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Abstract: A graph G of order n is called a tricyclic graph if G is
connected and the number of edges of G is n + 2. Let 7,, denote the set
of all tricyclic graphs on n vertices. In this paper, we determine the first
to nineteenth largest Laplacian spectral radii among the all graphs in the
class 7, (n > 11) together with the corresponding graphs.
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1 Introduction

Throughout the paper, G = (V, E) is a connected undirected simple graph
with V = {vy,v9,...,vn} and E = {ey, €2, ...,em}, i.e., [V| =n and |E| = m.
If m = n+c¢—1, then G is called a c—cyclic graph. Especially, ifc =1, 2,3,
then G is called a unicyclic, bicyclic, or tricyclic graph, respectively. The
notation 7, is used to denote the class of tricyclic graphs of order n. The
neighbors of a vertex v is denoted by N(v). Write d(v) for the degree of
vertex v. Specially, A denotes the maximum degree of G.

The adjacency matrix A(G) = [aij] of G is an n x n symmetric matrix
of 0’s and 1’s with a;; = 1 if and only if v; and v; is joined by an edge.
Suppose the degree of vertex v; equals d(v;) for i = 1,2, ..., n, and let D(G)
be the diagonal matrix whose (7, )-entry is d(v;). The Laplacian matriz of
G is L(G) = D(G) — A(G), and the Lapalacian characteristic polynomial
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of G is denoted by &(G, )}, i.e., ®(G, A)=det(A] — L(G)). The maximum
eigenvalue of L(G), denoted by u(G), is called the Laplacian spectral radius
of L(G). Our terminology and notation are standard except as indicated.
For terminology and notation not defined here, we refer the readers to [1-10]
and the references therein.

The investigation on the spectral radii of L(G) is an important topic
in the theory of graph spectral. Up to now, the first to fourteenth largest
spectral radii of L(G) were determined in the class of trees in [1-3]. The
first to thirteenth largest spectral radii of L(G) were given in the class of
unicyclic graphs in [4-6]. Recently, Jia-Yu Shao et al. 7] obtained the first
four largest spectral radii of L(G) in the class of bicyclic graphs. Actually,
we have determined the first eight largest spectral radii of L(G) by using
the different method from [1-7] in [8]. In this paper, we obtain the first
to nineteenth largest Laplacian spectral radii among the all graphs in the
class 7, (n > 11) together with the corresponding graphs.

2 Main results

A vertex of degree 1 is called a pendant vertez of G. Suppose B is a square
matrix, let a;;(B) denote the entry appearing in the i-th row and the i-
th column of B. In [9], we have obtained a new method to calculate the
Lapalacian characteristic polynomial of an n-vertex graph as follows

Lemma 2.1 {9) Let G be a graph on n —k (1 < k < n — 2) vertices with
V(G) = {vny¥n-1y .., Uk41}. If G’ is obtained from G by attaching k new
pendant vertices, say vi, ..., Uk, t0 Uky1, then
®(L(G"),A) = (A = 1)* - det(M],—k — L(G) — Bn—i),
where ay1(L(G)) is corresponding to the verter vg4+1, and Bp—p =
diag{k + fl, 0,...,0}.
Example 2.1 Let G’, G be the graphs as shown in Fig 1. It is easy to see

that G’ is obtained from G by attaching n — 4 new pendant vertices to the
vertex vn,-3 of G. By Lemma 2.1, we have

B(L(G"), ) = (A — 1)"~*det(M),

epms Lo
where M = 1 1 A-2 0
0 1 0 A-1

By using “Matlab”, it is easy to obtain that
B(L(G),N) = AA=1)"5(A\* = (n+5)A%+ (6n +3)A2— (9n — 5) A+ 3n).
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Lemma 2.2 [10] 4(G) < maz{d(v) + m(v) : v € V}, where m(v) =
EuGN(v) d(u)/d(v) .

Lemma 2.3 [11] A +1 < p(G) < n, the left equality holds if and only if
A=n-1.

Proposition 2.1 Suppose ¢ > 0 and G is a c—cyclic graph with A < n-3.
If n > mazx{c+7,2c+ 5}, then u(G) <n-—1.

Proof. By Lemma 2.2, we only need to prove that maz{d(v) + m(v) :
veV}<n-1.

Suppose maz{d(v) + m(v) : v € V} occurs at the vertex u. Three cases
arised(u) =1,d(u) =2,0or3<d(u) <n-3.

Case 1. d(u) = 1. Suppose v € N(u). Since d(v) £ A < n - 3, thus
d(u) + m(u) =d(u) +d(v) <n-2<n-—-1

Case 2. d(u) = 2. Suppose that v,w € N(u). Note that G is a c—cyclic
graph, then |N(v) N N(w)| € ¢+ 1 and |[N(v) U N(w)| £ n. Therefore,
d(u) + m(u) = 2 + LW < 9 4 ndedl <y g,

Case 3. 3 < d(u) £ n— 3. Note that 3 < d(u) < n — 3, then d(u) +
m(u) < d(u) + gﬂ_j{%t—z = d(u) — 1 + Zp=2. Next we shall prove that
diu) -1+ %’f;‘f- < n—1, equivalently, d(u)(n — d(u)) > 2m — 2. Once this
is proved, we are done. Let f(z) = (n — z)z.

When z € [3,%], since f'(z) = n—2z > 0, then f(z) > f(3) =
3n-3)22(n+c—-1)—2=2m-2,

When z € [§,n — 3], since f'(x) =n — 2z <0, then f(z) > f(n-3) =
3(n-3)=22(n+c-1)-2=2m-2.

By combining the above discussion, the conclusion follows.

Corollary 2.1 Suppose G € T,,. Ifn > 11 and A < n -3, then u(G) <
n—1.

Let Hy — Hyy be the tricyclic graphs on n > 11 vertices as shown in Fig.
2. For convenience, V\{v} is written as V' — v.
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Lemma 2.4 Suppose G € T, and n'> 11. If G has the propertyn — 1 <
u(G) < n, then G should be the graphs Hy — Hyz.

Proof. Suppose A = n—1, Lemma 2.3 implies that 4(G) = n. Combining
with Corollary 2.1, if G has the property n—1 < u(G) < n,then A =n-2.
Next we shall show that G = H;, where 1 <1 < 27.

Assume that up € V(G) such that d(up) = n —2 and vo & N(ug). Note
that N(vp) € N(up). It is easy to see that 1 < d(vp) < 4 because G € T,.
We consider the next four cases.

Case 1. d(vp) = 1. Three subcases should be considered.

Subcase 1. maz{|N(ug) N N(@)| : v € V —up} = 1. It is easy to see
that G = Hj; or Has.

Subcase 2. maz{|N(u) NN (v)|: v € V —up} = 2. It is easy to see that
G H15 or H16 or H17 or H19 or Hzo or H22 or H24 or H25 or st.

Subcase 3. maz{|N(u)NN()|: v € V —ug} = 3. It is easy to see that
Gz H14 or Hls or H27.

Case 2. d(vp) = 2. Two subcase should be considered.

Subcase 1. maz{|N(uo) N N(v)| : v € V —up} = 1. It is easy to see
that G = H; or Hyg or Hy; or His.

Subcase 2. maz{|N(u)NN(v)|: v € V —up} = 2. It is easy to see that
G = Hg or Hg or Hg or Hg or Hi3.

Case 3. d(v) = 3. It is easy to see that G = H, or Hj or Hy.

Case 4. d(vo) = 4. It is easy to see that G = H;.

Lemma 2.5 Supposen > 11, thenn—1 < u(H;) < n holds for 1 <1 < 27.

Proof. By Lemma 2.1, we have

(la) ®(Hp,A) =A(A=1)""T(A=2)3(\3 = (n+5)A2 4 (6n — 2)\A — 4n).

(2a) ®(Ha,A) = AA = 1)"7(A = 2)(A5 = (n + 9)A? + (10n + 23))3 —
(33n + 11)A2 + (41n ~ 10)A — 16n).

(3a) ®(H3z,A) = A0 =1)™T(A =220 =3)(A% — (n + 4)A? + (5n —
2)A - 3n).

(4a) B(Hsy ) = MA=1)""6(A=2)(A—4)(A3—(n+4)\*+(5n—2)A—3n).

(5a) ®(Hs,A) = AA = 1)""7(A = 2)(A® = (n + 9)A? + (10n 4 22))3 -
(32n + 8)A% + (38n — 12)) — 14n).

(62) ®(Hg,A) = AA = 1)" (A =3)(M = (n + 7)X® + (8n + 9))2 —
(17n —7)A + 8n).

(Ta) ®(Hr,A) = AA—1)""7(A2 =5A+5)(A% — (n+B)A3 + (Tn+6)A2 —
(13n — 5)A + 6n).
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(8a) @®(Hs,\) = AA—1)""6(A5 — (n+ 10)A* + (11n + 29)A3 — (40n +
16)A2 + (54n — 19)\ — 21n).

(92) ®(Hg,A) = A(A = 1)""7(A® — (n 4+ 11)A% + (12n + 41)A* — (53n +
55)A3 + (1067 + 4)A% — (94n — 26)A + 29n).

(102) ®(Hio,A) = A(A = 1)*7(A = 3)(A5 — (n + 8)A% + (9n + 18)A% —
(27n + 6)A% + (31n — 10)A — 11n).

(112) ®(Hip,A) = AA = 1)"7(A = 2)(A = 3)2(X3 — (n + 3)A% + (4n —
2)\ — 2n).

(12a) ®(Hiz,A) = A =1 5(A =3)(A —4)(A3 = (n + 3)A2 + (4n —
2)A — 2n).

(13a) ®(Hiz, A) = AN =1)"""(A=2)2(A=4)(X3 = (n+ 3)A% + (4n —
2)A —2n).

(14a) ®(Hig,A) = MA = 1)*7(A =2)2(M = (n + T)A3 + (8n + 5)A2 —
(13n — 7)A + 5n).

(15a) ®(His,A) = AA—=1)""7(A® — (n+11)A5 + (12n+39)A* — (51n+
45)A3 4 (95n — 9)A% — (77n — 31)A + 21n).

(16a) &(Hig,A) = XA =1 7TA=2)(A=3)M — (n+6)X% + (Tn +
4))? — (11n — 6)A + 4n).

(17a) ®(Hy7,A) = AMA = 1" 8(A = 4)(M = (n +6)A3 + (Tn + 4)A% -
(11n — 6)A + 4n).

(18a) ®(His,A) = AA —1)*7(A=2)(A% = (n 4+ 9)A? + (10n + 21)A3 —
(317 + 3)A% + (33n — 16)A — 10n).

(19a) ®(Hig,A) = M(A=1)""7T(X8 — (n+ 11)A% 4 (12n + 40)A* — (52n +
48))3 + (99n — 10)A% — (80n — 34)A + 21n).

(20a) ®(Hz0,)) = A(A = 1)"7(A = 3)(A® — (n+ 8)A* + (9n 4+ 17))3 —
(26n + 2)A2 + (27n — 13)\ — 8n).

(212) B(Ha1, A) = AMA — 1)"7(A — 3)2(A% — (n+ 5)A3 + (6n + 3)A% —
(9n — 5)A + 3n).

(22a) @®(Haz,A) = AA = 1) 7(A = 2)(A = 4)(M\* = (n + 5)A3 + (6n +
3)A% — (9n — 5)A + 3n).

(23a) ®(Has,)) = A(A—1)""7(A=3)3()3 — (n+2)A% + (3n — 2)A —n).

(248) ®(Has,\) = AA = 1) TA=3)(A2 —6A + T)(A3 — (n + 2N +
(3n — 2)A — n).

(258) ®(Has,2) = AA=1)""T(A=2)(A=3)(A —4)(X — (n +2)A% +
(3n—2)A —n).
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(26a) ®(Hag,\) = A(A—1)""8(A—2)2(03 — (n+2)A2 + (3n —2)A —n).

(27a) B®(Haz, A) = AA=1)""T(A=22(A =5)(D3 = (n+2)\2 + (3n —
2)A —n).

By Lemma 2.3, n — 1 < u(H;) < n holds for 1 < i < 27. Moreover,
when 1 <7 < 27, since $(H;,n) # 0, thus n — 1 < p(H;) < n follows.

Let S(n,3) denote the class of graphs obtained by adding 3 edges to
pendants of K n_;. By combining Lemmas 2.3-2.5 and Corollary 2.1, we

have

Corollary 2.2 If G € T, and n 2 11, then u(G) = n if and only if
G e S(n,3).

Lemma 2.6 Suppose G € T, andn > 11, then pu(H,) > pu(Hz) > pu(Hs) =
w(Hs) > p(Hs) > p(He) > p(Hr) > p(Hs) > p(He) > p(Hio) >
p(Hu) = p(Hi2) = p(Hiz) > p(Hia) > p(His) > p(Hie) = p(Hir) >
p(Hig) > p(Hie) > p(Hzo) > p(Ha1) = u(Hzz) > p(Has) = p(Has) =
#(Has) = p(Hag) = p(Har).

Proof. By Lemma 2.5, n — 1 < p(H;) < n holds for 1 < i < 27. Next we
shall divide the proof into the next 17 process.

(1) u(Hy) > p(H,). Rewrite equality (1a) as ®(H;, A) = A(A=1)"*""(A—
2)f1()), where fi(X) = A5 — (n + 9)A% + (10n + 22)A3 — (32n + 12)A2 +
(40n—8)A—16n. Let fo()) = A — (n+9)A4+ (10n+23)33 — (33n+11)A2+
(41n — 10)A — 16n. Thus, u(H;) and p(H;) equals the maximum root of
the equation f1(A) = 0 and f2(A) = 0, respectively. When A > n — 1, since
f2(A) = fi(A) = A(AA+1-n) +n—2) >0, thus p(H) > u(Hz).

(2) u(H2) > p(Hz) = p(H,). By equalities (3a) and (4a), it follows
that u(Hs) = p(Hy). Rewrite equality (3a) as ®(Hj, ) = A\(A —1)""7(\ -
2) f3(A), where f3(A) = A% — (n + 9)A? + (10n + 24))3 — (34n + 14)X2 +
(45n — 12)A — 18n. Thus, u(H3) equals the maximum root of the equation
fa(A) = 0. Let ¥1(A) = f3(A) — f2(A) = A3 — (n 4+ 3)A2 + (4n — 2)X — 2n,
and a; denote the maximum root of #,(A) = 0. Since ¥;(0) = —2n < 0,
P1(l)=n—-4>0,9(n—-1) =-2 <0 and ¥1(n) = n(n —4) > 0, then
n-1l1<o <n

It is easy to see that f2(\) = (A2 — 6A 4+ 7)¢1(\) + 11()) and fa(}) =
(A2 — 6X + 8)¥1(X) + 11(X), where 11(X) = =22 4+ (n + 4)A — 2n. Since
fa(e1) = fa(en) = m(en) < 01(6 —n) —2n < 0, thus u(Hz), u(Hs) €
(a1,n). Moreover, since N iigzooz/)l (A) = +oo0, thus ¥1(A) > ¥1(a1) = 0

when A > a;. This implies that f3(A) > f2(A) when A > ;. Therefore,

#(Hz) > p(Hs).
(3) u(Ha) > p(Hs). Rewrite equality (4a) as @(Ha, A) = A(A-1)""°fo(}),
where f3(A) = A® — (n+10)A*+ (11n +30)A% — (41n +20)A% 4+ (58n — 16) A —
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24n. Thus, u(H,) equals the maximum root of the equation fs(A) = 0. Let
F5(A) = AB — (n+9)A4 + (107 +22)73 — (32n+8)A2 + (38n — 12)A— 14n. By
equality (5a), p(Hs) equals the maximum root of the equation f5(A) = 0.
Let ¥2(A) = fs(A) — fa(A) = A= (n+8)A3+(In+12)A%2 - (20n— 4)A + 10n.
When A > n — 1, since ¥4 (\) = 1222 — (6n + 48)) + (18n + 24) > 0, thus
Ph(A) = 4X3 — (3n + 24)A% + (18n + 24)A — (20n — 4) > Yy(n— 1) =
n3—12n2+43n — 48 > 0. Therefore, when A > n—1, ¥2()) > Ya(n—1) =
n2 — 8n + 17 > 0. Thus, f5(A\) > fa(A) when A > n — 1, this implies that
u(Ha) > p(Hs).

(4) u(Hs) > u(Hs). Let fo(A\) = A — (n+ 7)A% + (8n + 9)AZ — (17n —
7)A+8n. By equality (6a), #(Hs) equals the maximum root of the equation
fe(A) = 0. It is easy to see that fz(A) = fe(A)(A — 2) + 72(}), where
v2(A) = =A3 4+ (n+3)A% = (4n ~2)A +2n. Let o2 denote the maximum root
of y2(A) = 0. Since 72(0) =2n >0, 72(1) =4-n <0, y2(n —1) =2 >0,
y2(n)=n(4—n)<0,thusn—-1<az <n.

Note that fs(A) = 72(A)(4 — A) + A(n — 1 — ), then fg(az) = az(n —
1 — a3) < 0. Moreover since N _lz_.n_lq_,m fe(A) = +oo, thus u(Hg) > ap. Note

that \ li'r_r: v2(A) = —oo, thus fs(u(Hs)) = v2(u(He)) < 0. This implies
—too
that u(Hs) > u(Hg) because N linl fs(A) = +oo.
too

(5) u(He) > u(Hz). Let fr(A) = A — (n + 6)A% + (Tn + 6)A%? — (13n —
5)A + 6n, by equality (7a), u(H7) equals the maximum root of the equation
f2(A) =0.

Note that f7(X) — fa(A) = A3 = (n + 3)A% + (dn — 2)A — 2n = ¥;(N), by
the proof of u(Hz) > p(Hs), n —1 < oy < n, where a; is the maximum
root of ¥1(A\) =0.

It is easy to see that fg(A) = (A — 4)¥1(A) + y3(A) and f7(A) = (A -
3)92(\) +73()), where y3(A) = —A2+ (n—1)\. Note that n—1< a; < n,
thus f7(a1) = fe(on) = va(o1) = aa(n — 1 — 1) < 0, which implies
that u(Hs), u(H7) € (a1,n). Moreover, since \ ﬁv_n'_ooqbl(/\) = 400, thus

P1(X) > ¥1{a1) = 0 when A > a;. This implies that f7(A) > fe(A) when
X > a1. Therefore, u(Hg) > u(Hy).

(6) u(H7) > p(Hsg). Rewrite equality (7a) as ®(Hz, A) = A(A—1)""7fg()),
where fg(\) = A% — (n + 11)A5 + (12n + 41)A* — (53n + 55)A3 + (106n +
5)A2 — (951 — 25)\ + 30n. Thus, u(H7) equals the maximum root of the
equation fg(A) = 0. Rewrite equality (8a) as ®(Hs, A) = A(A—1)""7 fo(}),
where fo(A) = A8 — (n 4 11)A° + (12n + 39)A* — (51n + 45)A3 + (94n —
3)A2 — (75n — 19)A + 21n. Thus, u(Hs) equals the maximum root of the
equation fo(A) = 0. Let ¥3(X) = fz(A) — fo(A) = 22* — (2n + 10)A% +
(12n + 8)A% — (20n — 6)A + 9n, o3 and a4 denote the maximum and the
second largest root of ¥3(A) = 0, respectively. Since %3(0) = 9n > 0,
P3(l) =6-—n<0,93(2) =n—-4>09Y3(n-1)=14-51 <0, and
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Y3(n) =2n%(n-6)+15n>0,thusn—1<a3<n,2<as<n-—1.
. 2—

) It is easy to see that fg(\) = i:gﬁ'lzlza(;\) + 712()) and fo(X) =
=B85 (A)+74(N), where 74() = Z=CHOMHUntOM=In, By straightly
computation, 2:10+YaT—4n$82 i5 the maximum root of v4(X) = 3)2 — (n +
10)A+2n +4 = 0. Note that 2+10+VA"—dn$82 1, _ 1 gngd im 7%() =

—t 100

+00, thus when X > a3, f3(A) 2 14(es) > n(n—1) = 3((n-1)(n-9n+
17n —20) > 0. Thus, p(H7) € (n — 1, a3). With the same reason, we have
p(Hs) € (n —1,a3).

Moreover, since a4 € (2,n—1), ¥3(n—1) <0, and Airﬁ@@b:;(z\) = 400,
thus ¥3()\) < ¥3(as) = 0 when A € (n — 1,03). Note that u(Hg) € (n —
1,as), thus fo(u(Hs)) = ps(u(He)) < 0. Morcover, since  lim_fa()) =

+o00, then u(Hyz) > p(Hs).

(7) (Hs) > p(Ho). Let fio(A) = A (n+11)M5-+(12n+41)M— (53n -+
55)A3 + (106n +4) A% — (94n — 26) A +29n, by equality (9a), u(Hsg) equals the
maximum root of the equation fio(A) = 0. Let ¥4()\) = fio(A) — fo(A) =
204 = (2n+10)A3+(12n+7)A2—(19n—7)A+8n, a5 denote the maximum root
of Ya()) = 0. Since 4(0) = 8n > 0, %4(1) = 6—n < 0, P4(2) = 2n—6 > 0,
Ya(n — 1) = 12 — 4n < 0, and P4(n) = n(2n? — 12n + 15) > 0, thus
n—-1l1<ag<n.

It is easy to see that fo(A) = A2=8M58y, (\) 4 v5(A) and fio(A) =
———"‘——"2"6;‘ 75 4(A) + 75(\), where y5(}) = =222+Gn=DA-dn Se=DA-%%  When A > n —
1, since (X)) = LMF"—'Q < 0, thus 15(A) < y5(n—1) = -1 < 0.
Therefore, fg(as) = flo(as) = ’75(015) < 0. Thus, /J.(Hs),[.t(Hg) S (as,n).

Moreover, since N _lir_r:ooW(/\) = 400, thus ¥4(A) > ¥s(es) = 0 when

A > os. This implies that fio(A) > fo(A) when A > as. Therefore,
#(Hs) > u(Hy).

(8) u(Ho) > u(Hio). Rewrite equality (10a) as ®(Hio,A) = A(A —
)" 7f11(A), where fi1(A) = A% — (n + 11)A5 + (12n + 42)X\* — (54n +
60)A3 + (112n + 8)A% — (104n — 30)A + 33n. Thus, u(Hip) equals the
maximum root of the equation f11(A) = 0. Let ¥5(X) = f11(A) — fro(A) =
M —(n+5)A3+(6n+4)A2—(10n—4)A+4n, and s denote the maximum root
of ¥5(X) = 0. Since 9¥5(0) =4n >0, Y5(1) =4 -n <0, ¢¥5(3) =n -6 > 0,
¥s(n—1) = 6—2n < 0 and ¥5(n) = n(n2—6n+8) > 0, thenn—1 < ag < n.

It is easy to see that fio(A) = (A2 — 6A + T)s(A) +76()) and f11(N) =
(A% = 6 + 8)yY5(A) + 76(), where 16(A) = n — 2\, Thus, fii(ce) =
fio(as) = ve(ae) = n — 206 < 0, which implies that u(Hg), u(Hio) €
(c6,m). Moreover, since N _l_i:rzoogbs(/\) = 400, thus ¥5(A) > ¥s(as) = 0

when A > a6. This implies that fi3(A) > fio(A) when A > ag. Therefore,
1(Ho) > p(Hyo).
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(9) p(Hio) > u(Hi) = p(Hy2) = p(Hiz). By equalities (11a), (12a)
and (13a), it follows that u(H11) = p(Hi2) = p(Hiz). Rewrite equality
(112) as ®(Hi1, A) = MA —1)"77 f12()), where fia(A) = A8 — (n +11)A% +
(12n + 43)A* — (55n + 65)A% + (118n + 12)A% — (114n — 36)) + 36n. Thus,
u(H11) equals the maximum root of the equation fi2(A) = 0. Let g(A) =
fi2(A) = f11(A) = A% = (n + 5)A3 + (6n + 4)A% — (10n — 6)A + 3n, and a7
denote the maximum root of ¥g(A\) = 0. Since ¥6(0) = 3n > 0, ¥e(1) =
6 —2n < 0, P6(2.8) = 0.088n — 0.1344 > 0, Yg(n—1) =4 —n < 0 and
Ye(n) =n(n? —6n+9) >0,thenn—-1< a7 <n.

It is easy to see that f1;(\) = ()\2 —6A 4+ 8)e(X) + v7(A) and fi2(A) =
(A2=6A+9)36(A)+77(}), where v7(A) = —2A3+(n+12)A2—(6n+18)A+9n.
Note that the maximum root of ¥4(A) = —6A% + (2n + 24)A — (6n + 18)
is 3 + 1. Moreover, since 3 +1 <n—1 and Aﬁrﬁw'y-’,(/\) = —o00, thus

77(A) € y7(n—1) = (n—1)n(9-n)—23n+32 < 0 when A > n—1. Therefore,
fii(er) = frz(ar) = y2(o7) < 0. Thus, p(Hio), u(H11) € (az,n).
Moreover, since N lin_;f P6(A) = +oo, thus ¥e(A) > Ye(az) = 0 when
e

A > a7. This implies that fi2(A) > f11(A) when A > a7. Therefore,
p(Hio) > p(Hu).

(10) p(Hy3) > p(Hia). Let fi3(A) = A3 = (n+3)A2+ (4n—2)A —2n, by
equality (13a), u(Hj3) equals the maximum root of the equation f13(A) = 0.
Let fi4(A) = A — (n + 7)A3 + (8n + 5)A? — (13n — 7)) + 57, by equality
(14a), u(H}4) equals the maximum root of the equation fi4(A) = 0. It is
easy to see that f14(\) = (A = 5)f13(\) + v8()), where v(A) = A3 — (n+
8)A2 + (9n — 3)A — 5n. Note that v4(}) = 3)2 — (2n + 16)A +9n — 3, and
the maximum root of yg(A) =0 is w. When A > n—1, since
n48+yP-1IndTS <y — ] and JJim_%(X) = +oo, then %(3) > 0. Thus,

when A 2 [J(Hm), f14(A) > ')’s([.t(H13)) > ’Yg(n - 1) =n-6 > 0. This
implies that u(H)3) > p(Hia).

(11) g(Hy4) > p(His). Let fis(A) = A — (n +11)A% 4 (12n + 39)A% —
(51n + 45)23 + (951 — 9)A2 — (77n — 31)A + 21n), by equality (15a), u(His)
equals the maximum root of the equation fi5(A) = 0. It is easy to see that
Fis(A) = (A2 —4X +6) f14(X) + 9 (X), where y9(A) = 1023 — (10n + 11)A2 +
(21n — 11)A — 9n. By straightly computation, 10a+11+v109a--410n+451 ;
the maximum root of v4()) = 3002 — (20n + 22)A + 21n — 11 = 0. When
A>n-—1,since 1°"+11+‘/@,’?m <n-—1and ,\E‘nlmfyg’,()\) = +00,

then y§(A) > 0. Thus, when A > p(His), fis(A) 2 vo(u(H14)) > vo(n —
1) = n — 10 > 0. This implies that u(Hi4) > p(His).

(12) u(His) > u(Hie) = p(Hiz). By equalities (16a) and (17a), it
follows that u(Hie) = u(Hi7). Rewrite equality (16a) as ®(His, A) =
AMA=1)""7f16(}), where f16(A) = A8 — (n+11)A5 + (12n + 40)\* — (52n +
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50)A3+(101n—6)A%—(86n—36)A+24n. Thus, u(Hie) equals the maximum
root of the equation fig(A) = 0. Let 7(A) = fig(A) — fis(A) =M = (n +
5)A3 + (6n + 3)A2 — (9n — 5)A + 3n, and ag denote the maximum root of
¥7(A) = 0. Since ¥7(0) =3n >0, ¥7(1) =4—-n <0, 97(2) =n -2 > 0,
Yr(n—1) =4—n < 0and ¢¥7(n) = n(n?—6n+8) > 0, thenn—1 < ag < n.
It is easy to see that fi5(A) = (A% —6A+6)7(A) +v10(A) and fi1g()\) =
(A2 — 6X + T)Y7(A) + 710()), where 110(A) = —2)3 + (2n + 3)A\% — (5n —
1)A + 3n. By straightly computation, —'ﬁﬁ’m is the maximum
root of {g(A) = —6A% + (4n + 6)A — (5n — 1) = 0. When A > n -1,
since 2nt3tvAnT-I8n318 < — 1 and R _lirgw'ym()\) —00, then v10(A) <

To(n —1) =4 —n < 0. Thus, fis(as) = fis(as) = 70(es) < 0, which
yields that u(Hs), u(He) € (as,n). Moreover, since R lir:_z ¥r(A) =
— 400

thus ¥7(A\) > ¥7(ag) = 0 when A > ag. This implies that fig(A) > fis(A)
when A > ag. Therefore, u(His) > p(Hie).

(13) u(H17) > p(His). Rewrite equality (17a) as ®(Hi7,A) = A(A —
1)*=7 f17(X), where f17(A) = A8 —(n+11)A®%+(12n+38)A% — (50n+38)A3 +
(87n —14)A2% — (64n — 24)A + 16n. Thus, u(Hi7) equals the maximum root
of the equation fi7(A) = 0. Rewrite equality (18a) as ®(His,A) = A(A —
1)"=7f15(}), where fig(}) = A® — (n+11)X% + (12n+39)M — (51n+45)X° +
(95n—10)A%2— (76n—32)A+20n. Thus, (H;s) equals the maximum root of
the equation fi5(\) = 0. Let ¥3(A) = fis(A\)—f17()) = M= (n+7)X3+(8n+
4)A%2—(12n—8)A+4n, then P5(X) = 423—(3n+21)A24+(16n+8)A—(12n—8).
When A > n—1, since ¢4 (\) = 12A2 - (6n+42)A+(16n+8) > (n—1)(6n—
54)+(16n+8) > 0, thus ¥4()) > ¢4(n—1) = (n—1)(n?-10n)+21n—25 > 0.
So when A > n —1, fig(A) — f17(A) = ¢¥s(A) > ¢¥s(n — 1) = 4 > 0. Thus,
p(Hiz) > p(His).

(14) p(His) > p(Hio). Let fig(A) = A° = (n 4+ 11)A5 + (12n + 40)A* -
(52n + 48)A3% + (99n — 10)A% — (80n — 34)A + 21n. By equality (19a),
u(Hyo) equals the maximum root of the equation fijg(A) = 0. Let g(\) =
fis(A) = f1is(A) = M — (n 4+ 3)A% +4nA2 — (4n - 2)X + n and ag denote
the maximum root of 1g()) = 0. Since %9(0) = n > 0, ¥o(3) = L2 <0,
Yo(2) =n—-4>0,9P(n—1)=2—-n < 0and Po(n) = n(n 3 4n+3) >0,
thenn —1 < ag < n.

It is easy to see that fig(A) = (A2 —8A+15)9e(A) +711()) and fie(A) =
(A2 — 8X + 16)99(A) +711()), where 711(A) = —=2A% 4 (2n 4 6)A2 — (8n —
2)A + 5n. By straightly computation, M—im is the maximum
root of ¥4, (A) = —6X2 4 (4n + 12)A — (8n — 2) = 0. When X > n — 1, since
ntstA0El < n~1and | lim 73(N) = oo, then mu(}) < m(n -

1) = 6 —n < 0. Thus, fig(as) = fie(as) = 711(a9) < 0, which implies
that u(His), u(Hig) € (ae,n). Moreover, since \ li'rz_z P9(A) = +o0, thus
. A—4+00
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¥9(X) > Yo(ag) = 0 when A > ag. This implies that fi9(A) > fis(A) when
A > ag. Therefore, u(Hig) > p(Hao).

(15) p(Hie) > u(Hzo). Rewrite equality (20a) as ®(Hazo,A) = A(A —
1)"=7 fao(A), where fao(A) = A% — (n+11)A% +(12n+41)A4 — (53n+53)A3 +
(1051 — 7)A% — (89n — 39)A + 24n. Thus, u(Hso) equals the maximum root
of the equation fao(\) = 0. Note that fag()) — fis(A) = A — (n +5)A3 +
(6n+3)A2 — (9n — 5)A + 3n = 7(A). By the proof of u(His) > pu(Hie), we
have n — 1 < ag < n, where ag is the maximum root of ¥7(A) = 0.

It is easy to see that fig(A) = (A2 — 6 + 7)¥7(A) + v3(A) and fzo(A) =
(A2 = 6+ 8)7(A) +v3()), where v3(A) = =22+ (n—1)A. Since fio(as) =
foo(as) = va(as) < 0, thus u(Hig), u(Ha2o) € (as,n). Moreover, since
\ ﬁrzm%()\) = +o00, thus 1¥7(A) > ¥7(cs) = 0 when A > ag. This implies

that fzo(A) > flg()\) when A > ag. Therefore, p,(ng) > [.L(Hzo).

(16) p(Ho) > p(Ha1) = p(Haz). By equalities (21a) and (22a), it
follows that u(Hz,) = u(Hz2). Rewrite equality (22a) as ®(Haz,A) =
MA=1)""7f21()), where fa1(A) = A8 — (n+11)A% + (12n + 41)A* — (53n +
53)A3 4 (1051 —6)A2—(90n—40)A+24n. Thus, u(Hjz) equals the maximum
root of the equation f21(A) =0. When A > n — 1, since f21(A) — f2o(A) =
AA 41 —n) > 0, thus f21(\) > fao(A). Recall that pu(Hgo), u(Hze) €
(n —1,n), then p(Hzo) > p(Hzz).

(17) p(Hz2) > p(Has) = p(Haa) = p(Hzs) = p(Hze) = p(Har).
By equalities (23a)-(27a), it follows that u(Haz) = p(Haq) = p(Hzs) =
p(Hae) = p(Har). Let fao(A) = X — (n +5)A% + (6n + 3)A? — (9n —
5)A 4+ 3n, fa3(A) = A3 — (n + 2)A% + (3n — 2)A — n. By equalities (22a)
and (23a), p(Hz2) and u(Has) equals the maximum root of the equa-
tion fao(A) = 0 and fo3(A) = 0, respectively. Clearly, fao(A) = (A —
3)f23()\) + ’}'3(/\), where ’73(/\) = -4 (n - 1))\. Since p(H23) >n-—1,
thus fao(4(H23)) = va(u(Has)) = —p(Has)(u(Has) +1—n) < 0. Moreover,
since A_l_i'niwfzg(/\) = +o0, thus p(Haz) > p(Has).

By combining equalities (1a)-(272), Lemmas 2.4-2.6 and Corollaries 2.1-
2.2, we have

Theorem 2.1 Suppose G € T, andn > 11.

(1) Then p(G) < n, the equality holds if and only if G € S(n,3).

(2) If G & S(n,3), then u(G) < p(Hy), the equality holds if and only
if G = H,, where u(H,) is the mazimum root of the equation A3 — (n +
5)A2 + (6n —2)A —4n =0.

(3) If G € S(n,3) and G ¥ H,, then u(G) < u(Hz), the equality holds
if and only if G = H,, where u(Hy) is the mazimum root of the equation
A — (n 4+ 9)A% + (10n + 23)A% — (33n + 11)A? + (41n — 10)A — 16n = 0.

(4) G & S(n,3) and G % H; (1 < i < 2), then p(G) < u(H),
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the equality holds if and only if G = H3z or G = Hy, where u(Hs) is the
mazimum root of the equation A3 — (n + 4)A? + (5n — 2)A —3n = 0.

(5) IfG&S(n,3) and G E H; (1 <i<4) then u(G) < u(Hs), the
equality holds if and only if G = Hg, where u(Hs) is the mazimum root of
the equation A°—(n+9)A*+(10n4-22)A3—(32n+8)A24(38n—12)A—14n = 0.

(6) If G & S(n,3) and G % H; (1< i < 5), then p(G) < p(H), the
equality holds if and only if G = Hg, where u(Hs) is the mazimum root of
the equation A\* — (n +7)A3 + (8n +9)A%2 — (17Tn —7)A + 8n = 0.

(M IfG & S(n,3)and GE H; (1 <i<6), then u(G) < u(Hq), the
equality holds if and only if G = H,, where u(Hy) is the mazimum root of
the equation X* — (n + 6)A% + (7n + 6)A% — (13n — 5)A 4 6n = 0.

(8) If G & S(n,3) and G 2 Hy (1 < i < 7), then (G) < u(Hs), the
equality holds if and only if G =2 Hg, where u(Hg) is the mazimum root of
the equation A\5—(n+10)A4+(11n+29)A3—(40n+16)X\24(54n—19)A—21n =
0.

(9) I/ G ¢ S(n,3) and G 2 H; (1 < i < 8), then u(G) < u(Ho), the
equality holds if and only if G = Hy, where u(Hy) is the mazimum root of
the equation A8 — (n+11)A5 + (12n+41)A% - (53n 4 55)A3 + (1061 + 4) A2 —
(94n — 26)A + 29n = 0.

(10) If G & S(n,3) and G % H; (1 < i <9), then u(G) < p(Hio), the
equality holds if and only if G = Hyo, where u(Hyo) is the mazimum root of
the equation A®—(n+8)A*+(9n+18)A3—(27n+6)A%+(31n—10)A—11n = 0.

(11) If G & S(n,8) and G % H; (1 <i<10), then u(G) < u(Hn), the
equality holds if and only if G = Hyy or G = Hyp or G & Hya, where u(Hyy)
is the mazimum root of the equation A3 — (n + 3)A2 + (dn —2)A —2n = 0.

(12) If G ¢ S(n,3) and G % H; (1 <i<13), then u(G) < u(Hyq), the
equality holds if and only if G = Hy4, where u(Hi4) is the mazimum root
of the equation A* — (n + 7)A% + (8n +5)A% — (13n — T)A+ 5n = 0.

(13) If G & S(n,3) and G % H; (1 <i<14), then u(G) < u(His), the
equality holds if and only if G = Hys, where pu(H,s) is the mazimum root
of the equation A® — (n + 11)A5 + (12n + 39)A* — (51n + 45)A3 + (951 —
9)A2 — (77n — 31)A + 21n = 0.

(14) If G ¢ S(n,3) and G ¥ H; (1 < i < 15), then u(G) < p(Has),
the equality holds if and only if G = Hg or G = H,, where u(Hjg) is the
mazimum root of the equation A —(n+6)A%+(Tn+4)A? —(11n—6)A+4n =
0.

(15) If G & S(n,3) and G % H; (1 <i<17), then p(G) < u(His), the
equality holds if and only if G = Hyg, where u(Hg) is the mazimum root of
the equation \°—(n+9)A*+(10n+21)A3—(31n+3)A24+(33n—~16)A—10n = 0.

(16) If G & S(n,3) and G £ H; (1 <i<18), then u(G) < u(Hig), the
equality holds if and only if G = Hy9, where u(Hyg) is the mazimum root
of the equation A6 — (n + 11)A5 + (12n + 40)A? — (52n + 48)A3 + (99n —
10)A% — (80n — 34)A + 21n = 0.
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(17) If G ¢ S(n,3) and G ¥ H; (1 <i<19), then u(G) < u(Ha), the
equality holds if and only if G = Hyq, where u{Hayg) is the mazimum root of
the equation A% — (n+8)X4+(In+17)A3—(26n+2)A%4+(27n—13)A—8n = 0.

(18) If G ¢ S(n,3) and G # H; (1 <1 £ 20), then u(G) < p(Ha),
the equality holds if and only if G = Hj or G = Hay, where u(Hzy) is the
mazimum root of the equation A*—(n+5)A34(6n+3)A%2—(9n—5)A+3n = 0.

(19) If G € S(n,3) and G ¥ H: (1 < i < 22), then u(G) < u(Has),
the equality holds if and only if G = Haz or G 2 Hay or G & Hps or
G = Hyg or G = Hyy, where p(Hag) is the mazimum root of the equation
N-@m+2)2%24+(B8n—2)A-n=0.
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