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Abstract

The local-restricted-edge-connectivity A'(e, f) of two nonadjacent edges e
and f in graph G is the maximum number of edge-disjoint e- f paths in G. It
is clear that A’(G) = min{\'(e, f)| e and f are nonadjacent edges in G}, and
N (e, f) < min{é(e), £(f)} for all pairs e and f of nonadjacent edges in G,
where X'(G), §(e) and £(f) denote the restricted-edge-connectivity of G, the
edge-degree of edges e and f, respectively. Let £(G) be the minimum edge-
degree of G. We call a graph G optimally restricted-edge-connected when
N(G) = &(G) and optimally local-restricted-edge-connected if X (e, f) =
min{é(e),&(f)} for all pairs e and f of nonadjacent edges in G. In this
paper we show that some known sufficient conditions that guarantee that
a graph is optimally restricted-edge-connected also guarantee that it is
optimally local-restricted-edge-connected.

Keywords: Local-restricted-edge-connectivity; Edge-degree; Restricted-
edge-connectivity

1 Introduction

We consider finite, undirected, and simple graphs G with the vertex set
V(G) and the edge set E(G). For each vertex v € V(G), the neighborhood
N(v) of v is defined as the set of all vertices adjacent to v, and d(v) = |[N(v)|
is the degree of v. We denote by §(G) the minimum degree. For two vertex
subsets X and Y of a graph, let (X,Y’) be the set of edges with one endpoint
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in X and the other in Y, and |(X,Y’)| denotes the cardinality of (X,Y).
Let X-Y path be the path having first vertex in X, last vertex in Y, and
no other vertex in X UY. If X C V(G), then let G[X] be the subgraph
induced by X, and let X = V(G) — X. The clique number @w(G) of a
graph G is the maximum cardinality of a complete subgraph of G. For
e = uyug € E(G), let £(e) = d(u1) + d(uz) — 2 be the edge-degree of e, and
let £(G) = min{£(e) : e € E(G)} be the minimum edge-degree of G.

The underlying topology of an interconnection network is usually mod-
eled by a graph in which the vertices and edges represent the nodes and
links, respectively. A classic measure of network reliability is the edge-
connectivity A(G). In general, the larger A(G) is, the more reliable the
network is. For A(G) < 6(G), a graph G with A(G) = &(G) is naturally
said to be maximally edge-connected, or A-optimal for simplicity. For fur-
ther study, Esfahanian and Hakimi proposed the concept of restricted-edge-
connectivity [2, 3]. An edge set S C E is said to be a restricted-edge-cut if
G\S is disconnected and every component of G\S has at least two vertices.
The restricted-edge-connectivity of G, denoted by X'(G), is the cardinality
of a minimum restricted-edge-cut of G. A restricted-edge-cut S is called a
N-cut if |S| = M(G). Clearly, for any )'-cut, the graph G\S consists of ex-
actly two components. A connected graph G is called \'-connected, if A’-cut
exists. It is shown by Wang and Li that the larger A'(G) is, the more reliable
the network is [10]. In [3], the authors proved that X'(G) < £(G) holds for
any graph G of order at least 4 which is not isomorphic to the star K 5-1.
Hence, a graph G with \'(G) = £(G) is said to be optimally restricted-edge-
connected. A graph G is said to be super restricted-edge-connected, if every
N-cut of G isolates an edge of G. Obviously, every super restricted-edge-
connected graph is also optimally restricted-edge-connected. Some classes
of optimally restricted-edge-connected graphs were studied in [5, 8, 11, 12].

The local-edge-connectivity A(u,v) of two vertices u and v in a graph
G is the maximum number of edge-disjoint u-v paths in G, and A(G) =
min{(x, v)ju,v € V(G);u # v}. Clearly, A(x,v) < min{d(u),d(v)} for all
pairs u and v of vertices in G. A graph G is said to be maximally local-edge-
connected when A(u,v) = min{d(u), d(v)} for all pairs u and v of vertices
in G. It is clear that if a graph is maximally local-edge-connected, then it
is maximally edge-connected. Fricke et al.[4], Hellwig and Volkmann (6],
and Volkmann (9] have shown that some known sufficient conditions that
guarantee that a graph is maximally edge-connected also guarantee that it
is maximally local-edge-connected.

In this paper, we define the locally restricted-edge-connectivity as follows.

Definition 1.1. The locally restricted-edge-connectivity X' (e, f) of two non-
adjacent edges e and f in graph G is the mazimum number of edge-disjoint
e-f paths in G.
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By the definition, we immediately obtain the following observation.

Observation 1.2. IfG is a X'-connected graph, then N'(G) = min{XN (e, f)|
e and f are nonadjacent edges in G}.

Proof. 1t is clear that M'(G) < min{X(e, f)| e and f are nonadjacent edges
in G}. On the other hand, let S be a X'-cut such that |(X, X)| = M(G), then
there exist two edges e’ € E(G[X]) and f’ € E(G[X)) satisfying N'(¢/, f') <
N(G). Therefore, X'(G) > min{X'(e, f)| e and f are nonadjacent edges in
G}. The proof is complete. O

Clearly, X' (e, f) < min{é(e),£(f)} for all pairs e and f of nonadjacent
edges in G. We call a graph G optimally local-restricted-edge-connected if
M'(e, f) = min{¢(e), £(f)} for all pairs of e and f of nonadjacent edges in G.
In this paper we show that some known sufficient conditions that guarantee
that a graph is optimally restricted-edge-connected also guarantee that it
is optimally local-restricted-edge-connected.

Our proofs are based on the following consequence of Menger’s 7] theo-
rem.

Lemma 1.3. Let e and fbe a pair of nonadjacent edges in graph G. Then
M(e, f) 2 q if and only if (X, X)| = g for all subsets X C V(G) such that
e € E(G[X]) and f € E(G[X)).

Terminologies not given here are referred to [1].

2 Arbitrary graphs

If a graph G is optimally restricted-edge-connected rather than super
restricted-edge-connected, then there exists a M-cut § = (X, X) with
|X1,|X| > 3. It is easy to see that if there exist two edges e € E(G[X))
and f € E(G[X]) such that £(e),&(f) > &(G), then N(e, f) = &(G) <
min{¢(e),£(f)}. Hence, a sufficient condition that guarantee that a graph
is optimally restricted-edge-connected graph may not guarantee that it is
optimally local-restricted-edge-connected.

Our first observation demonstrates that an optimally local-restricted-
edge-connected graph is also optimally restricted-edge-connected.

Observation 2.1. If a graph G is optimally local-restricted-edge-connected,
then it is optimally restricted-edge-connected.

Proof. Note that if {(e) = £(G) for e € E(G), then there exists an edge
f € E(G) such that e and f are nonadjacent. Since G is optimally local-
restricted-edge-connected, we have X' (e, f) = min{¢(e), £(f)} for all pairs



e and f of nonadjacent edges in G. This implies

MN(G) = min{N(e, f)|e and f are nonadjacent edges in G}
= min{min{£&(e),&(f)}|e and f are nonadjacent edges in G}
= &(G).
Hence, G is optimally restricted-edge-connected. O

Our second observation demonstrates that a r-regular and optimally
restricted-edge-connected graph is also optimally local-restricted-edge-connected

Observation 2.2. If a graph G is r-regular and optimally restricted-edge-
connected, then it is optimally local-restricted-edge-connected.

Proof. Since G is r-regular and optimally restricted-edge-connected, we
have N(G) = £&(G) = £(e) for any edge e € E(G). This implies M'(G) <
N (e, f) < min{£(e), &(f)} = &£(G) for all pairs e and f of nonadjacent edges
in G. Therefore, G is optimally local-restricted-edge-connected. O

Theorem 2.3. Let G be a X -connected graph with order n and minimum
degree 8. If6 > |3]+1, then G is optimally local-restricted-edge-connected.

Proof. Let e and f be any two nonadjacent edges of G, e = ujuz, f = v1v2.
As noted above, X(e, f) < min{¢(e),4(f)}. In view of Lemma 1.3, it
remains to show that |(X, X)| > min{¢(e),£(f)} for all subsets X C V(G)
with the property that e € E(G[X]) and f € E(G[X]). Let X be such a

set.
Case 1: |X| < |3]. Then the condition §

>
Since G is a simple graph we have E(G[X]) <

(X, X)) = ) d(z)-2E(G[X])
zeX

> Y dz) - IX|(X|-1)

zeX
= d(w1) +d(uz) + (1X] - 2)6 - |X|(|X] - 1)
£(e) + 2+ (1X| - 2)6 — |X|(1X| - 1)

&(e) + (1X| - 2)(5 —-1-|X])

£(e) + (IX] - 2)(L J=1X0

£(e)-

This yields the desired inequality |(X, X)| = &(e) > min{£(e),&(f)}.
Case 2: |X| < |2]. Analogously to Case 1, we then obtain (X, X)) =

£(f) = min{é(e), &( f)} and the proof is complete. O

[3]+1 implies | X| < 6 1.
|X](}X| —1)/2 and hence

v v
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Using Theorem 2.3 and Observation 2.1, we immediately obtain the
following sufficient condition for graphs to be optimally restricted-edge-
connected.

Corollary 2.4. [3] Let G be a ) -connected graph with order n and mini-
mum degree 6. If§ > | 2] +1, then G is optimally restricted-edge-connected.

3 Graphs with given clique number

Using Turén’s bound 2|E(G)| < LlV(G)|2 for graphs G satisfying
w(G) < p, we obtain the following result
Theorem 3.1. Let p > 3 be an integer, and let G be a X' -connected graph
of order n with cliqgue number w(G) < p and degree sequence d; > dy >
e Z dn =4. If
max{1,6—2}

p— p-3
>
> dneigr > max{1,6 - 2} ([ Zl+2+ P mar(l 5= 2}

i=1

then G is optimally local-restn'cted-edge-cannected.

Proof. Let e and f be any two nonadjacent edges of G, e = ujuz, f = v1vs.
As noted above, X(e, f) < min{£(e),&(f)}. In view of Lemma 1.3, it
remains to show that (X, X)| > min{&(e), £(f)} for all subsets X C V(G)
with the property that e € E(G[X]) and f € E(G[X]). Let X be such a

set.

Case 1: |[X| < [%J- If |X| = 2, then we are done. Now let | X| > 3. If
0 > |X| +1, then it is analogous to the proof of Case 1 of Theorem 2.3.
If & < |X|, using Turén’s bound and the inequality 1 < max{1,6 — 2} <
| X| — 2, we have

(X, X)| = Z d(z) — 2E(G[X]) 2 Z d(z) - BA|X|?
E d(z) - "—[(IXI 2)(|XI+2)+4]

_d(u1)+d(u2)—2+2+ > d(z) — a;—l[([Xl—2)(|X|+2)+4]
z€X\{u1,u2}

max{1,56—-2} |X|-2
2 é(e)+2+ 21 dnoivrt Y dnes — BRI X[-2)(1X]+2) +4]
i= i=max{2,6—1}

2 §(e)+2+(IX1-2) 224 (13) + 2+ oiyatmay) — B2 (X1 - 2)(1X1 +2) +4)
=£(e) + 2+ (1IX] - 2254 (3] + 2+ oyiramsy — (X1 +2) — 4252

2 é(e) +2+ (1X| - 2) prfrisy — 455
2€(e) +2+ 852 — 422l —g(e) — 1+ L.
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Since |(X, X)| and £(e) are integers and 0 < 1/p < 1, it follows that
(X, X)| 2 E(e) > min{(e), £(f)}-

Case 2: | X| < |2]. Analogously to Case 1, we then obtain |(X, X)| >
£(f) = min{&(e), &( f)} and the proof is complete. 0

Corollary 3.2. Let p > 3 be an integer, and let G be a X'-connected graph
of order n with clique number w(G) < p and minimum degree 6. If

p—3
LJ_Lp I~ G- Dmax(1-2) 2 M)

then G is optimally local-restricted-edge-connected.
Proof. If the inequality (1) holds, then

p—3
(p— 1) max{1,6 — 2}

s>2—= ([ 1+2+

Therefore, the degree sequence condition of Theorem 3.1 holds. The proof
is complete. O

The following result of Hellwig and Volkmann is an easy consequence of
Corollary 3.2.

Corollary 3.3. [5] Let p > 3 be an integer, and let G be a X -connected
graph of order n with cliqgue number w(G) < p and minimum degree 6. If
p- 1 Cp-D)max{1,6-2}"

lJ_L

then G 1is optimally restricted-edge-connected.

4 Triangle-free graphs
Using Turén bound 2|E(G)| < |V(G)|?/2 for triangle-free graphs G, we
obtain the following result.

Theorem 4.1. Let G be a X -connected triangle-free graph of order n > 4
and degree sequence dy > dp > -+ 2 dn =4. If

max{1,6—2} 1 n 4
Y a2 max{l,5-2)5(1F) +2- =),

i=1

then G is optimally local-restricted-edge-connected.
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Proof. Let e and f be any two nonadjacent edges of G, e = ujug, f = v vs.
As noted above, A'(e, f) < min{¢(e),&(f)}. In view of Lemma 1.3, it
remains to show that |(X, X)| > min{¢(e), £(f)} for all subsets X C V(G)
with the property that e € E(G[X]) and f € E(G[X]). Let X be such a
set.

Case 1: |X| < |§]. If | X| = 2, then we are done. Now let | X| > 3. If
§ > |X| +1, then it is analogous to the proof of Case 1 of Theorem 2.3.
If 6 < |X|, using Turdn’s bound and the inequality 1 < max{1,§ — 2} <
| X| = 2, we have
I(X, X)| = zg( d(z) — 2E(G[X])

2

> Y dw-ZL
z€X
= dw)+du)-2+2+ 3 da)- X -2)0;(! +2)+4
z€X\{uj,uz}
max{1,§-2) 1X{-2

> le)+2+ D daoip1t > dnin - (X1 - 2)(|;(| t2+4d

i=1 i=max{2,6—1}

1, n 4

2 e +2+(IXI-25(5)+2- =5~ 1X]-2) -2
2 &(e)- 3('{'_—'32—)

Since |(X, X)] and £(e) are integers and 0 < ﬂ%g—zl < 1, it follows that

(X, X)| > £(e) > min{&(e), £(£)}. )
Case 2: |X| < |2]. Analogously to Case 1, we then obtain |(X, X)| >

&(f) > min{€(e),£(f)}, and the proof is complete. a

Corollary 4.2. Let G be a ) -connected triangle-free graph of order n. If

n+2

31411 =222 1

2

for all vertices x in G, then G is optimally local-restricted-edge-connected.

diz) 2 [
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