Local-restricted-edge-connectivity of graphs*

Juan Liu[†], Xindong Zhang School of Mathematical Sciences, Xinjiang Normal University Urumqi, Xinjiang 830054, P.R. China Jixiang Meng

College of Mathematics and System Sciences, Xinjiang University Urumqi, Xinjiang 830046, P.R. China

Abstract

The local-restricted-edge-connectivity $\lambda'(e,f)$ of two nonadjacent edges e and f in graph G is the maximum number of edge-disjoint e-f paths in G. It is clear that $\lambda'(G) = \min\{\lambda'(e,f) | e$ and f are nonadjacent edges in $G\}$, and $\lambda'(e,f) \leq \min\{\xi(e),\xi(f)\}$ for all pairs e and f of nonadjacent edges in G, where $\lambda'(G),\xi(e)$ and $\xi(f)$ denote the restricted-edge-connectivity of G, the edge-degree of edges e and f, respectively. Let $\xi(G)$ be the minimum edge-degree of G. We call a graph G optimally restricted-edge-connected when $\lambda'(G) = \xi(G)$ and optimally local-restricted-edge-connected if $\lambda'(e,f) = \min\{\xi(e),\xi(f)\}$ for all pairs e and f of nonadjacent edges in G. In this paper we show that some known sufficient conditions that guarantee that a graph is optimally restricted-edge-connected also guarantee that it is optimally local-restricted-edge-connected.

Keywords: Local-restricted-edge-connectivity; Edge-degree; Restricted-edge-connectivity

1 Introduction

We consider finite, undirected, and simple graphs G with the vertex set V(G) and the edge set E(G). For each vertex $v \in V(G)$, the neighborhood N(v) of v is defined as the set of all vertices adjacent to v, and d(v) = |N(v)| is the degree of v. We denote by $\delta(G)$ the minimum degree. For two vertex subsets X and Y of a graph, let (X,Y) be the set of edges with one endpoint

^{*}The research is supported by NSFXJ (No.2012211B21).

[†]Corresponding author. E-mail: liujuan1999@126.com (J.Liu); mjx@xju.edu.cn (J.Meng)

in X and the other in Y, and |(X,Y)| denotes the cardinality of (X,Y). Let X-Y path be the path having first vertex in X, last vertex in Y, and no other vertex in $X \cup Y$. If $X \subseteq V(G)$, then let G[X] be the subgraph induced by X, and let $\bar{X} = V(G) - X$. The clique number $\varpi(G)$ of a graph G is the maximum cardinality of a complete subgraph of G. For $e = u_1u_2 \in E(G)$, let $\xi(e) = d(u_1) + d(u_2) - 2$ be the edge-degree of e, and let $\xi(G) = \min\{\xi(e) : e \in E(G)\}$ be the minimum edge-degree of G.

The underlying topology of an interconnection network is usually modeled by a graph in which the vertices and edges represent the nodes and links, respectively. A classic measure of network reliability is the edgeconnectivity $\lambda(G)$. In general, the larger $\lambda(G)$ is, the more reliable the network is. For $\lambda(G) \leq \delta(G)$, a graph G with $\lambda(G) = \delta(G)$ is naturally said to be maximally edge-connected, or λ -optimal for simplicity. For further study, Esfahanian and Hakimi proposed the concept of restricted-edgeconnectivity [2, 3]. An edge set $S \subset E$ is said to be a restricted-edge-cut if $G \backslash S$ is disconnected and every component of $G \backslash S$ has at least two vertices. The restricted-edge-connectivity of G, denoted by $\lambda'(G)$, is the cardinality of a minimum restricted-edge-cut of G. A restricted-edge-cut S is called a λ' -cut if $|S| = \lambda'(G)$. Clearly, for any λ' -cut, the graph $G \setminus S$ consists of exactly two components. A connected graph G is called λ' -connected, if λ' -cut exists. It is shown by Wang and Li that the larger $\lambda'(G)$ is, the more reliable the network is [10]. In [3], the authors proved that $\lambda'(G) \leq \xi(G)$ holds for any graph G of order at least 4 which is not isomorphic to the star $K_{1,n-1}$. Hence, a graph G with $\lambda'(G) = \xi(G)$ is said to be optimally restricted-edgeconnected. A graph G is said to be super restricted-edge-connected, if every λ' -cut of G isolates an edge of G. Obviously, every super restricted-edgeconnected graph is also optimally restricted-edge-connected. Some classes of optimally restricted-edge-connected graphs were studied in [5, 8, 11, 12].

The local-edge-connectivity $\lambda(u,v)$ of two vertices u and v in a graph G is the maximum number of edge-disjoint u-v paths in G, and $\lambda(G) = \min\{\lambda(u,v)|u,v\in V(G);u\neq v\}$. Clearly, $\lambda(u,v)\leq \min\{d(u),d(v)\}$ for all pairs u and v of vertices in G. A graph G is said to be maximally local-edge-connected when $\lambda(u,v)=\min\{d(u),d(v)\}$ for all pairs u and v of vertices in G. It is clear that if a graph is maximally local-edge-connected, then it is maximally edge-connected. Fricke et al.[4], Hellwig and Volkmann [6], and Volkmann [9] have shown that some known sufficient conditions that guarantee that a graph is maximally edge-connected also guarantee that it is maximally local-edge-connected.

In this paper, we define the locally restricted-edge-connectivity as follows.

Definition 1.1. The locally restricted-edge-connectivity $\lambda'(e, f)$ of two non-adjacent edges e and f in graph G is the maximum number of edge-disjoint e-f paths in G.

By the definition, we immediately obtain the following observation.

Observation 1.2. If G is a λ' -connected graph, then $\lambda'(G) = \min\{\lambda'(e, f) | e \text{ and } f \text{ are nonadjacent edges in } G\}.$

Proof. It is clear that $\lambda'(G) \leq \min\{\lambda'(e,f)| e \text{ and } f \text{ are nonadjacent edges in } G\}$. On the other hand, let S be a λ' -cut such that $|(X,\bar{X})| = \lambda'(G)$, then there exist two edges $e' \in E(G[X])$ and $f' \in E(G[\bar{X}])$ satisfying $\lambda'(e',f') \leq \lambda'(G)$. Therefore, $\lambda'(G) \geq \min\{\lambda'(e,f)| e \text{ and } f \text{ are nonadjacent edges in } G\}$. The proof is complete.

Clearly, $\lambda'(e,f) \leq \min\{\xi(e),\xi(f)\}$ for all pairs e and f of nonadjacent edges in G. We call a graph G optimally local-restricted-edge-connected if $\lambda'(e,f) = \min\{\xi(e),\xi(f)\}$ for all pairs of e and f of nonadjacent edges in G. In this paper we show that some known sufficient conditions that guarantee that a graph is optimally restricted-edge-connected also guarantee that it is optimally local-restricted-edge-connected.

Our proofs are based on the following consequence of Menger's [7] theorem.

Lemma 1.3. Let e and f be a pair of nonadjacent edges in graph G. Then $\lambda'(e, f) \geq q$ if and only if $|(X, \bar{X})| \geq q$ for all subsets $X \subset V(G)$ such that $e \in E(G[X])$ and $f \in E(G[\bar{X}])$.

Terminologies not given here are referred to [1].

2 Arbitrary graphs

If a graph G is optimally restricted-edge-connected rather than super restricted-edge-connected, then there exists a λ' -cut $S=(X,\bar{X})$ with $|X|,|\bar{X}|\geq 3$. It is easy to see that if there exist two edges $e\in E(G[X])$ and $f\in E(G[\bar{X}])$ such that $\xi(e),\xi(f)>\xi(G)$, then $\lambda'(e,f)=\xi(G)<\min\{\xi(e),\xi(f)\}$. Hence, a sufficient condition that guarantee that a graph is optimally restricted-edge-connected graph may not guarantee that it is optimally local-restricted-edge-connected.

Our first observation demonstrates that an optimally local-restricted-edge-connected graph is also optimally restricted-edge-connected.

Observation 2.1. If a graph G is optimally local-restricted-edge-connected, then it is optimally restricted-edge-connected.

Proof. Note that if $\xi(e) = \xi(G)$ for $e \in E(G)$, then there exists an edge $f \in E(G)$ such that e and f are nonadjacent. Since G is optimally local-restricted-edge-connected, we have $\lambda'(e, f) = \min\{\xi(e), \xi(f)\}$ for all pairs

e and f of nonadjacent edges in G. This implies

$$\lambda'(G) = \min\{\lambda'(e, f)|e \text{ and } f \text{ are nonadjacent edges in } G\}$$

= $\min\{\min\{\xi(e), \xi(f)\}|e \text{ and } f \text{ are nonadjacent edges in } G\}$
= $\xi(G)$.

Hence, G is optimally restricted-edge-connected.

Our second observation demonstrates that a r-regular and optimally restricted-edge-connected graph is also optimally local-restricted-edge-connected

Observation 2.2. If a graph G is r-regular and optimally restricted-edge-connected, then it is optimally local-restricted-edge-connected.

Proof. Since G is r-regular and optimally restricted-edge-connected, we have $\lambda'(G) = \xi(G) = \xi(e)$ for any edge $e \in E(G)$. This implies $\lambda'(G) \leq \lambda'(e, f) \leq \min\{\xi(e), \xi(f)\} = \xi(G)$ for all pairs e and f of nonadjacent edges in G. Therefore, G is optimally local-restricted-edge-connected. \square

Theorem 2.3. Let G be a λ' -connected graph with order n and minimum degree δ . If $\delta \geq \lfloor \frac{n}{2} \rfloor + 1$, then G is optimally local-restricted-edge-connected.

Proof. Let e and f be any two nonadjacent edges of G, $e=u_1u_2, f=v_1v_2$. As noted above, $\lambda'(e,f) \leq \min\{\xi(e),\xi(f)\}$. In view of Lemma 1.3, it remains to show that $|(X,\bar{X})| \geq \min\{\xi(e),\xi(f)\}$ for all subsets $X \subset V(G)$ with the property that $e \in E(G[X])$ and $f \in E(G[\bar{X}])$. Let X be such a set.

Case 1: $|X| \leq \lfloor \frac{n}{2} \rfloor$. Then the condition $\delta \geq \lfloor \frac{n}{2} \rfloor + 1$ implies $|X| \leq \delta - 1$. Since G is a simple graph, we have $E(G[X]) \leq |X|(|X|-1)/2$ and hence

$$|(X,\bar{X})| = \sum_{x \in X} d(x) - 2E(G[X])$$

$$\geq \sum_{x \in X} d(x) - |X|(|X| - 1)$$

$$= d(u_1) + d(u_2) + (|X| - 2)\delta - |X|(|X| - 1)$$

$$= \xi(e) + 2 + (|X| - 2)\delta - |X|(|X| - 1)$$

$$= \xi(e) + (|X| - 2)(\delta - 1 - |X|)$$

$$\geq \xi(e) + (|X| - 2)(\lfloor \frac{n}{2} \rfloor - |X|)$$

$$\geq \xi(e).$$

This yields the desired inequality $|(X, \bar{X})| \ge \xi(e) \ge \min\{\xi(e), \xi(f)\}$. Case 2: $|\bar{X}| \le \lfloor \frac{n}{2} \rfloor$. Analogously to Case 1, we then obtain $|(X, \bar{X})| \ge \xi(f) \ge \min\{\xi(e), \xi(f)\}$, and the proof is complete. Using Theorem 2.3 and Observation 2.1, we immediately obtain the following sufficient condition for graphs to be optimally restricted-edge-connected.

Corollary 2.4. [3] Let G be a λ' -connected graph with order n and minimum degree δ . If $\delta \geq \lfloor \frac{n}{2} \rfloor + 1$, then G is optimally restricted-edge-connected.

3 Graphs with given clique number

Using Turán's bound $2|E(G)| \leq \frac{p-1}{p}|V(G)|^2$ for graphs G satisfying $\omega(G) \leq p$, we obtain the following result.

Theorem 3.1. Let $p \geq 3$ be an integer, and let G be a λ' -connected graph of order n with clique number $\omega(G) \leq p$ and degree sequence $d_1 \geq d_2 \geq \cdots \geq d_n = \delta$. If

$$\sum_{i=1}^{\max\{1,\delta-2\}} d_{n-i+1} \geq \max\{1,\delta-2\} \frac{p-1}{p} (\lfloor \frac{n}{2} \rfloor + 2 + \frac{p-3}{(p-1)\max\{1,\delta-2\}}),$$

then G is optimally local-restricted-edge-connected.

Proof. Let e and f be any two nonadjacent edges of G, $e = u_1u_2$, $f = v_1v_2$. As noted above, $\lambda'(e,f) \leq \min\{\xi(e),\xi(f)\}$. In view of Lemma 1.3, it remains to show that $|(X,\bar{X})| \geq \min\{\xi(e),\xi(f)\}$ for all subsets $X \subset V(G)$ with the property that $e \in E(G[X])$ and $f \in E(G[\bar{X}])$. Let X be such a set.

Case 1: $|X| \leq \lfloor \frac{n}{2} \rfloor$. If |X| = 2, then we are done. Now let $|X| \geq 3$. If $\delta \geq |X| + 1$, then it is analogous to the proof of Case 1 of Theorem 2.3. If $\delta \leq |X|$, using Turán's bound and the inequality $1 \leq \max\{1, \delta - 2\} \leq |X| - 2$, we have

$$\begin{split} &|(X,\bar{X})| = \sum_{x \in X} d(x) - 2E(G[X]) \geq \sum_{x \in X} d(x) - \frac{p-1}{p}|X|^2 \\ &= \sum_{x \in X} d(x) - \frac{p-1}{p}[(|X|-2)(|X|+2)+4] \\ &= d(u_1) + d(u_2) - 2 + 2 + \sum_{x \in X \setminus \{u_1,u_2\}} d(x) - \frac{p-1}{p}[(|X|-2)(|X|+2)+4] \\ &\geq \xi(e) + 2 + \sum_{i=1}^{\max\{1,\delta-2\}} d_{n-i+1} + \sum_{i=\max\{2,\delta-1\}}^{|X|-2} d_{n-i+1} - \frac{p-1}{p}[(|X|-2)(|X|+2)+4] \\ &\geq \xi(e) + 2 + (|X|-2)\frac{p-1}{p}(\lfloor \frac{n}{2} \rfloor + 2 + \frac{p-3}{(p-1)\max\{1,\delta-2\}}) - \frac{p-1}{p}[(|X|-2)(|X|+2)+4] \\ &= \xi(e) + 2 + (|X|-2)\frac{p-1}{p}(\lfloor \frac{n}{2} \rfloor + 2 + \frac{p-3}{(p-1)\max\{1,\delta-2\}} - (|X|+2)) - 4\frac{p-1}{p} \\ &\geq \xi(e) + 2 + (|X|-2)\frac{p-3}{p\max\{1,\delta-2\}} - 4\frac{p-1}{p} \\ &\geq \xi(e) + 2 + \frac{p-3}{p} - 4\frac{p-1}{p} = \xi(e) - 1 + \frac{1}{p}. \end{split}$$

Since $|(X, \bar{X})|$ and $\xi(e)$ are integers and 0 < 1/p < 1, it follows that $|(X, \bar{X})| \ge \xi(e) \ge \min\{\xi(e), \xi(f)\}.$

Case 2: $|\bar{X}| \leq \lfloor \frac{n}{2} \rfloor$. Analogously to Case 1, we then obtain $|(X, \bar{X})| \geq \xi(f) \geq \min\{\xi(e), \xi(f)\}$, and the proof is complete.

Corollary 3.2. Let $p \geq 3$ be an integer, and let G be a λ' -connected graph of order n with clique number $\omega(G) \leq p$ and minimum degree δ . If

$$\lfloor \frac{n}{2} \rfloor \ge \lfloor \frac{p\delta}{p-1} - \frac{p-3}{(p-1)\max\{1,\delta-2\}} \rfloor - 2,\tag{1}$$

then G is optimally local-restricted-edge-connected.

Proof. If the inequality (1) holds, then

$$\delta \geq \frac{p-1}{p}(\lfloor \frac{n}{2} \rfloor + 2 + \frac{p-3}{(p-1)\max\{1,\delta-2\}}).$$

Therefore, the degree sequence condition of Theorem 3.1 holds. The proof is complete. $\hfill\Box$

The following result of Hellwig and Volkmann is an easy consequence of Corollary 3.2.

Corollary 3.3. [5] Let $p \geq 3$ be an integer, and let G be a λ' -connected graph of order n with clique number $\omega(G) \leq p$ and minimum degree δ . If

$$\lfloor \frac{n}{2} \rfloor \geq \lfloor \frac{p\delta}{p-1} - \frac{p-3}{(p-1)\max\{1,\delta-2\}} \rfloor - 2,$$

then G is optimally restricted-edge-connected.

4 Triangle-free graphs

Using Turán bound $2|E(G)| \leq |V(G)|^2/2$ for triangle-free graphs G, we obtain the following result.

Theorem 4.1. Let G be a λ' -connected triangle-free graph of order $n \geq 4$ and degree sequence $d_1 \geq d_2 \geq \cdots \geq d_n = \delta$. If

$$\sum_{i=1}^{\max\{1,\delta-2\}} d_{n-i+1} \geq \max\{1,\delta-2\} \frac{1}{2} (\lfloor \frac{n}{2} \rfloor + 2 - \frac{4}{n-3}),$$

then G is optimally local-restricted-edge-connected.

Proof. Let e and f be any two nonadjacent edges of G, $e = u_1u_2$, $f = v_1v_2$. As noted above, $\lambda'(e, f) \leq \min\{\xi(e), \xi(f)\}$. In view of Lemma 1.3, it remains to show that $|(X, \bar{X})| \geq \min\{\xi(e), \xi(f)\}$ for all subsets $X \subset V(G)$ with the property that $e \in E(G[X])$ and $f \in E(G[\bar{X}])$. Let X be such a set.

Case 1: $|X| \leq \lfloor \frac{n}{2} \rfloor$. If |X| = 2, then we are done. Now let $|X| \geq 3$. If $\delta \geq |X| + 1$, then it is analogous to the proof of Case 1 of Theorem 2.3. If $\delta \leq |X|$, using Turán's bound and the inequality $1 \leq \max\{1, \delta - 2\} \leq |X| - 2$, we have

$$|(X, \bar{X})| = \sum_{x \in X} d(x) - 2E(G[X])$$

$$\geq \sum_{x \in X} d(x) - \frac{|X|^2}{2}$$

$$= d(u_1) + d(u_2) - 2 + 2 + \sum_{x \in X \setminus \{u_1, u_2\}} d(x) - \frac{(|X| - 2)(|X| + 2) + 4}{2}$$

$$\geq \xi(e) + 2 + \sum_{i=1}^{\max\{1, \delta - 2\}} d_{n-i+1} + \sum_{i=\max\{2, \delta - 1\}}^{|X| - 2} d_{n-i+1} - \frac{(|X| - 2)(|X| + 2) + 4}{2}$$

$$\geq \xi(e) + 2 + (|X| - 2)\frac{1}{2}(\lfloor \frac{n}{2} \rfloor + 2 - \frac{4}{n-3} - |X| - 2) - 2$$

$$\geq \xi(e) - \frac{2(|X|-2)}{2}.$$

Since $|(X, \bar{X})|$ and $\xi(e)$ are integers and $0 \le \frac{2(|X|-2)}{n-3} < 1$, it follows that $|(X, \bar{X})| \ge \xi(e) \ge \min\{\xi(e), \xi(f)\}.$

Case 2: $|X| \le \lfloor \frac{n}{2} \rfloor$. Analogously to Case 1, we then obtain $|(X, \bar{X})| \ge \xi(f) \ge \min\{\xi(e), \xi(f)\}$, and the proof is complete.

Corollary 4.2. Let G be a λ' -connected triangle-free graph of order n. If

$$d(x) \geq \lceil \frac{1}{2} \lfloor \frac{n}{2} \rfloor + 1 \rceil = \lfloor \frac{n+2}{4} \rfloor + 1$$

for all vertices x in G, then G is optimally local-restricted-edge-connected.

References

- [1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan, London (1976).
- [2] A.H. Esfahanian, Generalized measures of fault tolerance with application to n-cube networks, IEEE Trans. Comput. 38 (1989) 1586-1591.

- [3] A.H. Esfahanian and S.L. Hakimi, On computing a conditional edge connectivity of a graph, Inform. Process. Lett. 27 (1988) 195-199.
- [4] G. Fricke, O.R. Oellermann and H.C. Swart, The edge-connectivity, average edge-connectivity and degree conditions, manuscript (2000).
- [5] A. Hellwig and L. Volkmann, Sufficent conditions for λ' -optimality, super-edge-connected and Maximally edge-connected, J. Graph Theory 48 (2005) 228-246.
- [6] A. Hellwig and L. Volkmann, Maximally local-edge-connected graphs and digraphs, Ars Combin. 72 (2004) 295-306.
- [7] K. Menger, Zur allgemeinen Kurventheorie, Fund. Math. 10 (1927) 96-115.
- [8] L. Shang and H. Zhang, Sufficient conditions for graphs to be λ' -optimal and super- λ' , Networks 49(3) (2007) 234-242.
- [9] L. Volkmann, Locally-edge-connectivity in digraphs and oriented graphs, Discrete Math. 307 (2007) 3207-3212.
- [10] M. Wang and Q. Li, Conditional edge connectivity properties, reliability comparison and transitivity of graphs, Discrete Math. 258 (2002) 205-214.
- [11] J.M. Xu and K.L. Xu, On restricted edge-connectivity of graphs, Discrete Math. 243 (2002) 291-298.
- [12] Z. Zhang, Sufficient conditions for restricted-edge-connectivity to be optimal, Discrete Math. 307 (2007) 2891-2899.