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Abstract

In this paper we characterize all spacelike, timelike and null curves
lying on the pseudohyperbolic space H3_, in Minkowski space ES. More-
over, we prove that there are no timelike and no null curves lying on the
pseudohyperbolic space H3_, in ES.
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1 Introduction

A necessary and sufficient conditions for a curve to be a spherical curve in the
Euclidean space E® are given in [5, 9] and [10]. In [11, 12] and [13], the authors
have characterized the Lorentzian spherical curves in the Minkowski 3-space.
On the other hand, a similar characterizations of a spacelike, a timelike and a
null curves lying on the pseudohyperbolic spaces HZ and H§ in the Minkowski
space are obtained in [2, 7).

The Minkowski space ES is the Euclidean space E® provided with the stan-
dard flat metric given by

g= eodxf + elda:g + Egdxg + E3dz§ + €4dx§,

where (1,72, %3, %4, T5) is a rectangular coordinate system of ES.

Since g is indefinite metric, recall that a vector v € E5 can have one of
three causal characters: it can be spacelike if g(v,v) > 0 or v = 0, timelike if
9(v,v) < 0 and null (lightlike) if g(v,v) = 0 and v # 0. Similarly, an arbitrary
curve @ = a(s) in EJ can locally be spacelike, timelike or null (lightlike), if all
of its velocity vectors o'(s) are respectively spacelike, timelike or null. Besides,
recall that the norm of a vector v is given by || v|| = /[ g(v, v)|. Therefore, v is
a unit vector if g(v,v) = £1. Next, vectors v, w in E3 are said to be orthogonal
if g(v,w) = 0. The velocity of the curve a(s) is given by ||a’(s)]|.

The pseudohyperbolic space with center m € E> and radius 7 € R* in the
space E? is the hyperquadric

H\(r)={a € B |g(e—m,a—m) = —r3}.
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with dimension 4 and index v — 1 [6].

Denote by {T(s), N(s), Bi(s), B2(s), Bs(s)} the moving Frenet frame along
the curve a(s) in the space ES. Then T'(s),N(s),B1(s),Ba(s), Bs(s) are respec-
tively the tangent, the principal normal, the first binormal, the second binormal
and the third binormal vector. Spacelike or timelike curve a(s) is said to be
parameterized by a arclength function s, if g(o/(s),o/(s)) = 1. In particu-
lar, a null curve a(s) is said to be parameterized by a arclength function s if
g9(e”(s),a"(s)) =113, 3].

Consider a = a(s) be a unit speed non-null curve in Minkowski space E,
parametrized by arclength function s. Let {T'(s), N(s), Bi(s), B2(s), Bs(s)} be
the moving Frenet frame along a which is satisfying (T, T) = €0, (N,N) =
€1, (B1,B1) = €2, (Bg, B2) = €3, (Bs, Bs) = £4.The Frenet equations for o
given by [4] are following: T' = k1N, N’ = —eoe161T+k2B1, B] = —e16262N +
k3By, B} = —eoe3k3 By + k4 Bs, By = —€3€4k3 B;. By using these equations, in
this paper we give some necessary and sufficient conditions for a spacelike curve
to lie on the pseudohyperbolic space H_; in the Minkowski space. Also we show
th4at there as,re no timelike and no null curves lying on the pseudohyperbolic space
H) ,in E2.

2  The spacelike, timelike and null curves lying on HJ_;

In this section, under assumption that spacelike, timelike and null curves lie on
the pseudohyperbolic space H2_,(r), we give some characterization theorems
for these curves in terms of their curvatures.

Theorem 1. Let a(s) be a unit speed spacelike curve in E5 with curvatures
ki(s) # 0, ka(s) # O, ka(s) # 0, ka(s) # O for each s € I C R. Then o lies on
H2_(r) if and only if

e )P +er( (R P+eald @e 2 +(E(E)) )

! 1.1 1 (2.1)

+et (@B (R )t EaR+(EE)) NP =-r°
Proof. Let us first suppose that « lies on Hj_;(r) with center m. Then g(o —
m,a —m) = —r2, for each s € I C R. Differentiating the previous equation

four times with respect to s and by applying Frenet equations, we get

g(T,a-m)=0, g(N,a-m)=-2,
g(Bra-m)==(A)E), 9(Bsa-m)=—(&)ere22 + (),

9(Bs,a —m) = — (F)leaes 2 (&) +ea(@re22 + (5 ()]
(2.2)
Let us decompose the vector & — m with respect to pseudo—orthonormal basis
{T,N, By, By, B3} by

a(s) — m =a(s)T(s) + b(s)N(s) + c(s)B1(s) + d(s)Ba(s) + e(s)Bs(s) (2.3)
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where a(s), b(s), c(s),d(s), e(s) are arbitrary functions. Therefore, using (2.2)
and (2.3) we obtain (2.1).

Conversely, let us assume that the relation (2.1) holds. By taking the deriva-
tive of (2.1) with respect to s, we find

Ll () +ea( e + ()Y

o ’ 2.
x[B (61625 + (R(L))) +ead] =0 24)

where 1
A= Elszf}(ﬁ-) +es(gs(ereaft + (R ()N

If a2 (&) + ea(gslere2f + (A(£))))' = 0, then substituting this into
(2.2) we get g(B3,a—m) = 0 which means that o lies in a plane spanned
by {N, By, By}. This result is a contradiction with our assumption. Therefore,
it follows that ., ,

Blaep+RE)) ) +ead =0 (2.5)

Next, we may consider the vector m € E3 given by

mear NGB R @B,
+85% e B (L) +ea(R (@022 + (£ (£)))]Bs.

Differentiating (2.6) with respect to s and by using Frenet formulae, we obtain
m = [f(e1e22 + (R (£))) + €4 A Bs. (2.7)

Then substitution of (2.5) into (2.7) implies m' = 0 and thus m =constant.
Finally, from (2.6) we find g(a — m,a —m) = —r?, so a lieson Hi_,(r). O

Theorem 2. Let a(s) be a unit speed spacelike curve a(s) in ES with curvatures
ki(s) # 0, k2(8) # 0, k3(s) # 0,ky(s) # 0 for each s € I C R. Then a lies on
H2_\(r) if and only if

Blerea + (E(R))) = s (2.8)
where
A=gle2 () +es(glaaf + (E(&))))]
and

a(f) +e(f (&) +alf@ani + (EE)) )P +ad? <0 (29

Proof. Let us first assume that a(s) lies on H2_,(r). Then from Theorem 1.
it follows that the relation (2.1) holds. Differentiating (2.1) with respect to
s, we find that the equation in (2.8) is satisfied. Moreover, by using (2.1) we
immediately get that the inequality in (2.9) holds.
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Conversely, let us suppose that (2.8) and (2.9) holds. It can be easily seen
that (2.9) is the differential of the equation

() +ea(E(R)) +esld(ae + (EE) )N +eall =c<o.

Finally, we may take ¢ = —7r2, 7 € R*, so Theorem 1 implies that « lies on
H: . (r). 0
Theorem 3. A unit speed spacelike curve o(s) in ES with curvatures ki (s) # 0,
ka(s) # 0, ka(s) # 0,ky(s) # O for each s € I C R. Then o lies on Hj_\(r) if
and only if there exist a differentiable function f(s) such that

1.7 4

fha=eB (&) +ea(R (R +(EE)),
f= et + (GE))) (2.10)
e1(E)? + e (&) +ea(£)? +eaf® <0.

Proof. Let us first assume that a(s) lies on H§(r). Then Theorems 1 and 2
imply that respectively relations (2.1), (2.8), (2.9) hold. Next, let us define the
differentiable function f(s) by

f(s) = AleaB () +es(& (B +(EE) )] (2.11)

Consequently, by using (2.1), (2.8), (2.9) and (2.11) we easily find that the
relations in (2.10) are satisfied.

Conversely, let us assume that there exist a differentiable function f(s) such
that the relations in (2.10) hold for each s € I C R. By using relations in
(2.10), we easily find that the relations in (2.8), (2.9) are satisfied. Finally, by
Theorem 2 it follows that o lies on Hj_, (r). 0O

Theorem 4. A unit speed spacelike curve a(s) in ES with curvatures ky(s) # 0,
ka(s) # 0, ka(s) # 0,kq(s) # O for each s € I C R. Then o lies on Hy_,(r) if
and only if there exist constants A, B € R such that the following relations hold:
a.Ife3 = g4 then
~A@eB +(ERE))) =[A+ees fy %2 (L) sin(fy kads)ds]sin(f; keds)
~[B - ¢e2¢3 [y %(fl-)'(f; kads)ds] cos( [, kads)
(2.12)
and
[A+ eae3 [y (&) sin(fy kads)ds]® + [B — €263 Jo B(&) cos(fy kads)ds]?
< -a(E)P -alE@EN
(2.13)
b. If e3 = —e4 then
tare2@ + (AE)))=eslA+ fy e282(;L) sinh(J; kads)ds] sinh(J; keds)

—e3[B + [y e2f2(£)’ cosh(f kads)ds] cosh(fy kads)
(2.14)
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and
—es[A+ f5 e2(2)(£) sinh(f; ksds)ds)?
+e3(B + [y ea(§2)(3)’ cosh( ;) kads)ds]? < —e1(£)? - (R (E))
Proof. a. Let us first suppose that « lies on H4_,(r). By Theorem 3 there exist
a differentiable function f(s) such that (2.10) hold. Next, let us define the C2
function 8(s) by 6(s) = [; ksds. Moreover, let us define the C! functions a(s)

and h(s) by

9(s) =wsinb + f(s) cosd — ez€3 [; B(&) sinbds,

h(s) = —wcosf + f(s)sind — ezes f; 7'5'2(:?1,)'3‘“ fds

(2.15)

(2.16)

where w = ﬁ(eleg(%) + (kl,’(k!')')l)' Differentiating functions 8(s), g(s) and
h(s) with respect to s, we find 6'(s) = k4, g’(s) = h’(s) = 0. Hence g(s) = A,
h(s) = B, A, B € R. Substituting this into (2.16) yields

wsinf + f(s) cosf - e2¢3 f; 7’3(%)' sinfds = A,

, 2.17
—wcosf + f(s)sinf — eze3 f; f:(%) sinfds = B. (@17)

By multiplying the first of the equations in (2.16) with sind and the second
with —cosé and adding, we find that the equation in (2.12) holds. Next, by
multiplying the first of the equations in (2.16) with cos# and the second with
sin @ and adding, we get
f(s) =[A+eze3 [ (L) sinbds] cos 8 + [B — eze5 [ R (&) cosbds|siné.
(2.18)

Then the relations (2.10) and (2.18) imply that inequality in (2.13) holds.

Conversely, let us suppose that there exist constants A, B € R such that
(2.12) and (2.13) hold for each s € I C R. Differentiating the equation in (2.12)
with respect to s yields

Blerea(B) + (@)
= [A+e263 [y £2(&) sin(f; kads)ds] cos( [ kyds)ds (2.19)

+[B - e2¢3 f £2( )" cos(fy kads)ds] sin( [; kyds)ds
Let us define the differentiable function f(s) by (2.13). Then by (2.13) and
(2.19) it follows that (2.18) holds. Differentiatix}g’ (2.18) with respect to s and
using (2.12) we obtain f' = ,’:—1(5152;':-} + (%3-(;;11-) ) ). Moreover, by using (2.18),
inequality in (2.13) and by tajcing the derivative of (2.18) with respect to s, we
find 63(‘,%)2 teff < —ei(£) - e2(z;(%)')?. Finally, Theorem 3 implies that

a lies on H:_ (7).

The second case can be obtained similarly. a

Theorem 5. There are no timelike and no null curves a(s) lying on HE_(r)
in ES.
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Proof. If a(s) is timelike unit speed vector lying on H, 4_,(r) with center m,
theng(a — m,a —m) = —r2. Differentiating the previous equation respect to s,
we get g(T,a — m) = 0. It follows that T' and o — m are two timelike mutually
ortogonal vectors in E3, which is contradiction. If a(s) is null curve lying on
HA_,(r), then in a similar way it follows that null vector T and timelike vector
a — m are orthogonal vectors in ES, which is a contradiction. ]
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