ON B;-GROUPS
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ABSTRACT. A group G is said to be a Bp-group if for any k-subset
{a1,-++ ,ak} of G, |{aig;|1 < i,5 < k}| < EEFL) In this paper a
complete classification of Bs-groups is given.
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1. INTRODUCTION AND MAIN RESULT

A group G is called a Byi-group if it satisfies the condition that for any
k-subset S = {ay,-- ,ax} of G, |S?| < ﬂ@, where S2 = {a;a;|1 < 4,5 <
k} (see [1, 7)).

Clearly nonabelian groups of order < ﬂ%’*’ﬂ and all abelian groups are
By-groups. A By-group of order < ﬁ“;ﬂl is referred to as trivial and an
interesting problem is to determine all nontrivial nonabelian Bj-groups.

Freiman [5] showed that a nonabelian group is a By-group if and only if
it is a Hamiltonian 2-group. Parmenter (7] gave a complete characterization
of By-groups in the cases k = 3 or k = 4, by proving that all nonabelian
Bj-groups are trivial. However, this trend does not continue as Parmenter
[7] provided an example of a nontrivial nonabelian Bs-group, and in fact,
he showed that @s x Cs is such a group.

In this paper, we will show that the above mentioned group is the only
nontrivial nonabelian Bs-group, and therefore, give a complete classifica~
tion of Bs-groups. Our main theorem is as follows:
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Main Theorem

A group G is a Bs-group if and only if one of the following holds:
(1) G is abelian.
(2) G is a trivial nonabelian Bg-group.
(3) G= Qs X 02.

Proof. To prove the sufficiency, we need only consider that G = {g x Ca.
It follows from Lemma 2.1 that G is a Bs-group.

To prove the necessity, we may assume that G is a nontrivial nonabelian
Bs-group. It follows from Theorem 2.8 and Theorem 3.7 that G = Qg x C»
and we are done. O

We note that it was proved in [3] that when k£ > 2, any nonabelian
Bi-group must be finite of order < 2(k® — k). Throughout the paper, all
nonabelian groups are assumed to be finite and our notation for groups is
standard. In particular, we denote by Qg and Dy, the quaternion group of
order 8 and the dihedral group of order 2n respectively with the following
representations:

Qs=(a,b |a* = 1,a® = b%a® = a~!) and Dy,=(a,b [a" = ¥ = 1,a® =
a .

2. Bs 2-GROUPS

This section deals with nonabelian Bs 2-groups. We will show that
Qs x C, is the only nontrivial nonabelian Bs 2-group. We first give a few
useful results which will be used to prove the main result.

Lemma 2.1. Qg x Cs is the only nonabelian By 2-group of order 16.

Proof. It was proved in [7] that Qg x Cs is a Bs 2-group. We note that
in addition to Qg x Cs, there are 8 nonabelian 2-groups of order 16. It
was proved in [4] that for each such group G, there exists a subset S of 5
elements of G such that |S?| = 16, and thus G is not a Bs-group. For exam-
ple, if G = Dsg, then let S = {a,b, ab, a3, a®b}, and then a straightforward
computation shows that |$2?| = 16. Thus D¢ is not a Bs-group. O

Corollary 2.2. If G is a 2-group with a proper subgroup H = Dg, then G
is not a Bs-group.

Proof. It is easy to see that G has a subgroup K of order 16 containing H
and K 2 Qg x C. By Lemma 2.1, K is not a Bs-group, neitheris G. 0O

Remark 2.3. We note that the observation given in the end of (7], which
claimed that 14 is the best bound of |A?| for any 5-element set A in Qg X



Cy, 1is incorrect. In fact, let G = Qg x C2 = (a,b) X {¢) and A =
{a,a3c,b,bc,ab}. Then A% = G — {1}, and thus |A?| = 15. This together
with Lemma 2.1 proves that the bound of 15 is best possible.

Although the Hamiltonian 2-group Qs x C, of order 16 is a Bs-group,
the Hamiltonian 2-group of order 32 is no longer a Bs-group. The following
two lemmas were proved in [4]. We include outlines of the proofs here for

the convenience of a reader.
Lemma 2.4. Qg x Cz x Cy is not a Bs-group.

Proof. Let G = Qg x C; x C2 = (a,b,c,d|a* =2 =d? =1,a® = b%,ab =
a~Y,[a,d = [b,c] = |a,d] = [b,d] = [¢,d] = 1), where [z,y] denotes the
commutator of z,y € G. Let S = {a, bc, abd, a3d, a?bd}. A straightforward
computation shows that |S2| > 16 and thus G is not a Bs-group. O

Lemma 2.5. For any integer n > 3, Qg x C,, is not a Bs-group. In

particular, Qg x Cy is not a Bg-group.

Proof. Let G = Qg x Cp = {a,b,cla* =c" = 1,a® = b%,a® = a7 1, [a,c] =
[b,c] = 1). Let S = {a,bc,abc,a®b,a3c}. A straightforward computation
shows that |S2| > 16, and thus G is not a Bs-group. O

Proposition 2.6. Let G be a nonabelian Bs 2-group such that every proper
subgroup of G is abelian. Then G is either Dg or Qg.

Proof. Let G be a 2-group as assumed in the proposition. Clearly, |G| > 8.
We first assume that |G| > 16. Since G is a minimal nonabelian 2-group,
it follows from [6, P. 309] that

G=G1=(a,b |a®" =b?"=1, b~lab = a!*?""") with m > 2 and |G|=2"+",
or G=Go=(a,b [a®*" =b?"=1, [a, b]?> = 1) with m > 2 and |G| = 2m+"+1,

Suppose that G = G; = {b'a/ |0 <i<2"-1,0<j<2™~1}.
It is easy to see that Z(G) = (a?, b%). We divide the proof into 3 cases
accordingtom >3, m=3orm=2.

Case 1. m > 3. Let S = {a, b, ba, ba?, a®}. Note that $? con-
tains a subset B={b2, ba, b%a, a2, ba?, ba®, b2a3, b2at, ba®, ab, balt?™ ',
B2al+2™ 0 pg2+2™ ! 22427 BTN 124342770y of 16 distinct el-
ements since 1 4+ 2™~1 > 9. So |S?| > 16 and thus G is not a Bs-group,
giving a contradiction.

Case 2. m = 3. If n = 1, we know that |G| = 16. It is easy to see
that G % Qg x Cs since G has an element of order 8. It follows from
Lemma 2.1 that G is not a Bs-group. Next assume that n > 2, that is,
o(b) > 4. Let S = {a, b, ba, ba?, 1}. Note that S? contains a subset C' =
{1, b, 82, ba, b2a, a?, ba?, ba®, b%a®, b2a?, ba®, b%a®, bab, b2af, ba”, b%a7}



of 16 distinct elements. So |S?| > 16 and thus G is not a Bs-group, giving
a contradiction.

Case 3. m = 2. Recall that |G| > 16. So n > 2. Assume that n > 3,
that is, o(b) > 8. Let S = {a, b, ab?, ab® 1}. Note that S? contains a
subset D = {a, a2, ba®, ba, b?, b2a?, b3a?, b3, b3a3, b3a, bia, b%a?, bia3,
b%a2, b, b8} of 16 distinct elements. So |S?| > 16 and thus G is not a
Bs-group, giving a contradiction. Thus, n = 2 and then |G| = 16. Note
that G = {a,b |a*=b%=1, b~'ab=a3), which is not isomorphic to Qs x Ca.
It follows from Lemma 2.1 that G is not a Bs-group, giving a contradiction
again.

Next consider that G = G3. Let ¢ = [a, ]. Since all the proper subgroups
of G are abelian and ¢ = 1, we obtain ¢ € Z(G). Therefore, each element
of G can be written uniquely as a*b’c*, where0 < i < 2™-1,0< j < 2" -1
and 0 < k < 1. Let S = {a, b, ab, a3, a®}. Note that S? contains a
subset E = {ab, ab?, abe, ab®c, a?, a?b, abe, a?b?c, a®b, a®b?, a®b?c, a3,
alh, albe, atb?c, b%} of 16 distinct elements. So |S?| > 16 and thus G is
not a Bs-group, giving a contradiction.

Thus, |G| = 8. Since G is nonabelian, it is either Dg or Qg as desired. [

Proposition 2.7. There is no nonabelian Bs 2-group of order > 32.

Proof. Assume that G is a nonabelian Bjs 2-group of order > 32. We will
show that no such a group exists. We first assume that |G| = 32. By
Proposition 2.6, we know that G has a nonabelian maximal subgroup H
of order 16. It follows from Lemma 2.1 that H & Qg x Cy. Assume that
H={(abcla*=c?=1,a2=b%a’=a"},[a,d] =1,[b,c] = 1). Since H is
maximal of index 2 in G, H < G. Let z € G— H. Then G = (H,z).

Next, we will show that a? € Z(G). Since H 4G, a® € H. Let o =
a*b’c?. (a?)* = (a®)? = (a*b?)%c? = a?, so a® commutes with z. Since
a? € Z(H), o® € Z(G).

We now show that G/{a?) is abelian. Since H/{a?) 2 C, x Co xCa isa
subgroup of G/{(a?), there are at least 7 elements of order 2 in G/(a?). But
there are only 3 elements of order 2 in Qg x C2. So G/(a®) is not isomorphic
to Qg x Cy. It follows from Lemma 2.1 that G/{a?) is an abelian group.

Let %, 7 be the images of z, y in G/(a®) for y € G and z € G— H. Then
we have

(2.1) 7,7 =1= [y,2] =1or [y,2] =

If y = a, we get either 27 'ax = a or z7'az = a~!. In both cases we
have z2a = az?. Recall that a2 = b%. Similarly, we get z2b = bz?. Since
|G/H| =2, 2% € H, and thus 22 commutes with ¢. Therefore, % € Z(H),



and thus ¢ = 1. This says that o(z) = 2 or o(z) = 4. We next divide the
proof into the following two cases.

Case 1. o(z) = 2. We first show that z € Z(G). By (2.1), [a,z] =1
or [a,z] = a2. If [a,z] = a? then (a,z) = Dg, contradicting Corollary
2.2. Therefore, [a,z] = 1. Slmllarly, by using the the symmetry of a and
b, we have [b,z] = 1. If [c, z] = a?, then (cz)? = [¢,z] = a®. So o(cz) =4
and thus (¢, z) = (cz,z) & Ds, again contradicting Corollary 2.2. Thus
z € Z(G). Therefore, G = H x (z) is a Hamiltonian 2-group of order 32. It
follows from Lemma 2.4 that G is not a Bs-group, giving a contradiction.

Case 2. o(z) = 4. Let K = {a,b) = Qg be a subgroup of H. We first
show that x does not centralize K. If = centralizes K, then K(z) = (K, z)
is a subgroup of G. It is easy to see that |K(z)| > 16. If |[K(z})| = 32,
we know that K[(z) = 1, and then G = K(z) = K x (z) = Qg x C4.
It follows from Lemma 2.5 that G is not a Bs-group. Thus [K(z)| = 16.
Since z is a central element of order 4 in K < z > and Qs x C2 has no
central elements of order 4, we have K(z) 2 Qg x Ca. Therefore, K(z) is
not a Bs-group, and so, G also is not a Bj-group, giving a contradiction.
So, we have z does not centralize K.

Without loss of generality, we may assume that [a, z] # 1. Thus [e,z] =
a? by (2.1), so a® = a~!. By replacing b by ab if necessary, we may assume
that [b,z] = 1. If a2 # z2, then {a, z) is a nonabelian subgroup of G of order
16. Since {a, z}is not isomorphic to Qg x Ca, it follows from Lemma 2.1 that
(a,z) is not a Bs-group, neither is G, giving a contradiction. Therefore,
a? = 22, and thus (bz)? = b%z? = 1. We now show that {a,b,z) = (K, z) =
Qs x Cy. Since a®* = (a~')* = a and b** = b® = b, we know that bz
centralizes K. Thus (a, b,z) = (a,b,bz) = K x (bz) = Qs x Ca.

Next, we show that ¢ commutes with z. Assume to the contrary that ¢
does not commute with z. By (2.1), [¢,z] = a®. Note that a® = z2. Thus
z¢ = za? = 23 = z~!. This implies that (¢, z) & Ds, giving a contradlctlon
to Corollary 2.2.

So, the only possible structure for G is G = K x {c) - (z) = Qg x C2 x C5.
It follows from Lemma 2.4 that G is not a Bs-group, again a contradiction.

Next, we consider the case that |G| = 2" > 32. If there exists a non-
abelian subgroup H of order 2"~! of G, then by what we just proved, we
know that |H| > 32. By keeping replacing G by H if necessary, we may
assume that all subgroups of order 2! of G are abelian. It now follows
from Proposition 2.6 that G is either Qs or Dg, giving a contradiction to
the order of G.

In all cases, we found contradictions. This completes the proof. O



As a consequence of Lemma. 2.1 and Proposition 2.7, we obtain the main
result in this section.

Theorem 2.8. G is a By 2-group if and only if one of the following holds:
(1) G is abelian.
(2) G is a trivial nonabelian Bs-group, that is, G is either Dg or Qs.
(3) G Qs X Cz.

3. Bs-GROUPS OTHER THAN 2-GROUPS

In this section, we consider Bs-groups that are not 2-groups. We will
show that there are no nontrivial nonabelian Bs-groups other than 2-
groups. In what follows, we always assume that G is nonabelian and is
not a 2-group. We first show that a Sylow 2-subgroup P of a Bs-group G
must be abelian.

Lemma 3.1. Let G be a Bs-group with a nontrivial Sylow 2-subgroup P.
Then P is abelian.

Proof. We prove by contradiction. Suppose that P is nonabelian. It follows
from Theorem 2.8 that P & Dg, Qg or s X Ca. We divide the proof into
three cases.

Case 1. P = Dy,

Let P=(a,b] a* = b? = 1, a® = a~!) and S={a, b, ab, ¢, c?}, where
c is any element of odd order in G. Note that S contains a subset
A={1, a, a?, @® b, ab,a®, a3b, ac, be, abc, ac?, bc?, abe?, 2, ¢}
of 16 distinct elements. So |S?| > 16 and thus G is not a Bs-group, giving
a contradiction.

Case 2. P=(Qs.

Let P=(a,b ] a* = 1, a® = b?, a® = a™!) and S={a, b, ab, ¢, c?},
where c is any element of odd order in G. Note that S2 contains a subset
B={a, a?, a3, ab, a?b, a3b, b, ac,bec,abc,ac?, bc?, abc?, 2,8, c?} of 16
distinct elements. So |S?| > 16 and thus G is not a Bs-group, giving a
contradiction.

Case 3. P = Qg x C2. By using the same set S as used in the case
P = Qg, we can easily get a contradiction. O

The following lemmas are similar to those in [2]. However, we will be
dealing with 5-sets while [2] dealt with 3-sets. Our proofs are much more
difficult since there are more hurdles to overcome.

Lemma 3.2. FEach Sylow subgroup P of a Bs-group G of odd order is
abelian.



Proof. Assume to the contrary that P is nonabelian for some Sylow p-
subgroup P of G. Then P has two maximal subgroups M and N which
contain Z(P). Let L = M(\N. It was proved in [2] that there exist
a € M —L,and b€ N — L such that ab # ba. Let S = {a, ab, b%, ab?, 1}.
Then S? contains a subset A = {b%,ab?, ab®,ba, b2ab, b2ab?, ab?, a?, a?b,
a?b?, aba, abab, abab?, aba, ab®ab, ab*ab?}. Note that A is a disjoint union
of three subsets; namely, A = (ANN)U(ANaN)J(ANa%N), where
AQN = {p*}, ANaN = {ab? ab®b%a, b%ab, b%ab? ab*} and AN a®N
= {a?, a%b, a%b?, aba, abab, abab?, ab’a, ab’ab, ab®ab®}. We next show
that the elements in each of the above subsets are distinct. Since cosets
b*M, 2 < i < 4, are disjoint and A{)aN can be written as a disjoint union
of 3 subsets, it is not hard to show that the elements of A [ alV are all dis-
tinct. Similarly, since subsets b>M, M |Jb*M and bM |Jb*M are disjoint,
it is not hard to show that the elements of A(a?N are all distinct. Hence
|A] =146+9 =16. So |S?| > 16, and thus G is not a Bs-group, giving a
contradiction. Therefore, P must be abelian. a

Lemma 3.3. A finite Bs-group of odd order is abelian.

Proof. Suppose on the contrary that there exists a finite nonabelian Bs-
group of odd order and let G be such a group with the least possible order.
Since G is nonabelian, it follows from Lemma 3.2 that G is not nilpotent.
Note that G is not a nilpotent group, but all proper subgroups of G are
abelian. It follows from [8, 9.1.9] that |G| = p*q¥ where p and g are distinct
primes. Moreover, G has a normal Sylow g-subgroup @ and a non-normal
cyclic Sylow p-subgroup P. Let P = (a). Since P is not a normal subgroup
of G, there exists b € Q such that a® ¢ (a); in particular, ab # ba. We next
divide the proof into the two cases according to |P| > 3 or {P| = 3.

Case 1. |P| > 3.

Let S = {b, a,ba?,a? b%}. Note that S? has a subset A = {ab, ba, a2, ba?,
b%a?, ba?b, a?, ba®, aba?, a?, ba?, a%ba?, ba%ba?, b2, b3, b%}. Since Q4G
and cosets a’@, 0 < i < 4, are disjoint, it not difficult to prove that the 16
elements of A are all distinct. So [S?| > 16 and thus G is not a Bs-group,
giving a contradiction.

Case 2. |P| =3.

We first assume that ba = ab?. Since b = a=3ba® = 4%, 0(b) = 7. Let § =
{a, b2, ab, a?b3, b3}. Note that S has a subset B = {1, b3, b4, &5, b5, ab,
ab?, ab3, ab?, ab®, a?, a?b, a?b?, a?b®, ab%, a2b%} of 16 distinct elements.
So |{S2?| > 16 and thus G is not a Bs-group, giving a contradiction. Thus
ba # ab®. By replacing a with a? in the above argument, we can show that
ba? # a?b?.



Let S = {a, b, ab, ab?, b?}. Note that S? contains a subset B =
{b?, b3, b4, ab, ba, bab, bab?, ab?, a?, a?b, a®b?, aba, abab?, abab, ab?a,
ab’ab}. As in Case 1, since ¢ # 3 and cosets a*@, 0 < i < 2, are disjoint, it
is not difficult to prove that the 16 elements of B are all distinct. Therefore,
|52| > 16, and thus G is not a Bs-group, giving a contradiction.

This proves that a Bs-group G of odd order is abelian as desired. O

Lemma 8.4. If G is a nonirivial Bs-group having e nontrivial Sylow 2-
subgroup P, then G has a normal 2-complement T such that G = TP.

Proof. Assume to the contrary that G is a nontrivial nonabelian Bg-group
such that G does not have a normal subgroup of odd order with 2-power
index. Let H be a subgroup of G with minimal order such that it does
not have a normal subgroup of odd order with 2-power index. Then every
proper subgroup of H has a normal subgroup of odd order with 2-power
index. By [6, IV. 5.4], we know that H has a normal Sylow 2-subgroup P;
with exponent at most 4. Moreover, |[H/P;| = ¢* for some odd prime ¢ and
a Sylow ¢-subgroup T of H is cyclic, say T' = (a). Since T is not normal in
H, it is easy to see that there exists an element b € P, such that a® ¢ (a),
especially, ab # ba.

We first assume that |H| < 15. By checking all the groups of order
< 15 which satisfy the above mentioned properties, we know that H & A,.
We may choose a and b to be the elements of H corresponding to the
elements (123) and (12)(34) of A4 respectively. Since |G| > 16, there ex-
ists an element ¢ € G — H. Let S = {a,b,ab,c,ac}. Since ab # ba,
by replacing ¢ with ac if necessary we can assume bc # cb. Note that
§2={a?, ab, a®b, ac, a’c, ba, 1, bab, be, bac, aba, a, abab,abce, abac, ca, cb, cab,c?,
cac, aca, acb, acab, ac?, acac}. {1,ab, ba, bab, a,a?, ab, aba, abab} C S2NH
and {ac, be, abe, cb, a’c, bac, abac} C S?(\(G — H). A straightforward com-
putation shows that the above elements in S2(\H and S?(\(G — H) are
distinct. Therefore, |S?| > 16, and thus G is not a Bs-group, giving a
contradiction.

Next, assume that |H| > 16. Without loss of generality, we may assume
that H = G. Let b be an element of maximal order in P such that ab # ba.
Since P is abelian, we know that the order of b is equal to the exponent of
P. We divide the proof into 2 cases.

Case 1: o(a) > 3.

Let S = {a,b,ab,a~'b,a?}. Note that S contains a subset 4 = {b, b?,
a~lba, a=lbab, ab, ba, bab, ab?, a2, a?b, aba, a~lba"1b, a3, a®b, ba~1b,
a~15%}. Recall that P aG. Since subsets P, aP, a?P, a3P|Ja~2P and
a~!P are disjoint, it is not hard to show that the 16 elements of A are

10



distinct. Therefore, we have |S%| > 16, and thus G is not a Bs-group,
giving a contradiction.

Case 2: o(a) = 3.

Suppose first that o(b) = 4. Let S = {a, b, ab, ab~?, a?}. Note that S>
contains a subset B = {1, b, b2, a, ab, ba, bab, ab?, bab~!, a2, a?, aba,
abab, a?b~!, abab™!, ab~'a}. Since cosets aiP, 0 < i < 2, are disjoint,
it is not hard to show that the 16 elements of B are distinct. Therefore,
|S2?| > 16 and thus G is not a Bs-group, giving a contradiction.

Thus o(b) = 2, and then P is elementary abelian. Recall that |G| > 16
and |T| = 3. We have |P| > 8, and then we can choose an element ¢ € P
such that ¢ ¢ (b°,b) = K. Let S = {a, b, ab, ac, bca®}. Note that 52
contains a subset C = {1, b, ¢, be, a, ab, ba, bab, bac, abe, a2, a?b, a’c,
aba, abab, abac}. As before, it is not hard to show that the 16 elements of
C are distinct. Therefore, |$?| > 16 and thus G is not a Bs-group, giving
a contradiction.

In all cases, we have found contradictions. Thus G must have a normal
2-complement. 0

In what follows, we assume that G is a nontrivial Bs-group having a
Sylow 2-subgroup P and the normal 2-complement T'.

Lemma 3.5. T is abelian and is not centralized by P.

Proof. Tt follows from Lemma 3.3 that T is abelian. Suppose that P cen-
tralizes T. Then G = P x T. It follows from Lemma 3.1 that P is abelian,
so G is abelian, giving a contradiction. a

Lemma 3.6. The subgroup P has a subgroup Q of index 2 which centralizes
T and every element of P — Q inverts T. Moreover, the exponent of Q is
at most 2.

Proof. We first show that for each b € P either b centralizes T or b inverts
T. Assume that b € P does not centralize T. Then there exists a € T
such that ba # ab. We claim that ab®=b%a. Suppose on the contrary
that ab? # b%a. Then o(b) > 4. Let S={a, ab, ab?, ab® 1}. Note that
52 contains a subset A = {a, abab®, ab’ab?, ab%ab, a2b, aba, ab, a2b?,
abab, ab’a, ab?, a2b, abab?, abab, aba, ab®}. Since subsets T |Jb*T, bT,
b2T and b%T are distinct, it is not hard to show that the 16 elements of A
are all distinct. Therefore, |S2| > 16, and then G is not a Bs-group, giving
a contradiction. So ab? = b2a.

We now show that b~*ab=a~!. Suppose on the contrary that b—lab %
a~!. We first assume that o(b) > 4. Let S = {a, ab, a®b, ab?, 1}. Note that
52 contains a subset B = {a, a2, ab, a2b, a3, aba, a%ba, a2b?, abab, aba?b,
aZbab, a?ba?b, abab, abab?, a?bab?, a®b®}. As above, it is not difficult to

11



show that the 16 elements of B are distinct. Therefore, |S2| > 16, and thus
G is not a Bs-group, giving a contradiction.

Thus, o(b) = 2. Let A = {a,ab,a?b,b}. Then A% = {1, a, a?, bab, abab,
a2bab, ba?b, aba?b, a2ba?b, ab, a®b, a®b, aba, a®ba, ba}. Since T and bT
are two disjoint cosets, it is not hard to see that the 15 elements of A2
are distinct. Since |G| > 16, there exists an element ¢ € G — A%. Let
S = {a,ab,a?b,b,bc}. Since c=b-bc € S — A?, |S?| > 16, and thus G is
not a Bs-group, again giving a contradiction.

Thus we must have b~lab = a~!. Note that we just showed that for
each y € T either y® =y or y* =y~ L.

Next we show that b inverts T'. Suppose that there exists z € T'—{1} such
that ° = z. Since za € T, we have either (za)® = za or (za)® = (za)~1.
The former gives that za~! = (za)® = za, so a® = 1, a contradiction. The
latter gives that za™! = (za)® = (za)"! = a"lz7! = z71a "}, s0 2% =1,
again giving a contradiction. Therefore, b inverts T'.

We now show that P has a subgroup @ of index 2 which centralizes T'
and every element of P — Q inverts T. Let Q@ = {g € P[t9 = ¢ for all
t € T} = Cp(T). Clearly Q is a subgroup of P which centralizes T' and
every element b of P — @ does not centralize T. So by what we just proved,
b inverts T'. It remains to show that [P : Q] = 2. It follows from Lemma 3.5
that P # @, so there exists b € P — Q. Since for every element b € P — Q
b’ inverts T, we have b'b € Q. Thus b’ € Qb~!, proving [P : Q] = 2.

Finally, we show that the exponent of @ is at most 2. Assume to the
contrary that @ contains an element g of order 4. Let b € P - Q. If
o(b) > 4, let S = {b, a, bag, ag, 1}. Note that S? contains a subset
C = {b?,b%¢? ab%g,a?,a%g, ag? bg, bg?, ab, abg,a=2bg?, a~'b, a~lbg} of
13 distinct elements. If b2g # 1, a straightforward computation shows that
b, a and ag are three elements in S2 — C. If b%2g = 1, then b, 1 and ag are
three elements in S2 — C. So in both cases we have |S?| > 16 and thus G
is not a Bs-group, giving a contradiction.

Thus, o(b) = 2. Let S = {b, a, a~1g%, a~1bg? 1}. Note that S? contains
asubset D = {1, ¢%, ag®, a2, o?, a71¢% a71¢ g, by, bg?, ab, a~2by,
abg?, a=2bg®, a~1b, a—1bg?} of 16 distinct elements. So |S$?| > 16 and thus
G is not a Bs-group, again giving a contradiction. O

Theorem 3.7. There are no nontrivial nonabelian Bs-groups other than
2-groups.

Proof. Assume that G is a nonabelian nontrivial Bs-group. By Lemmas
3.4 and 3.5, G = TP and T is abelian. We consider two cases according to
|P|=2o0r |P| 2> 4.
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Case 1. |P| = |(z)| = 2. If the exponent of T is greater than 9, there
exists an element ¢ € T such that o(t) > 9. Let S = {t?, &3, t°z, t"z, t5}.
Note that S2 contains a subset A = {t~2, t2, ¢4, t5, ¢5, ¢8, ¢10, 1, 3z, 3z,
tiz, 5z, t’z, 8z, t°z, t1%z} of 16 distinct elements. So |S?| > 16 and
thus G is not a Bs-group, giving a contradiction.

Thus the exponent of T is 3, 5 or 7. Since |G| > 16 and |P| =2, |T| > 9.
So T must have a subgroup H = (a) x (b), where o(a) = o(b) = 3,5
or 7. Let S = {a, az, abz, b?z, 1}. Note that S contains a subset
B={1,b b7}, a, ab™?, ab7!, a?, a~b, a1? z, bz, az, ab’z, a’z,
a?bz, a~1b%z} of 16 distinct elements. So |S?| > 16 and thus G is not a
Bs-group, giving a contradiction.

Case 2. |P| 2 4. Let z € P—Q. We first show that the exponent of T is
3. Assume that there exists a € T such that o(a) > 5. Recall from Lemma
3.6 that @ has index 2 in P and it centralizes T. Then there exists y € Q
such that o(ay) > 10. Let t = ay and S = {t,t2,t4,5,t5z}. Note that S2
contains a subset C = {t2, 3, t4, 5, t8, ¢7, ¢8, ¢°, ¢10 ¢z, t3z, t'z, tOz,
t’z, t%2, t1%z} of 16 distinct elements. So |S?| > 16 and thus G is not a
Bs-group, giving a contradiction. Therefore, the exponent of T is 3.

Next, we show that T' = Cs. If T has a subgroup H = (a) x (b}, let § =
{1,a,b,ab,z}. Note that S? contains a subset C = {1, a, b, ab, a2, a?b,
b%, ab?, a%b?, z, az, bz, abz, a’z, b2z, a2b?z} of 16 distinct elements. So
|S2] > 16 and thus G is not a Bgs-group, giving a contradiction. Therefore,
T = Cs.

Since |G| > 16, |P| > 8, so |Q| = 4. Thus there exist y, z € Q — {1}
such that 22 # y and z2 # z}. Let S = {q, z, a%y, azz, 1}. Note that S2
contains a subset D = {y, 22, a, azz?, a?, a®222, z,yzz, 27, az, ayz,azz,
a®zz, a®r, a®yr, a®yzz} of 16 distinct elements. So |S?| > 16 and thus G
is not a Bg-group, giving a contradiction.

This completes the proof. : 0
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