On the Cordiality of D(1, 3) Graphs*

Ni Chenmin^{1†} Liu Zhishan²,

1)Xiamen Institute of Technology of Huaqiao University, Fujian 361021
2)Yangen University, Fujian 362014

Abstract Let $d_G(x)$ be the degree of a vertex x in a graph G. A graph G is called $D(i_1, ..., i_k)$ graph, if $\{d_G(x)|x\in V(G)\}=\{i_1, ..., i_k\}$. In this paper, a necessary and sufficient condition for a connected D(1, 3) graph to be cordial is given.

Keywords Cordial graph D(1, 3) graph

MR(2000) 05C78

1 Introduction

In the following discourse, we consider finite, undirected simple graphs and 0-1 labelings only. Let G be a graph with vertex set V(G) and edge set E(G), we define a 0-1 label f on V(G) by giving each $v \in V(G)$ a label f(v) = 0 or 1, and denote $V_i = V_i(G) = V_i(f,G) = \{v|v \in V(G), f(v) = i\}, i = 0, 1$. From a labeling f on V(G), we derive a 0-1 label on E(G) by giving each $uv \in E(G)$ a label f(uv) = |f(u) - f(v)|. Let $E_{ii} = E_{ii}(G) = E_{ii}(f,G) = \{uv|uv \in E(G), f(u) = f(v) = i\}, i = 0, 1, E_1 = E_1(G) = E_1(f,G) = \{uv|uv \in E(G), |f(u) - f(v)| = 1\}, E_0 = E_{00} \cup E_{11}$. Let $v_i(G) = v_i(f,G), e_i(G) = e_i(f,G), e_{ii}$ be the cardinal numbers of V_i , E_i , E_{ii} respectively. For a set of vertices V_i , we use $G[V_i]$ to denote the induced subgraph of G whose vertex set is V_i and whose edge set is the subset of E(G) consisting of those edges with both ends in V_i . Note that $E_{ii} = E(G[V_i])$.

Definition 1^[1] For a graph G, if there exists a 0-1 labeling f on G such that $|v_0(f, G) - v_1(f, G)| \le 1$ and $|e_0(f, G) - e_1(f, G)| \le 1$, then G is said to be cordial, and f is a cordial labeling.

Definition 1.2 Let $d_G(x)$ be the degree of the vertex x in a graph G. A graph G is called $D(i_1, ..., i_k)$ graph, if $\{d_G(x)|x \in V(G)\} = \{i_1, ..., i_k\}$.

The cordiality of 3-regular graph has been discussed in [2], in this paper, we give a necessary and sufficient condition for a D(1, 3) graph to be cordial.

 $^{\,\,^*\}text{This}$ work was supported by the Yangen University Foundation under Grant YEU2007(009).

[†]Corresponding author e-mail: nichenmin@gmail.com

2 Preliminaries

For a labeling f of a graph G and a vertex $x \in V(G)$, $e_i(x) = e_i(f, x)$ is the number of edges labeled i incident to x, i = 1, 0, and $\phi(x) = e_0(x) - e_1(x)$. It is easy to see that $\phi(x) \in \{\pm 1, \pm 3\}$ for each vertex x of a D(1, 3) graph, and $\sum_{x \in V(G)} \phi(x) = 2[e_0(G) - e_1(G)]$.

Lemma 1 Let G be a graph with $|G| \ge 2$, and f be a labeling of the graph G. If $\{x,y\} \subset V(G)$ and $f(x) \ne f(y)$, then

(1) $e_0(G)$ decreases $\phi(x)$ when the labeling of x is changed;

(2) (a). $e_0(G)$ decreases $\phi(x) + \phi(y)$ when the labels of x and y are exchanged and $xy \notin E(G)$; (b). $e_0(G)$ decreases $\phi(x) + \phi(y) + 2$ when the labels of x and y are exchanged and $xy \in E(G)$.

Proof. Consider another labeling g, let g(v) = f(v) for $v \neq x$ and g(x) = 1 - f(x), $\{v, x\} \subset V(G)$. We see that $g(e) \neq f(e)$ for the edge e which is incident to x and g(e) = f(e) for the edge e which is not incident to x. It implies that $e_0(f, G) - e_0(g, G) = e_0(f, x) - e_0(g, x) = e_0(f, x) - e_1(f, x) = \phi(x)$.

(2) (a). By applying (1) twice we can obtain the statement.

(b). When we change the label of the vertex x, $e_0(G)$ decreases $\phi(x)$, $e_0(y)$ increases 1 and $e_1(y)$ decreases 1. So $e_0(G)$ decreases $\phi(y) + 2$ again after changing the label of the vertex y. Thus we have (b).

Lemma 2 Let G be a D(1, 3) graph of order $2n(n \ge 4)$, there exists a labeling f, such that, $v_0(G) = v_1(G)$ and $e_0(G) \ge e_1(G)$.

Proof. Consider G^c (the complementary graph of G), since the maximum degree of G, $\Delta(G) \leq 3$, we have the minimum degree of G^c , $\delta(G^c) \geq 2n-1-3 \geq n$. By Dirac Theorem^{[3][4]}, G^c is a Hamiltonian graph. Let $C_{x_1y_1x_2y_2 \dots x_ny_n}$ be a Hamiltonian cycle of G^c , then $x_iy_i \notin E(G)$, $i=1,\dots,n$. Let G_1 be a labeling with G_2 (G_1) be a labeling with G_2 (G_1) be a labeling we need. Otherwise, $\sum_{i=1}^n [\phi(x_i) + \phi(y_i)] = 2[e_0(f_1, G) - e_1(f_1, G)] < 0$, we can find a number G_1 (G_2) be such that, G_2 (G_1) be a labeling G_2 (G_2) by interchanging the labels of G_2 and G_2 only, we get a new labeling G_2 (G_2) be such that G_2 (G

Lemma 3 Let G be a D(1, 3) graph and f be a labeling of the graph $G(|G| = 2n, n \ge 4)$, and $v_0(G) = v_1(G) = n$, $e_0(G) > e_1(G)$, then there are two vertices $x \in V_0(G)$ and $y \in V_1(G)$ such that $\phi(x) > 0$ and $\phi(y) > 0$.

Proof(proof by contradiction). Suppose that $\phi(x) = e_0(x) - e_1(x) < 0$ for every vertex $x \in V_0(G)$, it is easy to see that each vertex x with degree 1 in $V_0(G)$ has an incident edge with label 1, and each vertex x with degree 3 in $V_0(G)$ has two or three incident edges with label 1. Let k be the number of vertices with degree 1 in $V_0(G)$, then n-k is

the number of vertices with degree 3 in $V_0(G)$. Since $\phi(x) < 0$ for every vertex $x \in V_0(G)$, then $e_1(G) \ge k + 2(n-k) = 2n - k$ and as $e(G) = \frac{1}{2} \sum_{v \in V(G)} d_G(v) \le \frac{1}{2} [k \times 1 + (2n - k) \times 3] = 3n - k$, we see that $e_0(G) = e(G) - e_1(G) \le 3n - k - (2n - k) = n \le n + (n - k) \le e_1(G)$ It contradicts $e_0(G) > e_1(G)$, then there is a vertex $x \in V_0(G)$, such that $\phi(x) > 0$; similarly, there is a vertex $y \in V_1(G)$, such that $\phi(y) > 0$.

Lemma 4 Let f be a labeling of a connected D(1, 3) graph G(|G| = $2n, n \ge 4$, and $v_0(G) = v_1(G) = n, e_0(G) > e_1(G)$, then there exist vertices $x \in V_0(G)$, $y \in V_1(G)$, after exchanging the labels of x and y only, $e_0(G)$ decreases 2.

Proof. We distinguish the following four cases.

There exist $x^* \in V_0(G)$ and $y^* \in V_1(G)$, s.t. $\phi(x^*) =$ Since G is connected, G contains a path $Px^*u_1u_2...u_sy^*$ $\phi(y^*) = 3.$ with $f(u_1) = 0$ and $f(u_s) = 1$. Obviously, there are two vertices u_i and $u_j(i < j)$, such that $f(x^*) = f(u_1) = f(u_2) = \dots = f(u_i) = 0$, $f(u_{i+1}) = 1$ and $f(y^*) = f(u_s) = f(u_{s-1}) = \dots = f(u_j) = 1$, $f(u_{j-1}) = 0$. It is easy to see that $\phi(u_i) \in \{\pm 1\}$ and $\phi(u_i) \in \{\pm 1\}$. Since $f(u_i) = 0$, $u_i y^* \notin E(G)$. If $\phi(u_i) = -1$, by Lemma 1(2)(a), u_i and y^* are desired. Hence we may assume that $\phi(u_i) = 1$, similarly, we can assume that $\phi(u_i) = 1$. Since G is a D(1, 3) graph, there is a vertex z with degree 1, without loss of generality, we assume that $z \in V_0(G)$. If $\phi(z) = -1$, z and y^* are desired, else if $\phi(z) = 1$, as $e_0(u_j) - e_1(u_j) = \phi(u_j) = 1$, u_j has only one neighbor in $V_0(G)$, obviously, $u_{j-1} \neq z$. By Lemma 1(2)(a), z and u_i are desired.

 $\sum_{u\in V(G)}\phi(u)=2[e_0(G)-$ Case 2. $\phi(u) < 3$ for every $u \in V(G)$. Since \sum

 $e_1(G)$ > 0, $|V(G)| \ge 8$ and $\phi(u) \in \{-3, -1, 1\}$ for each $u \in V(G)$. It yields at least five vertices u_i with $\phi(u_i) = 1, i = 1, ..., 5$. Obviously, there are at least three vertices in $V_0(G)$ or in $V_1(G)$. Without loss of generality, we assume that $\{u_1, u_2, u_3\} \subset V_0(G)$. By Lemma 3, there exists a vertex $u_4 \in V_1(G)$, for $\phi(u_4) = 1$, there is at least one vertex $u_i (i = 1, 2, 3)$ such

that $u_iu_4 \notin E(G)$. By Lemma 1(2)(a), u_i and u_4 are desired. Case 3. There exists $x^* \in V_0(G)$, s.t. $\phi(x^*) = 3$ and $\phi(y) < 3$ for each $y \in V_1(G)$. By Lemma 3, we know that $V_1' = \{y | y \in V_1(G), \ \phi(y) = 1\} \neq \Phi$. If $y \in V_1'$ and $d_G(y) = 1$, then $e_0(y) = 1$, $e_1(y) = 0$ and $d_{G[V_1']}(y) = 1$; If $y \in V_1'$ and $d_G(y) = 3$, then $e_0(y) = 2$, $e_1(y) = 1$ and $d_{G[V_1']}(y) = 2$. So each component of $G[V_1]$ is a cycle or a path. Note that such a path can not be K_2 , otherwise, this path has only two vertices z, w with $\phi(z) = \phi(w) = 1$, it implies that $d_G(z) = d_G(w) = 1$. It contradicts the connectivity of the graph G. Hence $G[V_1]$ must have a vertex y_1 with $d_{G[V_1]}(y_1) = 2$. Let the neighbor set of y_1 in $G[V_1']$ be $\{y_2, y_3\}$ and x be the neighbor of y_1 in $G[V_0]$ (see Figure 1(a)). Obviously, $\phi(x) \neq 3$. If $\phi(x) = 1$, then x has just one neighbor in $V_1(G)$. It implies that $xy_2 \notin E(G)$. By Lemma 1(2)(a), x and y_2 are desired. If $\phi(x) = -1$, by Lemma 1(2)(b), x and y_1 are what we need. We assume that $\phi(x) = -3$, when the neighbor set of x, $N_G(x) = \{y_1, y_2, y_3\}$ (see Figure 1(b)), we prove Lemma 4 as follows. For G can not contain a 3-regular subgraph $G[\{x, y_1, y_2, y_3\}]$, we know

Figure 1: Two steps in the proof of Case 3

that $y_2y_3 \notin E(G)$. Let z be the third neighbor of y_2 , since $\phi(y_2) = 1$, f(z) = 1, by interchanging the labels of x and y_2 , $e_0(G)$ states the same, while $\phi(z)$ has a new value -1, by Lemma 1(2)(a), x^* and z are desired. When $N_G(x) \neq \{y_1, y_2, y_3\}$, we can assume that $xy_2 \notin E(G)$. By interchanging the labels of x and y_1 , $\phi(y_2)$ has a new value -1. Thus x^* and y_2 are desired.

Case 4. There exists $y^* \in V_1(G)$, s.t. $\phi(y^*) = 3$ and $\phi(x) < 3$ for each $x \in V_0(G)$. It is easy to see that Case 4 can be proved in the same way as

Case 3. The proof is completed.

3 Main Result

Theorem Let G be a connected D(1, 3) graph, then G is cordial if and only if $e(G) + v(G) \not\equiv 2 \pmod{4}$.

Proof.(1) $|G| \ge 8$. necessity. Seoud and Abdel Maqusoud^{[5][6]} proved that if every vertex of G has odd degree, then G is not cordial when v(G) +

 $e(G) \equiv 2 \pmod{4}$. From this, the necessity is obvious.

sufficiency. Since every vertex of G has an odd degree, we can suppose that $|G|=2k(k\geq 4)$. By Lemma 2, there is a labeling f, s.t. $|V_0(G)|=|V_1(G)|=k$, and $e_0(G)\geq e_1(G)$. Suppose that there are r vertices in $V_0(G)$ with degree 3, and k-r vertices in $V_0(G)$ with degree 1; there are s vertices in $V_1(G)$ with degree 3, and k-s vertices in $V_0(G)$ with degree 1. Let $e_1(G)=t$, then $e_{00}(G)=\frac{3r+k-r-t}{2}=r+\frac{k-t}{2}$; in a similar manner, $e_{11}(G)=s+\frac{k-t}{2}$, so 2|(k-t), and v(G)+e(G)=2k+[(r+s+k-t)+t]=3k+r+s, $e_0(G)-e_1(G)=(r+s+k-t)-t=r+s+k-2t$, hence $e(G)+v(G)-[e_0(G)-e_1(G)]=2(k-t)\equiv 0 \pmod 4$. If $e(G)+v(G)\not\equiv 2 \pmod 4$, then $e_0(G)-e_1(G)\not\equiv 2 \pmod 4$. Furthermore, since $e_0(G)+e_1(G)=e(G)$ is a constant, $e_0(G)-e_1(G)$ decreases 4 when $e_0(G)$ decreases 2, using Lemma 4, we can obtain a labeling g of the graph G such that $e_0(G)-e_1(G)\in\{-1,0,1,2\}$, for $e_0(G)-e_1(G)\not\equiv 2 \pmod 4$, we have $|e_0(G)-e_1(G)|\le 1$. Thus, we can get a cordial labeling of G, so G is cordial.

Figure 2: Five cases of D(1, 3) graphs when |G| < 8

(2) |G| < 8. There are only five kinds of D(1, 3) graphs, see Figure 2, it is easy to check that the statement of the Theorem is valid to these cases.

References

- [1] I. Cahit, Cordial graghs: A weak version of graceful and harmonious graphs, A rs Combin. 23(1987) 201-208.
- [2] Liu Zhishan, Zhu Biwen, Anecessary and sufficient condition for a 3-regular graph to be cordial. Ars Combin. 84 (2007) 225-230.
- [3] Dirac G.A., Some theorems on abstract graphs, Proc. Lond. Math. Soc., 2(1952) 64-81.
- [4] Gary Chartrand, Ping Zhang, Instruction to Graph Theory[M], Beijing, (2006) 147-148.
- [5] M. Seoud, A. E. I. Abdel Maqsoud, On cordial and balanced labelings of graphs, J. Egyption Math. Soc., 7 (1999) 127-135.
- [6] Joseph A. Gallian, A Dynamic Survey of Graph Labeling[J], The Electronic Journal of Combinatorics, 5(2005) 41-45.