A degree sum condition for the existence of a path-factor

Shuya Chiba *†

Department of Mathematics and Engineering, Kumamoto University

2-39-1, Kurokami, Kumamoto 860-8555 Japan

and

Masao Tsugaki ‡§

Institute of mathematical and system sciences, Chinese Academy of Science, Beijing, P. R. China

Abstract

Let G be a connected graph of order n, and suppose that $n = \sum_{i=1}^{k} n_i$, where n_1, n_2, \ldots, n_k are integers with at least two. A spanning subgraph is called a path-factor if each component of it is a path of order at least two. In [Y. Chen, F. Tian, B. Wei, Degree sums and path-factors in graphs, Graphs and Combin. 17 (2001), 61-71.], Chen et al. gave a degree sum condition for the existence of a path-factor consisting of paths of order n_1, n_2, \ldots, n_k . In this paper, for 2-connected graphs, we generalize this result.

^{*}E-mail: schiba@kumamoto-u.ac.jp

[†]Supported by JSPS Grant-in-Aid for Young Scientists (B), 23740087, 2011

[‡]E-mail: tsugaki@hotmail.com

[§]Supported by Chinese Academy of Science Fellowship for Young International Scientists. Grant No.2012Y1JA0004

1 Introduction

In this paper, all graphs are finite undirected graphs without loops or multiple edges. For standard graph theoretic terminology not explained in this paper, we refer the reader to [1]. Let G be a graph. For convenience, we abbreviate |V(G)| by |G|. We denote by $N_G(x)$ the neighborhood of a vertex x in G, and let $d_G(x) := |N_G(x)|$. Let H be a subgraph of G. For $x \in V(G)$, let $N_H(x) := N_G(x) \cap V(H)$, and $d_H(x) := |N_H(x)|$. For a positive integer k, if there exists an independent set of order k, then we let $\sigma_k(G)$ denote the minimum degree sum of an independent set of kvertices of G; otherwise we let $\sigma_k(G) := +\infty$. Let p(G) and c(G) be the order of a longest path and a longest cycle of G, respectively. We define diff(G) := p(G) - c(G). A subgraph H of G is said to be k-dominating if $d_H(x) \geq k$ holds for any vertex $x \in V(G-H)$. We denote by \overrightarrow{C} a cycle C with a given orientation, and by \overleftarrow{C} a cycle C with a reverse orientation. Let C be a cycle with a given orientation. For $u, v \in V(C)$, we denote by $u\overrightarrow{C}v$ a path from u to v along \overrightarrow{C} . The reverse sequence of $u\overrightarrow{C}v$ is denoted by vCu. For $u \in V(C)$, we denote the h-th successor and the h-th predecessor of u on \overrightarrow{C} by u^{+h} and u^{-h} , respectively. We abbreviate u^{+1} and u^{-1} by u^+ and u^- , respectively. For $X \subseteq V(C)$, we define $X^+ := \{x^+ : x \in X\}$ and $X^- := \{x^- : x \in X\}$, respectively. Let n, n_1, n_2, \ldots, n_k be integers. If $n = \sum_{i=1}^k n_i$ and $n_i \geq 2$ $(1 \leq i \leq k)$, then we call (n_1, n_2, \ldots, n_k) a k-partition of n.

In [3], M. El-Zahar proposed the following conjecture.

Conjecture 1.1 (El-Zahar [3]) Let G be a graph of order n, and (n_1, n_2, \ldots, n_k) be a k-partition of n such that $n_i \geq 3$ for any $1 \leq i \leq k$. If $\delta(G) \geq \lceil \frac{1}{2}n_1 \rceil + \cdots + \lceil \frac{1}{2}n_k \rceil$, then G has a spanning subgraph consisting of vertex-disjoint cycles of lengths n_1, n_2, \ldots, n_k .

Conjecture 1.1 has not been settled yet, but, concerning this conjecture, Johansson [5] considered an analogous condition to have vertex-disjoint paths instead of cycles. A spanning subgraph is called a *path-factor* if each component of it is a path of order at least two.

Theorem 1.2 (Johansson [5]) Let G be a connected graph of order n, and (n_1, n_2, \ldots, n_k) be a k-partition of n. If $\delta(G) \geq \lfloor \frac{1}{2}n_1 \rfloor + \cdots + \lfloor \frac{1}{2}n_k \rfloor$, then G contains a path-factor consisting of paths of order n_1, n_2, \ldots, n_k .

For integers n_1, n_2, \ldots, n_k , we let $\lambda(n_1, n_2, \ldots, n_k) := |\{n_i : n_i \text{ is even, } 1 \leq i \leq k\}|$. For convenience, we abbreviate $\lambda(n_1, n_2, \ldots, n_k)$ by λ . It is easy to see that Theorem 1.2 is equivalent to the following theorem.

Theorem 1.3 (Johansson [5]) Let G be a connected graph of order n, and (n_1, n_2, \ldots, n_k) be a k-partition of n. If $\delta(G) \geq (n - k + \lambda)/2$, then G contains a path-factor consisting of paths of order n_1, n_2, \ldots, n_k .

In [2], Chen, Tian and Wei gave a σ_3 condition for the existence of a path-factor with given length.

Theorem 1.4 (Chen et al. [2]) Let G be a connected graph of order n, and (n_1, n_2, \ldots, n_k) be a k-partition of n. If $n \geq 3(k - \lambda) + 4$ and $\sigma_3(G) \geq 3(n - k + \lambda)/2 - 2$, then G contains a path-factor consisting of paths of order n_1, n_2, \ldots, n_k .

In this paper, we give a σ_4 condition for the existence of a path-factor with given length.

Theorem 1.5 Let G be a 2-connected graph of order n, and $(n_1, n_2, ..., n_k)$ be a k-partition of n. If $n \geq 3(k - \lambda) + 4$ and $\sigma_4(G) \geq 2(n - k + \lambda) - 3$, then one of the following holds;

- (i) G contains a path-factor consisting of paths of order n_1, n_2, \ldots, n_k .
- (ii) $G \in \{(3K_1 \cup K_2) + 2K_1, (3K_1 \cup K_2) + K_2\}$ and k = 1.

In fact, we prove the following theorem which is more general than Theorem 1.5.

Theorem 1.6 Let G be a 2-connected graph of order $n \ge \sum_{i=1}^k n_i$, where n_1, n_2, \ldots, n_k are integers with at least two. If $n \ge 3(k - \lambda) + 4$ and $\sigma_4(G) \ge 2(n - k + \lambda) - 3$, then one of the following holds;

- (i) G contains k vertex-disjoint paths of order n_1, n_2, \ldots, n_k .
- (ii) $G \in \{(3K_1 \cup K_2) + 2K_1, (3K_1 \cup K_2) + K_2\}, k = 1 \text{ and } n = n_1.$

Note that $(3K_1 \cup K_2) + 2K_1$ and $(3K_1 \cup K_2) + K_2$ do not have a path of order 7.

In Theorem 1.5, the lower bound of $\sigma_4(G)$ is best possible in the following sense. Let (n_1, n_2, \ldots, n_k) be a k-partition of n. Let $m := \lfloor \frac{1}{2}n_1 \rfloor + \cdots + \lfloor \frac{1}{2}n_k \rfloor - 1 = (n-k+\lambda)/2 - 1$, $m \geq 2$ and $G_1 := K_{m,n-m}$. Then $n-m \geq 4$ and $m \leq n-m$ since $m \geq 2$ and $n \geq 3(k-\lambda)+4$. Hence G_1 is 2-connected and $\sigma_4(G_1) = 2(n-k+\lambda)-4$. Since each path contributes at least $\lfloor \frac{1}{2}n_i \rfloor$ vertices to the partite set of order m, G_1 does not have a path-factor consisting of paths of order n_1, n_2, \ldots, n_k .

Moreover, 2-connectedness is necessary. Let G_2 be a graph obtained from $2K_1$ and K_{n-2} by joining one vertex of K_{n-2} and each vertex of $2K_1$. Then $\sigma_4(G_2) = +\infty$. But G_2 does not have a path-factor consisting of paths of order n_1, n_2, \ldots, n_k , where (n_1, n_2, \ldots, n_k) is a k-partition of n with $n_i \neq 3$ for any $1 \leq i \leq k$.

2 Proof of Theorem 1.6

To prove Theorem 1.6, we will use the following theorem and two lemmas.

Theorem 2.1 (Kawarabayashi et al. [6]) Let G be a 2-connected graph of order n. If $\sigma_4(G) \geq (4n-2)/3$, then $\operatorname{diff}(G) \leq 1$, or G has a hamiltonian path.

In fact, the following lemma in [5] deals with only the case where $|G| = \sum_{i=1}^{k} n_i$. However, the same argument works also when $|G| > \sum_{i=1}^{k} n_i$.

Lemma 2.2 (Johansson [5]) Let G be a graph of order $n \geq n'$, and (n_1, n_2, \ldots, n_k) be a k-partition of n'. Suppose that G contains an $(n' - k + \lambda)/2$ -dominating path. Then G contains k vertex-disjoint paths of order n_1, n_2, \ldots, n_k .

Lemma 2.3 (Erdős and Gallai [4]) Let G be a graph, and let C be a cycle of G, and $u, v \in V(C)$ with $u \neq v$. If $d_C(u^+) + d_C(v^+) \geq |C| + 1$, then G has a path P from u to v such that V(P) = V(C).

Proof of Theorem 1.6.

Let G be a graph satisfying the assumption of Theorem 1.6. Suppose that G does not satisfy the statements (i) and (ii). Let $n' := \sum_{i=1}^k n_i$. Note that $n' \equiv k - \lambda \pmod{2}$. Then by Lemma 2.2, G does not have an $(n' - k + \lambda)/2$ -dominating path. Since $n \geq 3(k - \lambda) + 4$,

$$\sigma_4(G) \ge 2(n-k+\lambda) - 3 \ge (4n-1)/3.$$
 (2.1)

Then the following fact holds by Theorem 2.1 and since G contains no k vertex-disjoint paths of order n_1, n_2, \ldots, n_k .

Fact 1 diff $(G) \leq 1$.

Let C be a longest cycle of G, and let Y := V(G - C). Choose such a cycle C so that $\sum_{y \in Y} d_G(y)$ is as large as possible.

The following claim holds by Fact 1 and the maximality of |C|. The proofs of the statements (i)-(iv) are very easy, and hence we omit the proof of them.

Claim 2 (i) Y is an independent set.

- (ii) $N_C(y) \cap N_C(y')^+ = \emptyset$ and $N_C(y) \cap N_C(y')^- = \emptyset$ for any $y, y' \in Y$.
- (iii) $u^+v^+\notin E(G)$ and $u^-v^-\notin E(G)$ for any $u,v\in N_C(Y)$.
- (iv) $N_{C'}(u^+) \cap N_{C'}(v^+)^+ = \emptyset$ for any $y \in Y$ and $u, v \in N_C(y)$ with $u \neq v$, where $C' := u^+ \overrightarrow{C} v$.
- (v) $N_{C'}(y') \cap N_{C'}(v^+)^+ = \emptyset$ for any $y, y' \in Y$ with $y \neq y'$ and $u, v \in N_{C}(y)$ with $u \neq v$, where $C' := u^+ \overrightarrow{C} v$.

Proof. If there exists $w \in N_{C'}(y') \cap N_{C'}(v^+)^+$, then $P := y'w\overrightarrow{C}vyu\overleftarrow{C}v^+w^ \overleftarrow{C}u^+$ is a path such that |P| = |C| + 2, which contradicts Fact 1. Hence the statement (v) holds. \square

Note that $N_C(y) = N_G(y)$ for any $y \in Y$ by Claim 2 (i). Let $Y_1 := \{y \in Y : d_G(y) \le (n'-k+\lambda)/2-1\}$. Suppose that $|Y_1| \le 1$. If $|Y_1| = 0$, then let $P := w\overrightarrow{C}w^-$ for some $w \in V(C)$. Else if $|Y_1| = 1$, say $Y_1 = \{y\}$, then let $P := yw\overrightarrow{C}w^-$ for some $w \in N_C(y)$. Then P is an $(n'-k+\lambda)/2$ -dominating path, a contradiction. Thus $|Y_1| \ge 2$. Since $\sigma_4(G) \ge 2(n-k+\lambda)-3 \ge 2(n'-k+\lambda)-3$, $|Y_1| \le 3$. Hence $2 \le |Y_1| \le 3$. Let $Y_1 := \{y_1, \ldots, y_l\}$ $(d_G(y_1) \le \cdots \le d_G(y_l) =: t)$. Let $N_G(y_l) := \{u_1, u_2, \ldots, u_t\}$. We may assume that u_1, u_2, \ldots, u_t occur in this order along \overrightarrow{C} . For each $1 \le i \le t$, let $I_i := u_i^+ \overrightarrow{C} u_{i+1}$, where $u_{t+1} := u_1$. By Claim 2 (ii), $|I_i| \ge 2$ for any $1 \le i \le t$.

Claim 3 For any $1 \le i \le t$ such that $|I_i| = 2$, $d_G(u_i^+) \le t$.

Proof. For some $1 \le i \le k$, let $|I_i| = 2$ and $D := u_i y_l u_{i+1} \overrightarrow{C} u_i$. Then D is a longest cycle of G such that $V(D) = V(C) \cup \{y_l\} - \{u_i^+\}$. Hence by the choice of C, $d_G(u_i^+) \le d_G(y_l) = t$. \square

Claim 4 $|I_i| \ge 3$ holds for any $1 \le i \le t$ except at most one.

Proof. Suppose that there exist $1 \leq i < j \leq t$ such that $|I_i| \leq 2$ and $|I_j| \leq 2$. By Claim 2 (i)-(iii), $\{y_1, y_l, u_i^+, u_j^+\}$ is an independent set. By Claim 3, $d_G(u_i^+) \leq t$ and $d_G(u_j^+) \leq t$. Hence $d_G(y_1) + d_G(y_l) + d_G(u_i^+) + d_G(u_i^+) \leq t \leq 2(n'-k+\lambda) - 4 \leq 2(n-k+\lambda) - 4$, a contradiction. \square

By Claim 4,

$$n - |Y| = |C| \ge 3(t - 1) + 2 = 3t - 1. \tag{2.2}$$

Hence

$$t \le (n - |Y| + 1)/3. \tag{2.3}$$

Claim 5 For any $1 \le i \le t$, there exists $y \in V(G) - \{y_1, y_l, u_i^+, u_{i+1}^+\}$ such that $\{y, y_1, y_l, u_i^+, u_{i+1}^+\}$ is an independent set and $d_G(y) \le t$.

Proof. Suppose not for some i. Without loss of generality, we may assume that i=1. Then by the definition of Y_1 and Claim 2 (i)–(iii), l=2. Let $C_j:=u_j^+\overrightarrow{C}u_{3-j}$ for j=1,2. Suppose that $N_{C_j}(u_j^+)^-\cap N_{C_j}(u_{3-j}^+)^+\neq\emptyset$ for some j=1,2, and let $y\in N_{C_j}(u_j^+)^-\cap N_{C_j}(u_{3-j}^+)^+$. Then $\{y,y_1,y_2,u_1^+,u_2^+\}$ is an independent set by Claim 2 (i)–(iii), and hence $d_G(y)>t$. Let $D:=u_j^+y^+\overrightarrow{C}u_{3-j}y_2u_j\overrightarrow{C}u_{3-j}^+y^-\overrightarrow{C}u_j^+$. Then D is a longest cycle of G such that $V(D)=V(C)\cup\{y_2\}-\{y\}$. Hence by the choice of C, $d_G(y)\leq d_G(y_2)=t$, a contradiction. Therefore $N_{C_j}(u_j^+)^-\cap N_{C_j}(u_{3-j}^+)^+=\emptyset$ for any j=1,2. By Claim 2 (iii) and (v), $N_{C_j}(y_1)\cap (N_{C_j}(u_j^+)^-\cup N_{C_j}(u_{3-j}^+)^+)=\emptyset$ for any j=1,2. Moreover, $N_{C_j}(y_1)\cup N_{C_j}(u_j^+)^-\cup N_{C_j}(u_{3-j}^+)^+\subseteq V(C_j)\cup\{u_{3-j}^+\}$ for any j=1,2. These imply that $d_G(y_1)+d_G(u_1^+)+d_G(u_2^+)=d_C(y_1)+d_C(u_1^+)+d_C(u_2^+)\leq |C|+2$ by Claim 2 (i) and (ii).

Suppose that $N_{C_2}(u_2^+)^- \cap N_{C_2}(y_2)^+ \neq \emptyset$, and let $y \in N_{C_2}(u_2^+)^- \cap N_{C_2}(y_2)^+$. Then $\{y, y_1, y_2, u_1^+, u_2^+\}$ is an independent set by Claim 2 (i)–(iii), and hence $d_G(y) > t$. Let $D := u_2^+ \overrightarrow{C} y^- y_2 u_2 \overleftarrow{C} y^+ u_2^+$. Then D is a longest cycle of G such that $V(D) = V(C) \cup \{y_2\} - \{y\}$. Hence by the choice of C, $d_G(y) \leq d_G(y_2) = t$, a contradiction. Therefore $N_{C_2}(u_2^+)^- \cap N_{C_2}(y_2)^+ = \emptyset$. Since $N_{C_1}(y_2) = \{u_2\}$, we have $N_{C_1}(u_1^+)^- \cap N_{C_1}(y_2)^+ = \emptyset$. By Claim 2 (iii) and (iv), $N_{C_j}(u_{3-j}^+) \cap (N_{C_j}(u_j^+)^- \cup N_{C_j}(y_2)^+) = \emptyset$ for any j = 1, 2. Moreover, $N_{C_j}(u_{3-j}^+) \cup N_{C_j}(u_j^+)^- \cup N_{C_j}(y_2)^+ \subseteq V(C_j) \cup \{u_{3-j}^+\}$ for any j = 1, 2. These imply that $d_G(y_2) + d_G(u_1^+) + d_G(u_2^+) \leq |C| + 2$ by Claim 2 (i) and (ii).

Hence by the definition of Y_1 and since $|C| \le n - |Y_1| = n - 2$,

$$2(2(n-k+\lambda)-3) \le 2(d_G(y_1) + d_G(y_2) + d_G(u_1^+) + d_G(u_2^+))$$

$$= d_G(y_1) + d_G(y_2)$$

$$+ (d_G(y_1) + d_G(y_2) + 2(d_G(u_1^+) + d_G(u_2^+)))$$

$$\le (n'-k+\lambda-2) + 2|C| + 4$$

$$\le n-k+\lambda-2 + 2(n-2) + 4$$

$$= 3n-k+\lambda-2. \tag{2.4}$$

This implies that $n \leq 3(k-\lambda)+4$, and hence $n=3(k-\lambda)+4$ by the assumption of Theorem 1.6. Thus equalities hold in (2.4). The equality $d_G(y_1)+d_G(y_2)+d_G(u_1^+)+d_G(u_2^+)=2(n-k+\lambda)-3$ implies that $\sigma_4(G)=2(n-k+\lambda)-3$, and the equality |C|=n-2 implies that |Y|=2, and the equality $n'-k+\lambda=n-k+\lambda$ implies that n=n'. Moreover, by the definition of Y_1 , the equality $d_G(y_1)+d_G(y_2)=n'-k+\lambda-2$ implies that $d_G(y_j)=t=(n'-k+\lambda)/2-1=(n-k+\lambda)/2-1=(k-\lambda)+1$ for any j=1,2. Then $n-|Y|=3(k-\lambda)+4-2=3(k-\lambda)+3-1=3t-1$. Hence the equality holds in (2.2). This implies that there exists $1\leq j_0\leq t$ such that $|I_{j_0}|=2$ and $|I_h|=3$ holds for any $1\leq h\leq t$ with $h\neq j_0$. By Claim 2 (ii), $N_G(y_1)=N_G(y_2)$.

Let $P_1:=u_{j_0}^{+3}u_{j_0}^{+4},\ Q_1:=y_1u_{j_0}^{+5}\overrightarrow{C}u_{j_0}^{+2}y_2,\ \text{and}\ P_2:=y_1u_{j_0}\overrightarrow{C}u_{j_0}^+,\ Q_2:=y_2u_{j_0}^{+2}\overrightarrow{C}u_{j_0}^-,\ \text{and}\ P_3:=y_1u_{j_0}^{+2}\overrightarrow{C}u_{j_0}^{+4},\ Q_3:=y_2u_{j_0}^{+5}\overrightarrow{C}u_{j_0}^+,\ \text{and}\ P_4:=y_1u_{j_0}\overrightarrow{C}u_{j_0}^+,\ Q_2:=y_2u_{j_0}^{+2}\overrightarrow{C}u_{j_0}^+,\ \text{and}\ P_4:=y_1u_{j_0}\overrightarrow{C}u_{j_0}^+,\ Q_3:=y_2u_{j_0}^{+5}\overrightarrow{C}u_{j_0}^+,\ \text{and}\ P_4:=y_1u_{j_0}\overrightarrow{C}u_{j_0}^+,\ Q_2:=y_2u_{j_0}^{+2}\overrightarrow{C}u_{j_0}^+,\ Q_2:=y_2u_{j_0}^{+2}\overrightarrow{C}u_{j_0}^+,\ Q_2:=y_2u_{j_0}^{+2}\overrightarrow{C}u_{j_0}^+,\ Q_2:=y_2u_{j_0}^{+2}\overrightarrow{C}u_{j_0}^+,\ Q_2:=y_2u_{j_0}^{+2}\overrightarrow{C}u_{j_0}^+,\ Q_2:=y_2u_{j_0}^+,\ Q_2:=y_2u_{j_0}^+,\$

Claim 6 $|I_i| \ge 4$ holds for any $1 \le i \le t$ except at most one.

Proof. Suppose that there exist 1 ≤ *i* < *j* ≤ *t* such that $|I_i|$ ≤ 3 and $|I_j|$ ≤ 3. Then by Claim 2 (i)–(iii), $\{y_1, y_l, u_{i+1}^-, u_{j+1}^-\}$ is an independent set. Then $d_G(u_{i+1}^-) + d_G(u_{j+1}^-) \ge 2(n-k+\lambda) - 3 - (d_G(y_1) + d_G(y_l)) \ge 2(n'-k+\lambda) - 3 - 2((n'-k+\lambda)/2 - 1) = (n'-k+\lambda) - 1$. Hence we may assume that $d_G(u_{i+1}^-) \ge (n'-k+\lambda)/2$. This implies that $|I_i| = 3$ by Claim 3. By symmetry, we may assume that *i* = 1. Note that $u_2^- = u_1^{+2}$.

Subclaim 6.1 $u_i^- \notin N_C(u_1^+)$ holds for any $1 \le i \le t$ with $i \ne 2$.

Proof. Suppose not, and take $u_i^- \in N_C(u_1^+)$ for some $1 \le i \le t$ with $i \ne 2$. Then $D := u_i \overrightarrow{C} u_1^+ u_i^- \overleftarrow{C} u_2 y_l u_i$ is a longest cycle such that $V(D) = V(C) \cup \{y_l\} - \{u_1^{+2}\}$. Since $d_G(y_l) < (n' - k + \lambda)/2 \le d_G(u_1^{+2})$, this contradicts the choice of C. \square

By Claim 5, there exists $y \in V(G) - \{y_1, y_l, u_1^+, u_2^+\}$ such that $d_G(y) \le t$ and $\{y, y_1, y_l, u_1^+\}$ is an independent set. Hence

$$d_G(u_1^+) \ge \sigma_4(G) - d_G(y) - d_G(y_1) - d_G(y_l) \ge \frac{4n-1}{3} - 3t.$$
 (2.5)

By Claim 2 (iii), $N_C(y_l)^+ \cap N_C(u_1^+) = \emptyset$. By Claim 4, $|N_C(y_l)^+ \cap N_C(y_l)^-| \le 1$. By Subclaim 6.1, $|N_C(y_l)^- \cap N_C(u_1^+)| \le 1$. Therefore, by (2.3) and (2.5),

$$n - |Y| = |C| \ge |N_C(y_l)^+| + |N_C(y_l)^-| + |N_C(u_1^+)| - 2$$

$$\ge 2t + \frac{4n - 1}{3} - 3t - 2 \ge \frac{4n - 1}{3} - \left(\frac{n - |Y| + 1}{3}\right) - 2. \tag{2.6}$$

This implies that $|Y| \leq 2$, and hence |Y| = 2. Thus equalities hold in (2.5) and (2.6). By (2.1), the equality $\sigma_4(G) = (4n-1)/3$ implies that $n = 3(k-\lambda)+4$. Hence the equalities $d_G(y_1) = d_G(y_2) = t$ and the equality t = (n-|Y|+1)/3 imply that $d_G(y_i) = t = (n-1)/3 = (n-4)/3+1 = (k-\lambda)+1 = (n-k+\lambda)/2-1$ for i=1,2. Then by the definition of Y_1 , $(n'-k+\lambda)/2-1 \geq d_G(y_2) = (n-k+\lambda)/2-1 \geq (n'-k+\lambda)/2-1$, and hence n=n'. By arguing as in the proof of Claim 5, we can see that the statement (ii) of Theorem 1.6 holds, a contradiction. \square

By Claim 6, $n-|Y|=|C| \geq 4(t-1)+2$. Hence we have $t \leq n/4-(|Y|-2)/4$. For each i=1,2, by Claim 5, there exists y such that $\{y,y_1,y_l,u_i^+\}$ is an independent set and $d_G(y) \leq t$. Therefore by Claim 2 (ii), for any i=1,2,

$$d_C(u_i^+) = d_G(u_i^+) \ge \sigma_4(G) - 3t \ge \frac{7}{12}n - \frac{1}{3} + \frac{3}{4}(|Y| - 2).$$

Hence we have

$$d_C(u_1^+) + d_C(u_2^+) \ge 2\left(\frac{7}{12}n - \frac{1}{3} + \frac{3}{4}(|Y| - 2)\right) \ge 2\left(\frac{7}{12}(|C| + 2) - \frac{1}{3}\right) \ge |C| + 1.$$

By Lemma 2.3, G has a path P from u_1 to u_2 such that V(P) = V(C). Hence G has a cycle of length more than |C| since $u_i \in N_G(y_l)$ for each i = 1, 2, a contradiction. This completes the proof of Theorem 1.6. \square

Acknowledgement

We would like to thank Professor Tomoki Yamashita for his assistance in the preparation of this paper.

References

- J.A. Bondy, "Basic graph theory paths and circuits," Handbook of Combinatorics, Vol. I, Elsevier, Amsterdam (1995), 5-110.
- [2] Y. Chen, F. Tian, B. Wei, Degree sums and path-factors in graphs, Graphs and Combin. 17 (2001), 61-71.
- [3] M. El-Zahar, On circuits in graphs, Discrete Math. 50 (1984), 227-230.
- [4] P. Erdős, T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hung. 10 (1959), 337-356.
- [5] R. Johansson, An El-Zahar type condition ensuring path-factors, J. Graph Theory 28 (1998), 39-42.
- [6] K. Kawarabayashi, K. Ozeki, T. Yamashita, Longest cycles in graphs without hamiltonian paths, Discrete Math. in press.