) +
da(u;") <4t <2(n' —k+2)—4<2(n—k+))—4, acontradiction. O

By Claim 4,
n—|Y|=|C|>3(t—-1)+2=3t—1. (2.2)

Hence
t<(n—-|Y|+1)/3. (2.3)



Claim § For any 1 < i <t, there exists y € V(G) — {y1, y1,uf , uf,, } such
that {y,y1,y1, v} ,u,i’,_l} is an independent set and dg(y) < t.

Proof. Suppose not for some i. Without loss of generality, we may assume
that ¢ = 1. Then by the definition of ¥; and Claim 2 (i)-(iii), { = 2. Let
C; = u;."au;;_j for j = 1,2. Suppose that N, (u})~ NN, (ud_;)* # 0 for
some j = 1,2, and let y € Ng; (uf)~NNc, (uf_;)*. Then {y,y1, 92,47, uf}
is an independent set by Claim 2 (i)-(iii), and hence dg(y) > ¢. Let D :=
u}'y*'au;;_jyzuj(au;'_jy"gu;‘. Then D is a longest cycle of G such that
V(D) = V(C)U{ya} — {y}. Hence by the choice of C, da(y) < de(y2) = ¢,
a contradiction. Therefore N, (u_;?')‘ N Ng, (u:‘{__j)+ =0 forany j =1,2.
By Claim 2 (iii) and (v), N, (y1) N (Nc; (4f)~ U Ng; (uf_;)*) = 0 for any
j =1,2. Moreover, N, (y1) U N¢;(uf)~ U Ng, (uf_;)t S V(Cy) U {ui_;}
for any j = 1,2. These imply that da(y1) + de(uf) + de(ugd) = do(v1) +
de(uf) + de(ud) < |C| +2 by Claim 2 (i) and (ii).

Suppose that Ng,(uf)™ N Ne,(y2)t # 0, and let y € Ng,(uf)~ N
Nc,(y2)*. Then {y,y1,¥2,uf,uf} is an mdependent set by Claim 2 (i)-
(iii), and hence dg(y) > t. Let D := ug Cy Yous Cy"‘u2 Then D is a
longest cycle of G such that V(D) = V(C) U {y2} — {y}. Hence by the
choice of C, dg(y) < dg(y2) = t, a contradiction. Therefore Nc, (ug ) n
Nc,(y2)t = 0. Since N, (y2) = {u2}, we have N¢, (uf)~ N Ng, (y2)+ =
By Claim 2 (iii) and (iv), Nc; (ud_;) N (Nc; (u})~ U Nc,(y2)*) = 0 for any
J =1,2. Moreover, Ng, (u;'__j) U Ne; (u])™ U Ng, (y2)* € V(Cj) U {ui_;}
for any j = 1,2. These imply that dg(y2) +dg(uf) +dg(uf) < [C|+2 by
Claim 2 (i) and (ii).

Hence by the definition of ¥; and since |C| < n —|V3| =n -2,

2(2(n — k + A) = 3) < 2(de(1) + do(v2) + da(uf ) + de(ud))
=de(y1) +da(y2)
+ (de(v1) + de(y2) + 2(da(uf) + de(uf)))
< (W —k+A=2)+2/C| +4
Sn—k+A-2+2n—-2)+4
—3n—k+A-2. (2.4)
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This implies that n < 3(k — A) + 4, and hence n = 3(k — A) + 4 by the
assumption of Theorem 1.6. Thus equalities hold in (2.4). The equality
de(y1) +de(y2) +de(ut) +da(uf) = 2(n—k+X) —3 implies that 04(G) =
2(n — k+ ) — 3, and the equality |C| = n — 2 implies that |Y| = 2, and
the equality n’ — k + X = n — k + X implies that n = n’. Moreover, by the
definition of Y}, the equality dg(v1) + dg(y2) = n’ — k + A — 2 implies that
de(y;)=t=(n—-k+X)/2-1=(n—-k+A)/2—-1=(k—A)+1 for any
j=12 Thenn—|Y|=3(k-A)+4-2=3(k-A)+3-1=3t—1.
Hence the equality holds in (2.2). This implies that there exists 1 < jo < ¢
such that |I;,| = 2 and |I| = 3 holds for any 1 < h <t with h # jo. By
Claim 2 (ii), Ne(y1) = Ne(v2)-
Let P :=u}lu}t, Q := y1u+50u+2y2, and P; := ylujo_au;:, Q2 =
ygu"'zCuJo, and Py = yju}? Cu;;", Q3 := y2u+5 Cuf,and Py := ylu,oa
uflys, Q= u+3CuJ°, and P; = y1u+2Cu"'5y2, Qs = u+6Cu+ Then
P; and Q; are vertex-disjoint paths of G such that V(G) = V(F; )U V(@Q;)
and |Pj| =1+j for any 1 < j < 5. Since G contains no k vertex-disjoint
paths of order ni,ns,...,nk, these imply that n; > 7 forany 1 < j < k.
Hence 3(k —A)+4=n= Z;;l nj > Tk, that is, k =1 and A = 0. Then
n=n =7 t=2and 04(G) =2(n—k+ A) —3=29. By Claim 2 (iii),
uful® ulu; ¢ E(G). These imply that G € {(3K1 UKy) + 2K, (3K, U
K3)+K»}. Hence the statement (ii) of Theorem 1.6 holds, a contradiction.

o

Claim 6 |I;| > 4 holds for any 1 < i <t except at most one.

Proof. Suppose that there exist 1 < ¢ < j < ¢ such that |I;] < 3 and
|Z;] < 3. Then by Claim 2 (i)-(iii), {¥1,%,%;41,¥j41} is an independent
set. Then dg(u;,,) + dg(u +1) >2(n—k+X)-3—(de(y1) +de(wn)) =
20n' —k+X)—=3-=-2((n"—k+X)/2-1) = (n' —k+ A) — 1. Hence we
may assume that dg(uj,,) > (n' — k + A)/2. This implies that |I;| = 3 by

Claim 3. By symmetry, we may assume that i = 1. Note that u; = u‘l"z.

Subclaim 6.1 u] & Nc(u]) holds for any 1 < i <t with i # 2.



Proof. Suppose not, and take u; € Ng(uf) for some 1 < i < t with
i # 2. Then D := u,-auf'ui‘ 5u2ym,- is a longest cycle such that V(D) =
V(C) U {w} — {u}?}. Since do(y) < (n' — k + A)/2 < de(u}?), this
contradicts the choice of C. 0O

By Claim 5, there exists y € V(G) —{y1, %, 4], u]} such that dg(y) < ¢
and {y,y1,y,u]} is an independent set. Hence

do(uf) 2 04(G) — doy) — de(w1) —do(w) > 2t -3t (25)

By Claim 2 (iii), Ne(y1) *NNc(uf) = 0. By Claim 4, |[Ne(yi)*ONe(y1)~| <
1. By Subclaim 6.1, [No(yi)~NNg(uf)| < 1. Therefore, by (2.3) and (2.5),

n—|Y|=|C| 2 |[Nc(y)*] + Nc(u) ™|+ [No(uf)| - 2
dn-1 n—-1 n-|Y|+1

—8t-22 —— —( |3| )
This implies that |Y| < 2, and hence |Y| = 2. Thus equalities hold in
(2.5) and (2.6). By (2.1), the equality 04(G) = (4n — 1)/3 implies that
n = 3(k—))+4. Hence the equalities dg(y1) = dg(y2) = t and the equality
t=(n—|Y|+1)/3 imply that dg(y;) =t =(n-1)/3=(n—4)/3+1=
(k=A)+1=(n—k+A)/2—1for i =1,2. Then by the definition of Y3,
(M —k+A)/2-12de(y2)=(n—k+A)/2-12(n'—k+A)/2—1, and
hence n = n’. By arguing as in the proof of Claim 5, we can see that the
statement (ii) of Theorem 1.6 holds, a contradiction. [

-2 (26)

> 2+

By Claim 6, n—|Y| = |C| > 4(t—1)+2. Hence we have t < n/4—(|Y|—
2)/4. For each i = 1,2, by Claim 5, there exists y such that {y,y1,y,u]}
is an independent set and dg(y) < t. Therefore by Claim 2 (ii), for any
i=1,2,

7 1

do(u) = do(u) 2 04(G) ~ 3t 2 T — 3 + 3(1¥] ~2).

Hence we have

do(ut)+do(uf) 2 2(g5n—3+3(Y1-2) 2 2((1C1+2)~3) > [Cl+1.
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By Lemma 2.3, G has a path P from u; to ug such that V(P) = V(C).
Hence G has a cycle of length more than |C] since u; € Ng(y1) for each
i =1,2, a contradiction. This completes the proof of Theorem 1.6. [
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