THE GLOBAL CONNECTED DOMINATION IN GRAPHS
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ABSTRACT. A subset S of vertices of a graph G is called a global connected
dominating set if S is both a global dominating set and a connected dominating
set. The global connected domination number is the minimum cardinality of a
global connected dominating set of G and is denoted by 44¢(G). In this paper,
sharp bounds for v, are supplied, and all graphs attaining those bounds are
characterized. We also characterize all graphs of order n with ¥gc = k where
3 < k € n-—1. Exact values of this number for trees and cycles are presented
as well,

1. INTRODUCTION

Domination is an active subject in graph theory, and has numerous applications
to distributed computing [1, 5], the web graph [3], and ad hoc networks [4, 7). For
a comprehensive introduction to theoretical and applied facets of domination in
graphs the reader is directed to the books (8, 9].

A set S of vertices is called a dominating set of a graph G if each vertex not
in S is joined to some vertex in S. The domination number 4(G) is the minimum
cardinality of a dominating set of G.

Many variants of the domination number have been studied. For instance, a
dominating set S of a connected graph G is called a connected dominating set (CD-
set) if the induced subgraph (S) is connected. Similarly, a dominating set S of
a connected graph G is called a nonsplit dominating set (NSD-set) if the induced
subgraph (V(G) — S) is connected. A set S is called a global dominating set (GD-
set) of G if S is a dominating set of both G and its complement G. The connected
domination number of G, written .(G), is the minimum cardinality of a CD-set of
G. The nonsplit domination number v1,,(G) and global domination number ~4(G)
are defined analogously.

Recently Kulli and Janakiram [6] introduced the concept of global nonsplit domi-
nation. Let G and G be connected graphs. A set S C V(G) is called a global nonsplit
dominating set (GNSD-set) if S is an NSD-set of both G and G. The global nonsplit
domination number vgn,(G) of G is the minimum cardinality of a GNSD-set of G.

Clearly, the global nonsplit domination number <y, is not defined for many
connected graphs. For instance, for any connected graph having a universal vertex
(that is, a vertex joined to all other vertices in the graph) such as K, and K; ,_;.

In the present paper, we introduce a new graph parameter, the global connected
domination number, for a connected graph G. We call S C V(G) a global connected
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dominating set (GCD-set) of G if S is both a global dominating and a connected
dominating set of G. The minimum cardinality of a GCD-set of G is the global con-
nected domination number v,.(G). Note that any GCD-set of a graph G (e.g., V(G)
is a GCD-set of G) has to be connected in G (but not necessarily in G). Hence, the
global connected domination number <y, is well-defined for any connected graph.

The parameter -, differs significantly from +,. For instance, for a cycle Cy, of
order n > 6 (see [10]), 7,(Cr) = [n/3], while 7,c(Cr) = n — 2 (see Corollary 5).
The parameter 7y also differs from +. significantly. For example, for all integers
n 2> 2, 7(Ky) = 1, while v,.(Ky) = n (see Theorem 1).

All graphs considered in this paper are simple, finite, undirected and connected.
For all graph-theoretic terminology not defined here, the reader is referred to [2].
The union of two vertex-disjoint graphs G and H is denoted by GU H. We use
G = H to denote that G and H are isomorphic.

In Section 2, sharp bounds for <, are supplied, and the graphs attaining those
bounds are characterized. In Section 3, we characterize the graphs with v, = k
where 3 < k < n— 1. Exact values of this number for trees are presented in Section
4. We witness all possible values of 7, and also prove that there exists a connected
graph G of order n > 5 such that G is connected, and 7,¢(G) # 74c(G). We conclude
in the last section with a few directions for future work.

2. BounDps

In this section, we present lower and upper bounds on v,.(G) for a general graph
in terms of its order, and we characterize the graphs attaining these bounds.
Fix n > 2 an integer. We define a family F of graphs of order n as follows. Fix
A and B two disjoint subsets of vertices such that [AUB|=n—-2(A=B =190
when n = 2), and let a,b & AU B. Let V = {a,b} U AU B. Denote by F(4, B) the
set of graphs with vertex set V which satisfy the following properties:
(1) The vertex a is joined to b.
(2) The vertex e is joined to each vertex in A whenever A # 0.
(3) The vertex b is joined to each vertex in B whenever B # 0.
(4) None of V(G) — {a, b} is joined to both a and b.

Let F = Uanp=9,1auB|=n-2 F{4, B).
Theorem 1. Let G be a graph of order n > 2. Then

(1) 2L 7(G) £ n.
(2) 79¢(G) =n if and only if G = K,.
(3) 74c(G) =2 if and only if G € F.

Proof. For item (1), note that 1 < 74.(G) < n, it suffices to show that 74.(G) # 1.
To the contrary, we may assume that there exists a GCD-set S = {v}. Hence, v is
joined to all vertices in V(G) — {v}, and so v is isolated in G. This contradicts that
{v} is a GCD-set of G.
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For item (2), note that the graph K, consists of n isolated vertices, so the proof
of sufficiency is trivial. To show necessity, we take a spanning tree of G, say T'. Let
v be a leaf of T, and let S = V(G) — {v}. Note that v is joined to some vertex in
S, and the subgraph in G induced by S is connected. Hence, S is a CD-set of G
with size n — 1. As 74,.(G) = n, S is not a GCD-set of G. Therefore, v is isolated
in G implying that v is joined to all vertices of S in G. Now we take ancther
spanning tree T’ consisting of all edges incident with v. Note that every vertex
u € V(G) — {v} is a leaf of 7, and S’ = V(G) — {u} is a CD-set of G with size
n — 1. By a similar argument, one can show that u is joined to all vertices in S'.
Hence, G = K,,.

For item (3), we prove sufficiency first. Let G = F(A, B) € F. By the construc-
tion, we know that {a,b} is a GCD-set of G. Hence, 7,.(G) < 2. By item (1),
79¢(G) = 2. Now we prove necessity. Let G be an arbitrary graph with v,.(G) = 2.
Suppose that S = {a, b} is a GCD-set of G. Then ab € E(G). Since S is a GCD-set
of G, there exists no vertex joined to both a and b. As S is a dominating set of G,
each vertex u € V(G) — S must be joined to either a or b. Hence, for each vertex
u € V(G) — S, u is joined to either a or b but not both. Denote by A and B the
sets of vertices which are joined to a and b, respectively. Clearly, G € F(A, B), and
so G € F. (]

Corollary 2. For all positive integers p and g,
Yoc(Kpg) = 2.
3. CHARACTERIZING GRAPHS WITH e =k (3<k<n—1).
In this section, we first characterize the graphs with v, =n — 1.

Theorem 3. For any graph G of order n 2 3, 75.(G) = n — 1 if and only if
G = K,, — e, where e is an edge of K.

Proof. Sufficiency. If G & K, — e, where ¢ = uv € E(K,), then G is a graph
consisting of an edge uv and n — 2 isolated vertices. Hence, every GCD-set of
G must contain all vertices of V(G) — {u,v} and at least one of u and v. Hence,
Y9e(G) = n—1. The inequality v4c(G) < n—1 follows from the fact that V(G) - {u}
is a GCD-set of G. Hence, 74.(G) =n — 1.

Necessity. We may assume that n > 4, as the assertion holds by Theorem 1 (3)
when n = 3. Suppose that S is a GCD-set of G with size n— 1. Let v be the unique
vertex outside of S. Since S is a GCD-set of G, v must be joined to some vertex
in S but not all. Therefore, there exist vertices z,y € S such that zv € E(G) and
yv &€ E(G). As S is a GCD-set of G, there exists a spanning tree T of the induced
subgraph (S). Let w € S — {z} be a leaf of T. Since S is a GCD-set of G with
smallest size n — 1, S — {w} is not a GCD-set of G. Note that S — {w} is a CD-set
of G. Hence, S — {w} cannot be a GD-set of G, which implies that w is not joined
to any vertex of S —{w} in G. It turns out that w is joined to all vertices of §— {w}
in G. Let T be the subgraph induced by all edges incident with w in (S). It is
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clear that T” is a spanning tree of (S) with n— 2 leaves. Take any leaf z # z on T".
By a similar argument to the above, we can derive that z is joined to all vertices of
S — {z}. Thus, (S) & K,,_1. To complete our proof, we only need to show that v is
joined to all vertices of S — {y}. To the contrary, suppose that there is one vertex
u € S—{y} such that uv € E(G). Then S’ = V(G) — {u, y} is a GCD-set of G with
size n — 2, which contradicts the assumption v,.(G) =n — 1. 0

Next we characterize the graphs with vy, = k, where 3 < k < n — 2. We define
a family H;, of graphs as follows. For each graph G € My, there exists a subset S
of vertices such that |S| = k and (S) is connected, and for every v € V(G)\S, v is
joined to at least one vertex in S but not all of them.

Theorem 4. Let G be a graph of order n > 5. For any integer 3 < k < n -2,
Y9e(G) =k if and only if G € Hy — Hyoy.

Proof. Observe that v,.(G) < k for every G € Hi. Thus the proof of sufficiency
is trivial. Now we prove necessity. Let S be a GCD-set of G with size k. By
definition, the induced subgraph (S) is connected, and for every v € V(G)\S, v is
joined to at least one vertex in S but not all of them. So, G € Hy. It is clear that
G € Hi-1, 88 Y4¢(G) = k. Thus, G € Hi — Hi-1. @]

We remark that the proof of Theorem 4 also works for k =n — 1.
Corollary 5. For alln > 4,
Y9e(Cn) =n = 2.

Proof. The assertion holds for n = 4 obviously. Hence, we may assume that n > 5.
Clearly, C,, € Hp-2 — Hn-3. Thus, it follows from Theorem 4 that v,.(Cn) =
n—2. a

4. MORE ON THE PARAMETER g

In this section, we first study the global connected domination number v, for
trees in terms of their orders. Our next theorem, whose proof will be given later,
gives the exact values of v, for trees.

Theorem 6. Let T be a tree of ordern > 3. IfT ¥ K x where k > 2 is an integer,
then vge(T) = n — pu(T), where u(T) is the number of leaves of T.

Corollary 7. Let T be a tree of order n > 4. Then v4.(T) = n — 2 if and only if
T=P,.

Proof. We only prove necessity, as sufficiency follows from Theorem 6 (1). Suppose
that T is a tree of order n > 4 with 4,.(T) = n — 2. By Theorem 6, we know that
there are exactly 2 leaves in the tree T'. It is straightforward to show that any tree
with exactly 2 leaves must be isomorphic to a path on n vertices. O

The following lemma is useful in proving Theorem 6. A cut-vertex of a graph is
a vertex whose deletion increases the number of components of the graph.
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Lemma 8. Let G be a graph and let S be a CD-set of G. Then S contains all cut
vertices (if exist) of G.

Proof. Suppose that there exists a cut vertex v € V(G) such that v € S. Note that
S € V(G) - {v} and G — v is disconnected. This is a contradiction, as S forms a
CD-set of G. O

Proof of Theorem 6. Note that T has at least two leaves. Let U be the set of all
leaves in T. Since T ¥ K, T — U is nontrivial and connected. Note that the
subgraph induced by V(T') — U is a tree, so it is connected. As every leaf of T is
joined to some vertex in V(T') — U but not all, V(T") - U is a GCD-set of T'. Thus,
Y9c(T) < n — p(T). Note that every vertex in V(T') — U is a cut vertex in 7. By
Lemma 8, v4.(T) 2 n— u(T). ]

Theorem 9. There erists a connected graph G of order n > 5 such that G is
connected, and 75c(G) # Y4c(G).
Proof. Let G be a path P, = v;,v2,...,9, On n > 5 vertices. By Corollary 7, we
have that 75.(G) = n — 2. In the following we will show that v,.(G) = [n/3], so it
follows that v,c(G) # 74¢(G).

By the definition, any GCD-set of G is 2 dominating set of G. As G = P,, every
GCD-set S of G is a dominating set of P,. Hence, 7,.(G) > v(P,) = [n/3]. It is
not hard to construct a GCD-set S of G with order [n/3]. For instance,

{ U?;ﬂ Yovsk-1}U{vn} n=1 (mod 3);

k=1 {‘03k 1} otherwise.

From the construction of S, we know that S is a GCD of G with size [r/3]. Thus,
79¢(G) < [n/3]. ]
By Theorem 1 (1) we have that
2< 'ch(G) <n

for any connected graph G of order n > 2. Are all these possible values of v,
witnessed? The last theorem answers this question in the affirmative.

Theorem 10. Let n > 2 be an integer. For each k satisfying 2 < k < n, there is
a connected graph G such that

Yoe(G) =k

Proof. By Theorems 1, 3, 4 and Corollary 7, we only need to show the cases when
4 < k £ n— 3. We construct a tree G as follows. Add n — k — 2 vertices to a path
P on k + 2 vertices so that the resulting graph G is still a tree with n — k leaves.
By Theorem 6, we know that 7,.(G)=n—(n~ k) =k. (]
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5. OPEN PROBLEM AND FUTURE WORK

Many graph products exist, such as the cartesian, categorical, strong, and lex-
icographic products. We will investigate how the parameter -, acts with respect
to these products in future work.
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