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1. Introduction

Let G be a graph on n vertices. Two edges of G are said to be independent
if they are not adjacent in G. A k-matching of G is a set of k¥ mutually
independent edges. Denote by z(G, k) the number of k-matching of G. For
convenience, we regard the empty edge set as a matching. Then 2(G,0) = 1
for any graph G. The Hosoya indezr of G, denoted by 2(G), is defined as

13)
2(G) =) _ z(G, k).

i=0

Obviously, z(G) is equal to the total number of matchings of G.

The Hosoya index of a graph was introduced by Hosoya (9] and was ap-
plied to correlations with boiling points, entropies, calculated bond orders,
as well as for coding of chemical structures 10, 16]. Since then, many au-
thors have investigated the Hosoya index (e.g., see [2, 3, 5, 6, 7, 10, 16]). An
important direction is to determine the graphs with maximal or minimal
Hosoya indices in a given class of graphs. In (4], Gutman showed that linear
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hexagonal chain is the unique chain with minimal Hosoya index among all
hexagonal chains. In [20}, Zhang showed that the zig-zag hexagonal chain is
the unique chain with maximal Hosoya index among all hexagonal chains.
In [21), Zhang and Tian determined the graphs with minimal and second
minimal Hosoya indices among catacondensed systems. As for n-vertex
trees, it has been shown that the path has the maximal Hosoya index and
the star has the minimal Hosoya index (see [8]). Recently, Hou [11] char-
acterized the trees with a given size of matching and having minimal and
second minimal Hosoya index, respectively. In [18], Yu and Tian studied
the graphs with given edge-independence number and cyclomatic number
and having the minimal Hosoya indices. In [17], Yan and Ye characterized
the trees having many pendent vertices with the maximal Hosoya index.
Yu and Lv characterize the trees with k£ pendent vertices having minimal
Hosoya index in [19]. In [12], Li and the present authors order the unicyclic
graphs according to their Hosoya indices. For many more results on this
topic, the reader is referred to [22-29]. In this paper, we determine the
unicyclic graph with a given diameter having minimal Hosoya index.

In order to state our results, we introduce some notation and terminol-
ogy. Other undefined notation may refer to Bondy and Murty [1]. We only
consider finite, undirected and simple graphs. For a vertex v of a graph
G, we denote N(v) = {u|uv € E(G)} and N[v] = N(v) U {v}. A pendent
vertez is a vertex of degree 1. For two vertices z and y (z # y), the distance
between z and y is the number of edges in a shortest path joining z and
y. The diameter of a graph G is the maximum distance between any two
vertices of G. A unicyclic graph is a connected graph with n vertices and n
edges, we shall by U, 4 denote the set of all unicyclic graphs on n vertices
with diameter d.

If W C V(G), we denote by G — W the subgraph of G obtained by
deleting the vertices of W and the edges incident with them. Similarly, if
E' C E(G), we denote by G — E’ the subgraph of G obtained by deleting
the edges of E'. If W = {v} and E' = {zy}, we write G — v and G — zy
instead of G — {v} and G — {zy}, respectively. We denote by P,,C, and
Kj,n—1 the path, the cycle and the star, each with n vertices. We use
VL(G) to denote the vertex set {v:v € V(G) and d(v) = 1}.

In order to formulate our results, some unicyclic graphs need to be
defined. Let U;'j denote a unicyclic graph on n vertices with diameter d
created from a path Py = uyuz...u;...ug4+1 by attaching a cycle Cc and
p pendent vertices vy, v2,...,Vp to u; on Pyy; such that c+p+d =n; see
Figure 1.
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Let Bg:fn denote the unicyclic graph with diameter d created from a
cycle Cg =wywa ... wy ... Wk ... Wh ... wew; by joining the vertices wy (re-
spectively, wi) of Cy to an end vertex of P,—y (respectively, Py—m—k+2),
where k < %g; see Figure 1. Note that h and ¢ are used throughout to
stand for arbitrary (not fixed) integers with 1 < ¢ < k < h < g. Since Bg:,’;
is a unicyclic graph on d + g — k + 1 vertices; hence, for convenience, we
might relabel the vertices of Bg:fn as U1, U2, ..., Udt 1, Ud+2s - - - y Udtg—k+1
Let Qf;_"_ d=g+k—1,m be a unicyclic graph on n vertices with diameter d cre-

Vl Wy = um+2
"2 X
M ul u2 - Q‘wt =um+l ]
- .oto—e .
Pd—m—k+2

&t o W Tl Rallay
d.m

Figure 1: Graphs Ug/ and By..

ated from Bf,’”fn by attaching n —d — g + k — 1 pendent vertices v;,vs,...,
Un—d—g+k-1 t0 a non-pendent vertex u; in V(Uj’,’fl).

In this paper, we show that Qi'fd-z,z (e.g., see Figure 2) is the unique
graph in Uy, ¢ with minimal Hosoya index.

Vaegiz Vo V) Uy

Pd -3

ud+l

ud+2

Figure 2: Graph Qi’fd_z,z

We list some lemmas that will be used in this paper.
Lemma 1.1 ([8]). Let G = (V, E) be a graph.

(i) If wv € E(G), then z(G) = 2(G — wv) + 2(G — {u,v});
(ii) Ifv € V(G), then 2(G) = z(G — v) + Y ueN@) 2(G = {u,v});
(ii) If G1,Ga,...,Gy are the components of the graph G, then z(G) =
H;'=1 2(G;).
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Denote by F,, the nth Fibonacci number. Recall that Fj, = Fy,_1+Fn_2
with initial conditions Fop =1 and Fj = 1.

Lemma 1.2 ([13]). Let n = 4s + r, where n,s and r are integers with
0<r<3.
(i) Ifr € {0,1}, then

FRF, > FBFy 2> FF, 4> > FsFogir > Fos1F254r41
> Fos_3Fogir43 > > F3Fh3> F1Fy g

(ii) Ifr € {2,3}, then

RF, > FRF, 2> FF, 4> > FFyr > Foe1Fo54r1
> Fog1Fogqry1 > > F3Fn 3> FF .

Lemma 1.3 ([14]). Let H, X,Y be three connected graphs pairwise disjoint.
Suppose that u,v are two vertices of H, v’ is a vertez of X, u' is a vertez
of Y. Let G be the graph obtained from H,X,Y by identifying v with v
and u with v/, respectively. Let G} be the graph obtained from H,X,Y by
identifying vertices v,v',u’ and G4 be the graph obtained from H,X,Y by
identifying vertices u,v',u’; see Figure 8. Then

z2(G7) < 2(G)  or 2(G3) < 2(G).

Figure 3: Graphs G,G7 and G3.

Let Hy, H> be two connected graphs with V(H;) N V(Hz) = {v}. Let
G = HyvH, be a graph defined by V(G) = V(H;) UV (H2) and E(G) =
E(H,) U E(Hy).

Lemma 1.4 ([15]). Let H be a connected graph and T, be a tree of order
l+1 with V(H)NT; = {v}. Then z(HvT}) > 2(HvK\,1), the equality holds
if and only if HvT} = HvK, 1, where v is identified with the center of the
star K1 in HvK, .
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2. Lemmas and main results

According to the definition of the Hosoya index of a graph, by Lemma
1.1, if v is a vertex of G, then 2(G) > 2(G — v). In particular, when v is
a pendent vertex of G and u is the unique vertex adjacent to v, we have
2(G) = 2(G—v)+2z(G—{u,v}). Soit is easy to see that z2(P) = 1,2(P,) = 1
and z(P,) = 2(Pn—1) + 2(Pn-2) for n 2 2. Recall that the nth Fibonacci
number F, satisfying recursive relation F, = F,_; + F,,_2 with initial
conditions Fy = 1 and F; = 1. We have

1 1+\/§ n+1 1_\/5 n+l
o5 (5]

Note that Fy4m = F, Fry, + F—1 Fn—1. For convenience, we let F,, =0, if
n < 0. By Lemma 1.1, we obtain the following results.

Lemma 2.1. For the graph Ug?, we have
2(U$7) = pFj_1Fe_1Fuy1-5 + 2Fj 1 Fe_gFapr1—j + Fer Faga.
Proof. By Lemma 1.1,

2Ugd) = 2(Ugh)—wv)+ Y. (2(Us) = {v,u1})
vEN(v1)
= z(U;’_jl) + 2(Pj_qUP.1 U Pd+1_j ) {'02, ces ,’Up})

2(US)) + Fj_1Fe_1Fay1-;

.

= 2(Us?) + pFj-1Fe-1Fas-;
= 2(Ug7-w)+ Y 2(U§7 - {u,43}) + pFj_1Fe_1Fas1-;
u€EN (uy)

= z(Pe-1U Pjo1 U Pyy1-j) + 2(Pec1 U Pj_2 U Pay1_5)
+22(P,—q U Pj._l U Pd+1_j) + 2(P,—1 U Pj-l U Pd_j)
+pFj 1 Fec1Fay1-;

= pFj_1Fe1Fay1-5+2Fj_1FeegFay1—j + Fe 1\ Fj 1 Fagr—;
+Fe1Fj_oF 41—+ Fer Fi1 Fy_j

= pFj1Fe1Fay1- +2F1FeoFgpy_j+ Fo1 Fyyy.

This completes the proof of Lemma, 2.1. O
Lemma 2.2. For positive iniegers g,k, if g—k = 2, then
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. —k+1,m+k—1 ym+k—1
() 2(UsZgZ i) < 2(Qnikiag-1,m)-
" —k+1,m+k-1 h
(ll) Z(Ug—z—gﬂ—; 1) < Z(Qfl-:-k—d—g—l,m)’
$14 —k+1,m+k— )
(iii) Z(Ug-z—gwc-l ) < 2( fl-l-k—d—g—l,m)‘
. —k+1,m+k—1 .
(iv) z(Ug_dfg,'_,'_':Z_l ) < 2@ k—gog-1.m) fori>m+k—1.

n

Proof. (i) By Lemma 2.1, we have

Z(Uz:kf;ﬂt’i_l) = (n—d-g+k—1)Fnik—2Fg-xFaro-m—k
+2Fmyk—2Fg-k-1Fg42-m—k
+Fy_kFrnyk-2(Fasz—m—k + Fas1-m—k)

+Fy it Frngk-3Faro—m—k.

On the other hand, it is easy to see that Ppw;Cy is a subgraph of Bg:,';.

Let Tp = Ppw1Cy — wy, then repeatedly using Lemma 1.1,

ymetk—1
2(Qn¥k"d"g-1,m)

= QTN vwn) + 2@ — (v, w))

2t + (n—d - g+ k= 1)Fayz-m-r2(To)

= (n—d—g+k—-10)Fao-mr(Fm-1Fg1+ Fn_2Fy_1Fy_3)
+Fai3-m-kFm-1Fg-1 + Fay3_m-sFm_oFk_2Fg_
+Far2-m-kFm~1Fg + Fayo-m—kFm-2Fg_kFi_1.

Therefore,

+h—1 —k+1,m+k-1
z(th’-:;c—d—-g—l,m) - Z(Ug—d—g:llc—l )

= (n—-d-g+k—1)Firomk(Fn-1Fg-1+ Fn-2Fg_rFi_3)
+Fat3-m-kFmn-1Fg_1 + Fa43-mekFn_2Fi—2Fy—i
+Fgpo-m-kFm-1Fg + Fayo-mrFm-2Fg—Fr—1
—{(n—-d-g+k-1)Fnir—2Fg-kFar2-m—k
+2Fmik—2Fg—k-1Fa12-m—k + Fg—k Fnyk—2Fa42-m—k
+Fy i Frmik-3Fas2-m-k + Fg—t Fnyk—2Far1-m—r}
= (n—-d-g+k—1)Fyo_mrFroFmn-1Fg_r-1
+Fyo-mkFm-1Fy_k—2Fik-1 + Fayo-m—kFr—2(Fmn—2Fg_r_2
+Fn_3Fy_k—1) + Fapr1-m—kFm-1Fg-ik-1Fr—2
FoyomekFrn-1Fg_g—2Fk-y > 0.

v

Hence
! po-k+lmtk-1 g,m+k—1
z( n—d—g+k—1 ) < Z(Qn+k—d-—g—1,m)'

116



(ii) Let Pz, = wiWi41...Why Pry = wpwpsa ... w1, Ty = meICg -
'h —
Wi, Ty = Q' — Why T2 =T1 — Py — Piemn—g42 and T3 = T — w1

Z(Qz’fd—g+k—l'm)
= z(Qg'fd_gM_l’m —vwp) + Z(le’fd—g‘kk—l,m — {v1,wp})
= Z(Qﬁ,-’-ld—g-i-k—zm) + Z(Tl U {'02, cee )vﬂ—d—g+k—1})
2Q8%) + (n—d— g+ k- 1)z(T)).
By (i), we have

Qe 1) = 2 Q8T + (n—d = g+ k — 1) Fu_m—ik422(T0).

Therefore,

QP k1) — 2@ im) = (n—d—g+k—1)(z(T1)
—Fy—m-k+22(T0)).

Furthermore,

2(T1) — Fym—i+22(T0)

= 2(Ti-we)+ Y, 2Ty — {u,wr}) = Fum-ps22(To)

uEN (wg)

= Z(T2 U P::;-l U Pd-m-k+2) + Z(T2 U le-2 U Pd—m—k+2)
+2(T2U Py -1 U Paemeks1) + 2(T3U Pry o1 U P ky2)
—Fy—m-rk+22(To)

= 2(T2)(Fz,-1Fa-m-k+2 + Fzy-2Fa-mk42 + Fr, -1 Fa—m—k41)
+2(T3)Foy—1Fgm—k+2 — Fa—m—r+22(T0)

= (Fp-1Fy—zy + FnoFraFy gz 41)Foy -1 Fam—k42
+(Fn-1Fy-z, + Fn—2Fx—2Fg—k—z,41)Fz, —2Fa-m—k+2
+(Fn-1Fg-z, + Fn—2Fx-2Fy—k-z,+1)Fry ~1 Faem—k+1
+(Fm-1Fg_zi—1 + FrnoFi—3Fy gz 41)Fo 1 Fgmm—k+2
—Fym—iv2(Fn-1Fg-1 + Fn2Fy_ Fy_3)

= Fd—m—k+2(le-2Fm—1Fg—x1—2 + le—lFm—IFg-xl—l

+Fpy 1 FrnaFi3Fg ko411 + FoyoFm oFi oFg g z,-1) +

Foem—i41Fr —1(Fn—1Fg-z) + Fn—2Fi—2Fy_x_z,41)

Fyem—ky2Fz 1 Fm_1Fg_z,-1 > 0.

v

Hence,
guh g|m+k-1
Z(Qn—d—gvf-k—l,m) > Z(Qn-—d—g+k—l,m)'
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By (i), we have

—k+1,m+k-1
(Ug—d—g-:-":: 1 )<Z( n+k —-d—g-1, m)

Similarly, we can show that (iii) and (iv) hold. O

Use a similar method as in Lemma 2.2, we can also prove the following
lemma, we will not repeat the procedure here.

Lemma 2.3. For positive integers g,k, if g — k 2 2, then
. —k+1,
(l) z( g—dt;-i'l—l) < Z(Qn+k—d—g— ,m)
—k
(i) 2(U2Zg%gih-1) < 2@ k-d—g-1,m)
(iff) 2(UZ—g¥grh-1) < 2(@0%kodmg1,m)-
—k+1, ,
(iv) 2( g—dt;-:;e D)< Z(Qn+k —d—g—-1,m) for 1 <i<m.
Lemma 2.4. z(U? +k Ta-g) < 2( g;',:"';:'_’g ) forg—k>3
Proof. By Lemma 2.1, we have
2kt ilo1) = 2Usklay)
= (n+k—d—g)Fj1Fg_k2Fir1-j — Fj-1Fap1-j(Fg-r + 2F4_-3)
+Fg_k2Fj_1Fay1-5+ FjoFg_k—2Fgp1-5 + Fj_1Fg_k-2Fy4—;

> FjFyp-2Fup1-j— Fj1Fg_p-1Fa41-5 + 2Fj1 Fy_ 3 Fay1-;
+FjoFg_x—2Fay1-j+ Fj1Fg_g—2F4—;

= FjaFyk-3Fap1-j+ Fyop—2Fj2Fay1-j+ Fjo1Fg_p2F4_;

> Fj1Fg_k-3F441-5>0.

Hence, we have z( g+',§’_-’d_g) < z(U. g;::’_’},‘fg_l). 0

Corollary 2.5. 2(U37, ) < z(UM, )< < 2(UZ~%9),
Lemma 2.6. Let d = 4s + r, where n,s and r are integers with 0 < r < 3.

(i) For r € {0,1}, we have

~k+1,2 —k+1,4 —k+1,2
(U3 g gn—1) < (U723l gbk-1) < -+ < 2(URZglg4ko1)
g—k+1,25— k+1,1
<z(U, —d—g+7¢ 1) <-ee<z g-d-g+k 1)
(i) Forr € {2,3}, we have
k+1,2 —k+1,4 —k+1,2
2(UnZalghr-1) < 2URZglghe-1) <0 < 2(U;Z d—g+l: 1)

~k+1,25+1 —k+1,25— —k+1,1
<z(UiZ d_g+i 1) <z(UZZ d_g+Z 1) <0<z g—d—g+k—1)'
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Proof. (i) By Lemma 2.1,

2USTEHd, ) = (n—d—g+k—1)F_1FxFapi-j
+2F; 1 Fgk-1Fgy1-5 4+ FgopFasr.  (2.1)

For r € {0, 1}, by Lemma 1.2 (i),
FoFy > FoFy 9> FuFg_ 4> - > FagFaeyr
> Fos-1Fos4rt1 > - > P Fy .
Together with (2.1), we have

—k+1,2 —k+1,4 —k+1,2
Z(Uygz—d—g-i-k—l) < Z(Uz—d—g+k—l) << Z(Uz-d—g+;—1)

<2USEBT) < < 2(UITE L ).
(ii) For r € {2, 3}, by Lemma 1.2 (ii),
FoFy> FoFy o> FyFy_g > -+ > FogFogyr
> Fog1Fogqr—1 > Fos1Fogyrq1 > - > F1Fy .

Together with (2.1), we get

—k+1,2 —k+1,4 —k+1,2
Z(Urgz—d—g+k-1) < z2(UgZglgin-1) <+ < z(Ui_d_g+Z-1)

—k+1,2541 —k+1,25—-1 —k+1,1
< Z(Ug—d-g+;-1) < Z(Ug-d-g+Z—1) << Z(Ug-d—g+k—1)'
This completes the proof of Lemma, 2.6. O

By Lemma 2.6, the following corollary is obvious.
Corollarg'32.7. (U2, ) < 2(U32, 5y < - < 2(Ud%_) < U1 <
< 2(USS, ).

Let Upn,a = U} yUUZ 4, where Uy, g = {U : U € Uy 4, there exist Cy and
Pyi1 in U such that g — [V(C,) NV (Pay1)| = 2}, Uﬁ’d ={U:U €Uypyq,
there exist Cy and Pi;1 in U such that g — |V(Cy) NV (Pyy1)| = 1}

Theorem 2.8. If G € U} ,, then 2(G) 2 2(n — d — 2)Fy_1 + 2Fu4, the
equality holds if and only if G = U:fd_s.

Proof. By Lemma 2.1, we have
Z(U:fd—s) =2(n—d—2)Fy_1 + 2Fy4,. (2.2)

Note that G € Uy, 4, we choose a path P of length d in G.
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Case 1. PN Cy # 0. Without loss of generality, we assume that P and
C, have exactly k vertices in common, k¥ < 4. Then the arrangement of P
and Cy in G is the same as Bg”fn in Figure 1.

Let V*(G) be the set of all the vertices chosen from a subgraph of G that
is isomorphic to Bg:,’;, each of which has pendent tree attached. Assume
that [V*(G)| = t, then relabel the vertices in V*(G) as z1,%2,...,z:. For
each z; € V*(G),i = 1,...,t, let T; be a subtree of G — E(Bg”,’fn) which
contains z; and |V(T;)| = p; + 1, denote

vz 7).
1<igt,j#i
then G = Hz;T;. By Lemma 1.4, we have 2(Hz;T;) > z(Hz; K, p,). Thus

repeatedly using Lemma 1.4,
Z(G) 2 Z(Bg,’:-.(l’hm, veeyPiyeee ,Pt)):

where Bﬂ:fn(pl yP2y -+ Diy- .-, Pt) is a unicyclic graph of order n with diame-
ter d created from Bf,’",'; by attaching p; pendent vertices to z; € V*(G),1 <
i < t, respectively. Corresponding to z;,z; € V*(G), let

X = Kl.pnY = Kl,p,-a and H =G — VL(KLP,.) - VL(KLPJ')!
then Bg",’;(pl,pz, .o+, pt) = Xz;H'z;Y. By Lemma 1.3, we have either

Z(G) Z Z(Bg:fn(pla“ Y 2 PERRRY 2 PR ,Pt))
> Z(Bg,"l:;(l’h--wpi +Pj,--- )0, ypt))x

or

Z(G) 2 z(Bg,'fn(plw' sy Piye s Pjye --,Pt))
> Z(Bg,’fn(pl’“ 0, P+ Py, \Pt))-
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Repeatedly using above step, we obtain either

2(G) = z(Byk(P1, -+, Pise -, Pjy- s PE)) > ..

> Q8 kmd—g1,m): (2.3)
2(G) > 2(BSk (1. Pire o1 Djs -, PE)) >

> Z(th,-:-lk—d—g—l,m)’ (2.4)
2(G) 2 z(Bg,’fn(Ph...,p.-,...,pj,...,p,)) >...

> QR kdmg-1,m)> (2.5)

or

Z(G) > Z(Bg,’fn(le ey Piye s Pjyees ’pm)) >

> 2(Q% 4k —dmg_1,m)- (2.6)

Together with (2.3)—(2.6) and Lemma 2.3, we obtain that
2(G) > 2(USE ).
Similarly, we have 1
#(G) > (VL5 ).
By Corollaries 2.5 and 2.7, we obtain

—k+1,m+k-1 3,m+k—1 3,2
Z(Ug_d_g:;_l ) > Z(Un:,:i—S ) > Z(Un—d-S)’

and
2USZaLTn) > 2R ) > 2(UR24_)-
Therefore, 2(G) > 2(U3?,_;) = 2(n —d — 2)Fy—; + 2F44:.

Case 2. PNCy = 0. Then cycle C, connects P by a path of length at
least 1. By Lemma 1.3, we can obtain a unicyclic graph G’ € Bg_‘,’; such
that 2(G) > 2(G’) and the cycle C; and P in G’ have exactly one vertex
in common. By Case 1, z(G) > 2(G’) 2 2(n —d — 2)Fy_y + 2F441.

By Cases 1 and 2, we obtain that if G € U} ;, then 2(G) > 2(n—d —
2)F4_1 + 2F 441, the equality holds if and only if G = U:f;i_a. ]
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Corollary 2.9. U, 3_d 3 18 the graph with the minimal Hosoya index in
u 4

In the following we shall determine the graph G in Mg’d with minimal
Hosoya index. It is straightforward to check that in this case the length of
the cycle in G is either 3 or 4. The arrangement of the longest path and

the cycle contained in G is G; or Ga, which were depicted in Figure 4.

¥
ded
a2 Pl--
P
Fivioa hm H Uap =Wy U, Wy U,
—_—

G, G,
Figure 4: Graphs G; and Go.
By definition, Q3% ,_, . (respectively, Q3™ _, Qo m Q212
Q! d—2,m) is the unicyclic graph with diameter d created from G, by at-

-2,m’

taching n — d - 2 pendent vertices to the vertex u; (respectively, wm, Um41,

s . 4,t H B
Ud42,Uj). Similarly, Q7 d-2,m (respectively, an‘d 2.m> Q4 :";_'_22 .
Qf,"_iﬁz'm, Qn_d 2,m) is the unicyclic graph with diameter d created from

G, by attaching n — d — 3 pendent vertices to the vertex u; (respectively,
Umy Um+-2y Ud+2, uj)'

3,d+2

n—d—2,m» we have

Lemma 2.10. For graphs Qn—d-2 vai'id-z,m and Q

() Z(Qn—d 2m) < Z(Qi'ngZ m) and Z(Qn-d 2rn) - z(Qn—d 2,m fOT

1 < i £ m, the equality holds if and only if i =

(i) 23T, ) < 2(Q3%42,,) and z(Qi'_";t‘z.m) < 2Q3 4 g m) for

m+1<j<d+1, the equality holds if and only if j = m + 1.
Proof. By Lemma 1.1, for1 <i<m,m+1<j<d+1, we have

HQleom) = (0= d=DFmiFisz-m+ FoiiFaso-m, (27)
Z(QS,m-H ) = (n —d- Z)Fm+1Fd-—m + Fnt1Far2-m, (2'8)

n—d-2m
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Z(Q?ﬁﬁz,m) (n—d—2)Fay1 + Fny1Far2-m,

2Q5 4, m) = (m—d=2)F_1(Fapr-i + Fno1-iFat1-m
+Fn-iFa-m) + Fmny1Far2-m,

Z(Qn—d—2 m) = (m—d=2)Fu1-j(Fjm1 + Fn-1Fjmm—1

+FnFjem—2) + Fny1Fapo-m.

Therefore,
@

23342, ) — 2@ 2m) = (0 —d=2)Fn_2Fa11-m.

n—d—-2,m

Note that d+1 > m and m > 2 (othermse the diameter of Qn_d 2.m

is d + 1, a contradiction), therefore, (n — d — 2)F,;,_2Fg41-m > 0, ie.,

Q3™ _y ) < 2(Q3%52, ).

ARy g am) = 2 Q0T 5) = (n- d- 2) Fn1-il(Fie1 — Fie2) Fu-m
+(Fic1 — Fie2)Fay1-m)

Note that d + 1 > m and ¢ > 2 (otherwise, the diameter of Qﬂ_d__2 m 18
d+ 1, a contradiction), therefore, (n —d — 2)Fp_1—;(Fi~) — Fi—2)(Fg—m +
Fy41-m) 20, ie. Z(Qn_d_z m) S Z(Qn—d—z m)-

(i)

Z(Qs,d+2 )= 2(Q3™H Y=(n—d—2)FnFi_1_m >0,

n—-d-2,m n—d-2,m

therefore, z(Qi’f:fg,m) <2(Q% dd—2 m)-

z(Qn—d—? m) Z(Q:T:itlzm = (n —d- 2)Fm+1F}—m—2Fd_l_j 2 0’
and so, z(Qi’thlg,m) < Z(Qi’-{d-z,m)' -

Corollary 2.11. Q n—d—2,2 1S the graph with the minimal Hosoya indez in
(@ uom:2Sm<d=2)U{QIT, i 2<m<d -2}
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Proof. By Lemma 1.2 and Eqgs.(2.7)-(2.8), we have that Qi’zd—2,2 is the
graph with the minimal Hosoya index in {Q> mrd—2m ' 2<m<d—2} and
Qiﬁd-z,z is the graph with the minimal Hosoya index in {Qi'Tdtlz,m :2<

m < d — 2}. On the other hand,

2Q%2 50) —2(Q%%,_50) = (n—d—2)(Fu_z — F4_2) <0,

the equality holds if and only if d = 3. It is easy to see when d = 3,

Q?,ES 9 = n_5 3. This completes the proof. 0

Lemma 2.12. For a fized positive integer m, we have
(1) z(Qn—d 2, m) < Z(Q:'-‘-i:EZm) and z( ‘ril‘:-r:l—2,m) < z( n—d—2 m) fO'I‘
1 < i € m, the equality holds if and only if i = m;
(i) 2(QnTi5m) < 2(QR%i%,m) and Q705 ) < 2(Q14 g m) for

m+2 < j<d+1, the equality holds if and only if j = m + 2.

Corollary 2.13. Qi’f d—2,2 18 the graph with the minimal Hosoya indez in
(@ s m:2<m<d=-2)U{QR"}, 12<m<d-2}.

Lemma 2.12 and Corollary 2.13 can be proved in the same way as
Lemma 2.10 and Corollary 2.11, respectively. We will not repeat the pro-

cedure here.
Theorem 2.14. If G € U?

(i) Ifd =3, then
2(G)>3n—-6

with equality if and only if G = Qn—s 9
(ii) If d > 4, then

2, fn=17d=5
]
(Bn—-3d+4)Fg_3+ (n—d+2)Fy_q, otherwise.
(2.9, 2.10)

124



Equality in (2.9) holds if and only if G = G* or G = G**, where
G*,G** are depicted in Figure 5; equality in (2.10) holds if and only if
G Qn—d—2 o (see Figure 2).

Figure 5: Graphs G* and G**.

Proof. (i) When d = 3, in view of Corollaries 2.11 and 2.13, we should com-
pare the Hosoya index of Qﬂ__5 o with that of Qn_5 o- By direct computing,

we have
(Qn 5, 2) 3n -6, Z(Qn_s 2) 3n —5.

Thus (i) follows immediately.
(ii) When d > 4, in view of Corollaries 2.11 and 2.13, we should compare

the Hosoya index of Qi’fd_m with that of Q22 d-2,2- BY an elementary

calculation, we have

Z(Qn-d-z 2) = 2(n—d+1)Fyo+(n—d+1)Fy_3,
AQN2y 55 = (3n-3d+4)Fus+(n—d+2)Fus.
Hence,
Z(Qn-—d 2, 2) — Z(Qi'zd_z,z) = (n—d)Fy_4—Fy_3
>* 2Fy_4—F4_3
= Fy4-Fyp
>#t 0.

The equality in () holds if and only if n — d = 2, and the equality in (x*)
holds if and only if d = 5. That is to say, z( 2‘34_2,2) = z(Q4'fd_2'2) if
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and only if n = 7 and d = 5; otherwise, z(C‘?n_d_2 2) < z(Qn_ d-2,2) Hence,
(ii) holds.
This completes the proof of Theorem 2.14. O

Note that when d > 4,

Q24 02) = (n—d—2)(Fa_y + Fa3) + Fuy1 + Fa1 + 3Fg3. (2.11)
By Eq. (2.2) and Eq.(2.11), it is easy to see that

z(Qn_d 2,2) < 2(U3 n_d_ 3) (2.12)
When d = 3, by (2.2) and (2.8), we have
@32 2) < 2( US2s). (2.13)

Summarizing Theorems 2.2 and 2.14, together with (2.12)-(2.13), we
obtain our main results of this paper.

Theorem 2.15. Let G € Uy q.

(i) If d =3, then 2(G) > 3n — 6 with equality if and only if G = Qn-s 9
(ii) If d > 4, then

24, fn="7d=25;
z(G) 2 .
(3n—3d+4)Fy_3+ (n — d + 2)Fy_4, otherwise.
(2.14, 2.15)

Equality in (2.14) holds if and only if G =2 G* or G = G**, where
G*, G’** are depicted in Figure 5; equality in (2.15) holds if and only if
G= Qn_d__2 o (see Figure 2).
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