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Abstract. The general Randi¢ index R_, (G) of a graph G, defined
by a real number q, is the sum of (d(u)d(v))~= over all edges uv of G,
where d(u) denotes the degree of a vertex u in G. In this paper, we have
discussed some properties of the Max Tree which has the maximum general
Randi¢ index R_q, here o € (ap,2), and ag is some real number in the
interval (1.2961,1.2962). Based on these properties, we are able to obtain
the structure of the Max Tree among all trees of order £ > 3. Thus the
maximal value of R_,, follows easily.
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1 Introduction

Let k represent the order of a tree T all through this paper. A suspended
path of length £ rooted at z is a path zy1y2 - - - y¢—12 with d(z) = 1, d(y;) =
2(forall 1 < j <t-1), d(2) > 3. A Single Center Tree consists of one
vertex w with n distinguish suspended paths of length 2 rooted at w, where
n > 3, we call it SCT for short; if there is n — 1 distinguish suspended
paths of length 2 and one suspended path of length 3 rooted at vertex w,
then they form an Abnormal Single Center Tree, which is called ASCT for
short. A Double Center Tree consists of two adjacent vertices w and w,,
with n — 1 distinguish suspended paths of length 2 rooted at w and m — 1
distinguish suspended paths of length 2 rooted at w;, where n > m > 3,
we call it DCT for short; if there is n — 1 distinguish suspended paths of
length 2 rooted at w and m — 2 distinguish suspended paths of length 2,
one suspended path of length 3 rooted at w,, then they form an Abnormal
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Double Center Tree, which is called ADCT for short. Clearly, w is always
the vertex with maximum degree, so d(w) = n = A, where A denotes
the maximum degree. In the following, we use Ta, TA, Ta,m and T .,
to denote SCT, ASCT, DCT and ADCT separately. These four trees are

shown in the following picture:

TA:"" TA,m

In 1975 Randié[7) proposed a pair of topological indices R_ (G) and
R_1(G) in order to measure molecular branchmg Thereafter, Pa,ul Erdos
generalized[2] the index by changing 1 3 to an arbitrary real number e,
which stimulated many other colleagues to study the general Randlc in-
dex R_a ((G)) = Z (d(U)d(v))'“

uvEE

People want to get the extremal value of general Randié index and the
extremal trees. The minimal value and the Min Tree have been already
solved completely[4]. Until now, there are many papers about the Max
Tree, and most of the problems have been solved(5]. The result is:

a the Max Tree T
(=00, —2]" | balance double star for k > 8
(-2,—1) | star or double star

[-1,0) | star
(0, 5 path
(3,2

[2,400) | path for k < 6; T or T£-1 for k>7

* means for k < 7, the Max Tree depends on a.
Only the interval (2, ) is still undetermined. Work [6] is about the
maximal value of R_;. Recently, Balister, Bollobds and Gerke have given
an upper bound of the general Randié index for Yo > 0. In their paper{1],
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they gave the minimal constant Gp(a) which satisfies R_o < Bo(k + 1),
and this bound is sharp up to an additive constant since they have found
infinitely many trees with R_, > Bo(k — 1). This kind of trees are called
the optimal trees, and the index values of them are maximal or close to
the maximal value, however they did not make a sure answer. Besides the
structure of the optimal tree only exists for special k.

In this paper we will partially fill up the gap in the above tabular. In
section 2, we obtain some important properties of the Max Tree. In section
3, we discuss two cases based on the properties and get the structure of tree
with maximum R_,, in each condition. In section 4, we compare the results
in the two cases in section 3 and for every order k > 3 finally obtain the
maximal value of the general Randié index R_, when a € (ao, 2), where
& is some real number in the interval (1.2961, 1.2962).

2 Properties for the Max Tree

Firstly, it is clear that paths have maximum R_,, for k < 6 when a > 1,
and the maximal value is £22 + L, thus we assume k > 7 all through
the next of the paper. It is necessary to describe an important property

for the Max Tree when oo > 1.

Lemma 2.1. (3] If T is the Maz Tree for the general Randié indez R_,
when a > 1, then

(1) any leaf is connected with the vertex of degree 2.
(2) every verter of degree 2 must appear on a suspended path.

(3) all the suspended paths are of length 2, ezcept for at most one with
length 3.

By the above lemma, one could easily see that in the Max Tree the
maximum degree A > 3. We call a vertex the big degree vertes if it is of
degree at least 3. BD(z) means the number of big degree vertices adjacent
to vertex z. Then we describe the next property:

Lemma 2.2. There ezists a real number ag € (1.2961,1.2962), s.t., for
any a > aq, if T is the Max Tree for the general Randié index R_, and
w € V(T) with d(w) = A, then BD(w) < 1.

Proof. By contradiction. Assume BD(w) > 2, that is w has at least
two big degree vertices adjacent to it. Among all these big degree vertices,
two are denoted by w; and w;. Here without loss of generality, we suppose
d(w1) =m 2> d(wz) =n > 3. Besides, let y; (1 <t < A — 2) denote the
vertices adjacent to w other than w; and ws, z;; be the vertices adjacent
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to w; other than w and z2; be the vertices adjacent to ws other than w,
where1<i<m-1,1<j<n-1

Delete wy, we, let all z1;, Z2; be joined to w and add one suspended path
of length 2 to w, so we get a new tree T of the same order. By lemma2.1
we have d(y:), d(z1:), d(z2;) = 2, thus the difference:

R_o(T) - R_a (T’)

B (Al" (A+m+n 3)‘*)Zd(y¢)°‘

+ (n:a (A+m+n 3)a) Z d(w,,)o

i=1
-1

1 1 1
+ (n_"‘ B (A+m+n—3)°‘) ,Z_; d(zo;)™

e (A1) 1 1
A 2A+m+n=-3)* 2

IA

1 1 A-2
A (A+m+n-=-3)*) 2¢

(L 1 -1
me (A+m+n-3)=) 2¢

(L 1 -1
n® (A+m+n-3)/ 2

L (L, 1) 1 1
A \me  ne 2A+m+n-3)* 2

_ 1[A=2,mo1m-1 (2)7(1 1
T o2a | A me ne A me = ne

- 1 -1
(A+m+n-—3)>1
= f(B8,m,n;a)

We need to find a which keeps the inequality f(A,m,n;a) <O0.
Let set A = {a| f(A,m,n;a) =0,A > m > n > 3,A,m,n € N}.
Define o = sup a. We show the existence of aj in two steps.

acA
(I) To show f(A,m,n;1.2962) < 0.



Since

1.2962
of  12062(1-(3)""™) - 0.2082m N 0.2962
om 91.2962  47,2.2062 (2(A +m + n — 3))L-2962
1.2962
1.2062 (1 - (%)) - 0.2962m 0.2062
91,2962 » 1,2.2962 (A +m))1-2%:2
= Z(A,m)
Notice that
8Z(A,m) 1.2962 1.2962 x 212962 0.2962
A = 912962 4 A2.2062 1 2-2062 T+ e
1.2962 1.2062 x 222 0.2062) _
S oime A\2.2962 m2-2962 ~ 92.2062

provides m > 6. Thus when m > 6, we have

Z(8,m) < Z{m,m) = s ()

_(211.2962
Here 2(m) = 1.2062(1 nim) ) _ 0.2962(1 — 5rdwr). Then easily we get

d—;(n%z < 0 when m > 4. But 2(6) < 0, so when m > 6, z2(m) < z(6) < 0,
then we have % < Z(A,m) £ Z(m,m) = m{-_m,z(m) < 0, when
m> 8.

Thus f(A,m,n;1.2962) is monotone decreasing in m when m > 6.
Noticing the symmetry of m and n in function f(A,m,n;1.2962), the same
conclusion holds for n. Then we discuss in several cases;

casse . A>m>n>6
Clearly f(A,m,n;1.2962) < f(4, 6, 6;1.2962). By Lagrange Mean Value
Theorem, we have

df (A, 6,6;1.2962)
dA
1 ( 2 x 1.2962 (1 — (3)1-2962) N ( 0.2962 0.2962
(

T 91.2962 A2.2962 A +9)1.2962 ~ A12962
1 (2x1.2062(1—(3)"%2) 9 x1.2962 x 0.2962
= 1292 A2.2962 - £2.2962
1.2062 (2(1—(3)29%2) 9 x0.2962
< —_
91.2962 A2.2962 (A + 9)2.2962
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where £ € (A, A +9).

Then it would be easy to get that when & > 33, < 0.
Hence f(A,6,6;1.2962) < f(33,6,6;1.2962) < 0 when A > 33. For the
rest case 6 < A < 32, substitute these values for A in f(A, 6, 6;1.2962)
directly, and we would also obtain f(A,6,6;1.2962) < 0.

case 2. A>m>6,3<n<b
We have previously shown that f(A,m,n;1.2962) < f(A, 6,7, 1.2962). No-
tice that function ;?—;-’g%, (r € Z*, here Z* represents the positive integer
set) is monotone increasing when = < 4 and is monotone decreasing when
z > 4. Maximizing each part of f(A, 6,n,1.2962) by substituting different
values for n, we can obtain that

A,6,6;1.2962

1 A -2 5 3 2 1.2962
f(8,6,n,1.2962) < Figgg [A1.2962 + gizoez T gizee2 T (_A—) X

1 1 1
61.2862 + 312962 | ~ (A + 8)0-2962 -1

= F(B)
By Lagrange Mean Value Theorem, we have
dF(a) 12962 (2— (1) - (B 8 x0.2062
dA 212862 22962 T £2.2962
12062 [2— ()72 - (3)"**  8x0.2962
< 31262 A2.2062 RN 0

provides A > 23, where £ € (A, A + 8). But notice F(25) < 0, we have
f(A,6,n,1.2962) < F(A) < 0 when A 2> 25.
For 3 < A < 24, substitute valuesof 3< A <24,3<n <5 for A,nin
function f(A,6,n,1.2962), it is not hard to get f(A,6,n,1.2962) <O0.
case 3. 3<n<m<5A>6
Maximize each part in f(A,m,n;1.2962) by substituting different values
for m, n, then

1 A-2 4-1 4-1 (2)1-29”

f(a,m,n;1.2062) < 9i2062 | AT 2962 T 712062 trme T\A X
2 1
312962 ~ (A + 5+ 5 — 3)0-2962 -1
= F(4)
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By Lagrange Mean Value Theorem, we have

dF(A) _ 1.2962 (2 (1-3)™") 1« 0.2962)

dA ~ 9212962 A2.2962 L
211.2962
. l2o62 (2 (1-®")  7x02062
= 91.2062 /\2.2962 - (A +7)2.2%2 <0

provides A > 15, where £ € (A,A + 7). But notice F(64) < 0, we have
F(A,m,n;1.2962) < F(A) < 0 when A > 64.

For the undiscussed case 6 < A < 63, 3 < n < m < 5, one might calcu-
late the values of f(A,m,n;1.2962) one by one, and f(A,m,n;1.2962) < 0
holds, too.

case 4.3<n<m<A<LS5
Substitute values for A, m, n, the readers could easily see f(A, m, n;1.2962) <
0 holds.

Therefore f(A,m,n;1.2962) < 0.

(I) To explain f(A,m,n;a) is monotone decreasing in o when o > 1.

It is equivalent to show h(A,m, n; a) is monotone decreasing in o when
a > 1, here h(A,m, n;a) = 22 f(A, m,n; a).

Let s = A+ m + n — 3, easily one may see

- (Y[R 2)e(2)- ()
e e AR L L L

sa—l
Notice A > m > n > 3, the former term is less than 0. So we only need to
analyze

lns (A 2)lnA (m )lnm (,n )lnn (*)

=T

Clearly A < s — 3. It can be shown that function '—}5 is monotone
decreasing in z when £ > 3, thus

() = 2 -(a-9B2 - m-1BE_(,_pld
InA (slns A
- 22 () o)
InA /slns
F(lnA ("—1))
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InA s—3
KE‘(IDSXm—(S—l))

m?(f_:-g—)((s—?»)lns— (s—1)In(s - 3))

Let G(s) = (s — 3)Ins — (s — 1) In(s — 3), since %%32 > 0, we know G(s)
is convex. Then notice G(6) < 0 and . BToo G(s) = —o0, we conclude that

G(s) £0.

Therefore, aﬂ%’:’—mz < 0 which implies h(A,m,n; ) is monotone
decreasing in a when a > 1, and so does f(A,m,n; ).

Observing monotonicity of f(A,m,n; ) in a and f(A,m,n;1.2962) <
0, one could deduce that Vo > 1.2962, f(A,m,n;a) < f(A,m,n;1.2962) <
0. So Va € A, a < 1.2962, then 1.2962 is an upper bound for all o € 4;
besides notice f(16, 5, 5;1.2961) > 0, by continuity of f, we know that A is
nonempty and o = sup « does exist. Clearly of € (1.2961,1.2962).

acA

Notice R_o (T) — R-o (T") £ f(A,m,n; ) with the equality holds if
and only if d(y:) = d(z1:) = d(z2;)(t = 1,2, ,A =24 =1,2,--- ,m —
1;7=1,2-+-,n —1). So when the equality holds and A = 16,m =n =5,
R_1.2061(T) — R_1.2061(T") = f(16,5,5;1.2961) > 0, therefore take ap =
o, then the lemma is clearly true. |

In the following paper, symbol w always denotes one of the maximum
degree vertex in the Max Tree T and we assume that ao, which belongs to
the interval (1.2961, 1.2962), always represents the real number obtained in
the above lemma.

3 The Max Tree structure

In order to obtain the structure of the Max Tree for R_q, where o € (o, 2),

it follows from lemma2.2 that the discussion should be separated into two

cases. And in each case to find the tree with the maximal index value.
Casel. BD(w) =0

This case might be easily dealt by lemma2.1. Notice we have

A A

R_o(Ta) = Gae T
. A A 1
R_,(Tp) = W+2—'a'+4—a

thus

Theorem 3.1. Let w denote the verter with mazimum degree and T° =
{T||V(T)| = k,BD(w) = 0}, then the mazimum general Randi¢ indez
R_o where a € (ap,2) among trees in T is :
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when k is odd: R_, (T%_n_ );
when k is even: R_, (Té- 1).

We omit the proof because it is quite easy.

Case2. BD(w) =1
Let w, denote the unique big degree vertex in T which is adjacent to w,
and d(w) = m > 3. Clearly the order k of T is at least 10.

When k is even, T is just a DCT, thus there is a clear equation A+m =
g k 1 1; but when k is odd, by lemma2.1 there exist exactly one suspended
path of length 3. Clearly, we might assume the tree is a ADCT without
loss of generality.

Consider the difference:

R—-a (TA,m) - R—a (TA-H.m—l)
_ (A-l_ A )_( m—2 _m—l)_l_
(2a)>  (2(A+1)e @2m-1)) (2m)=

(@ - @)
(Am)=  ((A+1)(m-1))=
= g(A,m;a)

Then we have the following lemma:

Lemma 3.2. When a € (ao,2), g(A,m;c) < 0 holds if A,m satisfy the
following conditions:

A>m>8

A28 m=7
A>11l, m=6
A>68, m=5

Proof. For any o € (ap,2), consider

1 1
G(A,m;a) = g(A,m;a) + (((A +1)(m-1))= (Am)°‘)

Notice that arnyt=—m= > rmmys. thus it will follow g(A,m;a) < 0 as
long as G(A,m;a) < 0. Let F(z;a) = =) then

G(A,m;a) = F(A - 1;a) — F(A;a) — F(m — 2;q) +F(m— 1;a)
Discuss in cases described in the lemma.

1 A>2m=28
We know Q’%‘_’l = F'(z; @) is monotone increasing in z when z > 7.
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(2)

If m—2 > 7, by Lagrange Mean Value Theorem, it follows that:
F(A;0)-F(A-1;0) = F'(&;0) > F'(§;0) = F(m—-1;0)-F(m-2;a)
where £; € (A —1,A) and & € (m — 2,m - 1), thus G(A,m;a) < 0.
If m = 8, notice A > 8, which implies

F(A - Lie) - F(Aj0) < F(T;0) — F(8;0)
consequently

G(A,8,c) £ F(T;a)— F(8;a) — F(6;0) + F(7; )
4 _8 6

162 18> 14¢«

‘We need to show S1(a) < 0.

By mathematica software, we could draw the picture of Si(c) in
interval (1,2), as shown in Figure 1.

S1

I N2

Figure 1: The image of Si(a)

One might easily see there is only one root of S;(c) = 0, then notice
that S3(1.2961) < 0 and S;(2) < 0, we conclude that S;(a) < 0 when
a € (ap,2) C (1.2961,2). Hence G(A,8;a) <0 for A > 8.

A28 m=7
9 10 5 6
G(ATi0) < 55 ~ 39a ~ 1o + am — ()
when A > 10.

As the proof of Si(a) < 0, we firstly obtain the picture of Sz(a)
in interval (1,2) by mathematica software, which is similar as the
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picture shown in Figure 1. Then notice that S>(1.2961) < 0 and
52(2) < 0, we conclude that Sz(a) < 0 for a € (ap,2) C (1.2961,2).
Hence G(A,7;a) < 0 for A > 10. For A = 8,9, we could directly
prove g(A,7;a) < 0 holds by the same method, the proof is omitted.

3) A>11,m=6

5
CA,6:2) < 5e ~ 30w ~10e + 1as — N

when A > 14.

As the proof of Sj(a) < 0, we firstly obtain the picture of S3(a) in
interval (1, 2) by mathematica software, which is similar as the picture
shown in Figure 1. Then notice that S3(1.2961) < 0 and S3(2) < 0,
we conclude that S3(a) < 0 for a € (ap,2) C (1.2961,2). Hence
G(A,6;a) < 0 for A > 14. One could verify that g(A, 6;a) < 0 also
holds when A = 11,12, 13 by the same method.

4) A>68,m=5

% 9% 3 4
. < - 2 2
G(A,550) < 1555 ~ Toga ~ &= T g5 = 4@

when A > 96.

As the proof of S1(a) < 0, we firstly obtain the picture of Sy(c)
in interval (1,2) by mathematica software, which is similar as the
picture shown in Figure 1. Then notice that S4(1.2961) < 0 and
S4(2) < 0, we conclude that S4(a) < 0 for a € (a,2) C (1.2961,2).
Hence G(A,5;a) < 0 for A > 96. For 68 < A < 95, by the same
method we can get g(A, 5;a) < 0, too.

However, one should observe that it is impossible to determine the signs
of g(7,7; @), 9(4A, 6; @) for 6 < A <10, g(A,5; ) for 5 < A < 67, g(A, 4; )
and g(A, 3; a). O

Now we can give the structure of the tree with maximum general Randicé
index in this case. Notice we have

-1 - 1 -
Rea(Tam) = A +m 1+ A+m-2

@A) T @mye T Bmye T o
vy A-1 m-1_, 1  A+m-2 1
Ballim) = GaptGmp t @t — 3 tE
thus

Theorem 3.3. Let w be the verter with mazimum degree and set T! =
{T||V(T)| = k,BD(w) = 1}, then the mazimum general Randié inder
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R_, where a € (g, 2) among trees in T' is :
when k is even:

’ 3I<n1&)<{6 {R—a (T-'5+1—m m)} 10< k< 30, k ?é 26

J 3218%7 {R‘° (T14—m, m)} k=26

3<m<5 {R"" (T§+1—m m)} 2<k<142

L 3<m<4 {R"’ ( 5+1-m, m)} k>144

when k is odd:

' R e {R-“ (T&;_ )} 11<k<31,k#27

el {R-o (T14—m,m)} k=27

ﬁ I e {R“" (T%— m,m)} 3B<k<143

\ 3<m<4 {R_a (T—;—l-m.m)} k > 145

Proof. We firstly assume k is even, then A + m = 1;- +1.

Clearly, by lemma2.1 the structure of the Max Tree should be DCT.
But by lemma3.2, we know g(A,m;a) < 0 when A > m > 8, thus the tree
with maximum general Randié index in T ! must be among Ta,, where
3 < m < 7. Distinguish in several cases.

(1) 10<k<30, k#26
Since 6 < A+m <16, A+m # 14, whenm =7, wehave 8 < A < 9.
By lemma3.2, we can see that T 7 could not be the Max Tree. When
m = 6,6 <A <10, m # 8, because the sign of g(A, 6;a) when
A < 10 is undetermined, we could not ascertain whether Ta ¢ is the
Max Tree. Similarly, Ta,m(3 < m < 5) could not be excluded too.

(2) k=26
Comparing with the above case, there is only a difference, that is Ta 7
is included since the sign of g(7,7; ) is uncertain.

(3) 32<k <142
Notice 17 < A + m < 72, then Tx ¢ should be clearly excluded, since
when m = 6, we have A > 11.

(4) k> 144
Clearly A +m > 73, so when m = 5, we have A > 68 which implies
9(A,5;a) < 0. Therefore Ta,5 could not be the Max Tree.

The result for odd k& follows clearly. O
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4 The Maximal value of the general Randié¢
index R_,

By Theorem3.1 and Theorem3.3, we may get the main theorem in this
paper:

Theorem 4.1. For o € (ay, 2), the mazimum value of the general Randié
indez R_, of trees with order k > 7 is:

when k is odd: R_, (T_:%x, );

when k is even:

( R_, (Tg) k=8
max | max {Roa((+1-m,m)}, R, (T%_l)} 10<k<24
max | max, {R-a(14 - m,m)}, R_, (T{‘2)} k=26

mex 4 mex {R-a(§+1-mm)}, R_, (Té_l) 28 <k <30

max | max {R_o(§+1-mm)}, R_q (T;_l) 32 < k<142

max 3?1%(4 {R_a (% +1—m, m)} y Rea (T;_l) k> 144

Proof. We only need to compare the maximum general Randié in-
dex R_, of T° obtained in Theorem3.1 and the one of 7! obtained in
Theorem3.3. Discuss in two cases based on the parity of order k.

case 1. k is odd
The structure of T_:_;_,_m’m does not exist when k < 9, so we only have to

consider k£ > 11.
Since

Pm(k,0) = Reo(Ten) - Roa (T )

1 1 1 1-(2)°
2 ((k— 1)e-1 "~ (k-2m+ 1)a—1) tE—m+D)e
1 1 m-1
2a 4o (2m)=
where m = 3,4,5,6,7.
We should discuss pr,(k,a), m = 3,4,5,6,7 one by one. Take m =
3 for instance. Let H(x,o) = =ir, then by Lagrange Mean Value

Theorem,
1 1 1 )
2 ((k — 1)1 (k- 5)a-1) =2H'(§, )




where £ € (k- 5,k —1).
Notice when k > 13, H'(¢,a) = “" > sa , then

21-a) 1 2
pa(k,0) > =2 +§;—4a—6—a—5(a)

As the proof of S;(a) < 0, we firstly obtain the picture of S(a) in
interval (1,2) by mathematica software, and one would see that there is
only one root of S(a) = 0. Then notice that S(1.2961) > 0 and S(2) > 0,
we conclude that S(a) > 0 for a € (@, 2) C (1.2961,2). Hence p3(k,a) >
S(a) > 0 for k > 13. For k = 11, we also show ps(11,a) > 0 by the same
method. Therefore when k& > 11 is odd, Tk—l has larger general Randié
index than Tk —mm where m = 3. Snmlarly, one may obtain p,,(k,a) >0
for m = 4,5, 6 7. Consequently, Tk 1 is the Max Tree for odd order k.

case 2. k is even
In this condition, when k = 8, the possible structure of the Max Tree is
unique, that is T§. But for & > 10 the structure of the Max Tree has no
unique form when « alters. a

Although, there is no unique form of the structure for the Max Tree
of even order, when k > 144 we can define two bounds of a: oj(k) and
(k) which divide the interval (ao,2) into three parts, and in each part
the unique form would be obtained.

For T,;;_l and T _j 5, We have:

a(ka) = Ra(Tj,)—R-a(Tyo2s)

111 ), 1-(8)° 1 2
2\(k—=2)2"1 (k-4)=! (k- 4)°‘ 6
We see g1 (+00,a) = & — & = 0 has one root logj 2.

On the other hand, note the root of equation ¢;(144,a) = 0 by a;,
it is easy to know a; > log% 2. Thus by the continuity of g;(k, ), one
may deduce that (k) belongs to the interval (logg 2, al] . And when a <
ai(k), Ty_z has larger general Randi¢ index than Tg_l; while a > aj(k),

the opposite holds.
FOI‘ T§_2’3 and T5_3 4°

@2(k,a) = R_o (T§—2,3) -R_a (T§—3,4)
1—(1)% 1-(2)°
; ((k —fm-l NG —;)H) G —(?s;a G —(330
2 3
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Function gz2(+00,a) = & — & = 0 has one root logg 3; besides, let

the root of g2(144,a) = 0 be oy, clearly oy > logg 3. Thus o3(k) €
(logg %,ag]. When o < o}(k), T§_3’4 has larger general Randié index
than T _, 5; while o > a3(k), the opposite holds.

Besides, it is easy to calculate a < logg 2, which follows af (k) > o (k).
So as the sum-up of the above discussion,’here is a tabular

ag <a<oayk) | ajk)<a<of(k) [af(k)<a<2
Tg-3,4 T-§-2,3 T

k1

where aq € (1.2961,1.2062), o3(k) € (log 2,01] ,a3(k) € (108 %,O(g].
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