A MOTZKIN VARIATION ON THE TENNIS BALL PROBLEM
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ABSTRACT. We consider a variation on the Tennis Ball Problem studied by
Mallows-Shapiro and Merlini, et al. The solution to the original problem is
the well known Catalan numbers, while the variations discussed in this paper
yield the Motzkin numbers and other related sequences. For this variation, we
present a generating function for the sum of the labels on the balls.

1. INTRODUCTION

The s-tennis ball problem is the following: At first turn, you are given s balls
labelled 1,2,...,s, where s is a fixed positive integer. You toss one of them out of
the window onto the lawn. At the second turn, bells numbered s + 1,5+ 2,...,2s
are given to you and now you toss any of the 2s — 1 remaining balls onto the lawn.
At the third turn, balls numbered 2s + 1,25 + 2,..., 3s are received and then one
of the remaining balls goes out on the lawn. This process continues for n turns. At
that point, consider the combination of balls left on the lawn.

Question 1. How many different combinations of balls on the lawn are possible

after n turns?

Question 2. What is the sum of the balls on the lawn over all distinct possibilities
after n turns?

For the case when s = 2, balls labelled 1,2,3,4,5,86, ... are provided in sequence
two at a time. We write the combinations on the lawn by order of nondecreasing
labels, rather than order of arrival on the lawn. For example, the possible combi-
nation 1,2, 4 (in order of arrival after 3 turns) is the same as the combination 1,4, 2
and so we write it uniquely as 124. The 14 possibilities after n = 3 turns are:

123 124 125 126 134 135 136

145 146 234 235 236 245 246
When s = 2, the answer to Question 1 is the (n + 1)-st Catalan number,

A 1 /2n+2
T R 2\ n+1 )
while the answer to Question 2 is

2n®+5n+4(2n+1 _ gent
n+2 n !
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a result due to Mallows and Shapiro [5]. In 2002, Merlini, Sprugnoli and Verri
settled Questions 1 and 2 for all s in [6]. Jani and Zeleke provide a bijective proof
of the answer to Question 1 in [4].

In the original statement of the problem, the s balls given at turn ¢ are labelled
consecutively s(i — 1) +1,...,si — 1,si. In this paper, we consider the following
variation. Label the s balls provided in turn ¢ identically with the number i. For
example, when s = 2, after n = 3 turns, the six balls received are labelled 1, 1, 2,
2, 3, 3 and there are four possible combinations left on the lawn:

112 113 122 123

It turns out that the answer to Question 1 for this variation of the problem
when s = 2 is given by the Motzkin numbers. We call this variation of the problem
s-MTBP for Motzkin Tennis Ball problem. In section 2, we address Question 1 for
s-MTBP and in section 3, we provide an answer for Question 2.

2. s-MoTzKIN NUMBERS

The Motzkin numbers 1,1,2,4,9,21,... arise in several settings related to the
Catalan sequence. The generating function for the Motzkin numbers is

1-z2-+1-2z - 3z2
2z2 ’

They have been the subject of several papers, [1, 8, 11], and have a number of
interesting interpretations (see exercise 6.39 of [10]). There is one of particular in-
terest here. The n-th Motzkin number, m,, is the number of Motzkin paths, that is,
lattice paths from (0, 0) to (n,0) which use the step set {U(1, 1), D(1, -1), L(1,0)}
and never go below the z-axis.

Let us consider 2-MTBP. To show that m,, is the answer to Question 1, that is,
the number of distinct combinations of balls on the lawn after n turns, we exhibit
a one-to-one correspondence between Motzkin paths of length n and balls on the
lawn after n turns. To each combination of balls on the lawn, we associate a path
of length n in the following way. Each label in the combination is assigned a step
in the corresponding path. Reading a combination from left to right, if the label
appears twice, we associate an up step U(1, 1). If the label appears exactly once, we
associate a level step L(1,0). If the label does not appear, then its corresponding
step is a down step D(1, —1). See Figure 1.

11233 6—-»//\

FIGURE 1. If 11233 are the balls left on the lawn after n = 5 turns,
then the corresponding Motzkin path of length 5 is ULUDD.

Since there are exactly n balls on the lawn after n turns, whenever some label ¢
is repeated on the lawn, there must be some label j > ¢ which does not appear on
the lawn. Thus, in the corresponding path, we guarantee that for every U there is
a corresponding D. Furthermore, since at least one ball must be tossed out at each
turn, the number of D’s will never exceed the number of preceding U’s. Hence, the
path ends at (n,0) and never goes below the z-axis. In other words, the path is a
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Motzkin path. Conversely, by the same scheme, every Motzkin path corresponds
uniquely to a combination of balls on the lawn.

Now, we can generalize this correspondence to determine the number of balls
on the lawn after n turns for any fixed positive number s of balls received at each
turn. We do this in the following way. In general, when reading each label in the
combination from left to right, if the label appears exactly | times, then associate
the up step U(1,! — 1). If a label that does not appear, we associate the down step
D(1, -1). If a label which appears just once, we associate a level step L(1,0). To any
label which appears more than once, we associate an up step of the form U(1,1-1).
By the same argument as above, we have a one-to-one correspondence between the
set of all combinations of balls on the lawn and the set M2 of paths from (0, 0) to
(n,0) which use the step set {(1,-1),(1,0),(1,1),(1,2),...,(1,5—1)} and never go
below the z-axis. We shall call these paths s-Motzkin paths [see [3),{12]]. Therefore,
by answering Question 1 we have the following thereom:

Theorem 1. The set possible sequences for s-MTBP is in bijective correspondence
with the set M2 of s-Motzkin paths. Furthermore, the generating function for the
s-Motzkin paths, M,(z) = Y oo, M3z" satisfies the following recurrence:
(1) My(2) = 1+ zMy(2) + 22M2(2) + ... + 22 M2+ (2).
O
Notice that 2-Motzkin paths are the same as the standard Motzkin paths.

3. A FORMULA FOR THE SUM SEQUENCE

The sum of the possible sequences for the 2-MTBP after n turns begins 1, 5, 20,
74, 259 as verified by hand calculation. A generating function for this sequence is
given in this section. We first present the following theorem which relates the balls
on the lawn sequence for 2-MTBP to the area under the associated Motzkin path.

Theorem 2. Let a be a Motzkin path of length n and let a(c) be the area under
o. Then

(2) a(a) = Z(l - ai):

i=1
where a; is the it" entry of the balls on the lawn sequence corresponding to a.

For example, in Figure 1 recall that the path o corresponds to sequence 11233.
Using (2) to compute a{a) for this path we have the following:

ala)=(1-1)+(2-1)+(3-2)+(4-3)+(5-3)=5

Proof. We proceed by induction on n. When n = 1, the theorem is true since the
only Motzkin path a of length one has balls on the lawn sequence 1, and (1-1) =0
is the area under a. We assume the statement is true for Motzkin paths of length
k or less, where k > 1, and show that it is also true for Motzkin paths of length
k + 1. Suppose « has length k£ + 1. Either « ends with a horizontal step or & ends
with a down step.
Case 1: a ends with a horizontal step

Suppose o ends with a horizontal step. Then the final label in its balls on the
lawn sequence is £+1, that is, ax4y = k+1. Let 8 be the path of length & obtained
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(0,0) (z-1,0) (k+1,0)
FIGURE 2. A Motzkin path « of length k 4+ 1 ending with a down
step and partitioned into subpaths 8 and ~.

by deleting the final horizontal step of a. Then
a(B)

k
PN CE:))

i=1

a(e)

k
= Z(i-ai), sinceV1<i<k, Bi=os

i=1

k
= (Z (i—- o:,-)) +(k+1) - ors1, sinceary=k+1
i=1
k+1
= Z (G- ay)
i=1
Case 2: a ends with a down step
Suppose « ends with a down step. Then there exists an up step in a which goes
from height zero to height one. Let = denote the position of the last such up step in
a. Let 3 denote the subpath of a starting at the origin and ending at position z —1.
Let v denote the Motzkin path associated with the subpath starting at position z+1
and ending at position & of a. See Figure 2. Clearly, a(a) = a(8) +a(y)+k+1-z.
We will use the induction hypothesis to determine the area under § and 4. Since
Bi=a;foralli=1,...,z — 1, computing a(B) is straightforward. To determine
a(y), we need its balls on the lawn sequence 172+ * Vkoz-
First, consider the (elevated) Motzkin path v* obtained by deleting 8 from a.
To obtain the balls on the lawn sequence for this path, subtract (z — 1) from each
of the labels a;, for i = z,...,k + 1.

o —(—1),az41 - (z—1),0542— (- 1),..., 0541 — (x = 1)

To obtain the balls on the lawn sequence for <y, remove the first two labels 11 from
the balls on the lawn sequence for 4*, then subtract 1 from each remaining label in
~*. So we have

ozi2—(Z-1)=-liagys—(z-1)-1,...,ak41 - (z-1) -1
or equivalently,
Qp42 =Ty Qg3 —Tyooo), Okl =T
Hence, 7; = az+14i — 2, fori=1,...  k—=.
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Now,
a(e) = a(@)+a(y)+k+1-z

1 k—zx
i-— ai) + (Zz- (ozs14i —z)) +k+1-
= z=1 k—z
-

k—z
z)+( i+z)+k+l—z
i=1 i=1

Yo (Biere) koo [(8a) -ou-on]

i=1 =1

k—zx k+1
z) + (Ez+:c) +k+1+z- (Za.-) , since oy = Qpyy =z

i=1 i=1 i=1
x

(5 (% ) ()

To complete the proof, it suffices to show that
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With straightforward algebraic manipulation, indeed, we see that

T k—z4+1
(Zi)+(ii+x) = z(I;1)+(k°x+1)2(k—x+2)+z(k—z+1)
i=1

i=1 .
(k—z+1)k+z+2)+2(x+1)
- 2
k? + 3k +2
2
(k+1)(k+2)
2

k+1

= Y i

i=]

Using Theorem 2, we rewrite Eq. (2) as

® a(a) = Zz - Zai

i=1 i=1
and to find the the cumulative area of all Motzkin paths of n steps, A,, we find
a(c) for each path then sum over the m, paths. Thus, the left side will correspond
to the difference between my, copies of 3., ¢ and the cumulative sum of the balls
on the lawn, S,. Solving for S,, we have

(4) Sp =m, - (iz) = An,

i=1

which leads to the following theorem.
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Theorem 3. For the 2-MTBP, let S, be the sum of the balls on the lawn over all
distinct possibilities after n turns, then

© w3 ) - An

where m,, is the nt* Motzkin number and A, is the total area under all Motzkin
paths with n steps.

In [2], Banderier provided the generating function for A,, whose first few terms
are 0,1, 4,16, 56,190, 624,2014, ... In [9], we find that

ZA _z +2a:—1+(1—:c)\/(z+1)(1—3:c

2 2223z — 1)(z + 1)

We can now determine the generating function for the sum of the balls on the lawn
8(2) = Ynlo Snz", since

5@ = S ("3 -3 A

n=0 n=0

d (22M'(2)
= 4 (D) -0
22M"(z) = 2zM'(2)

A(z) =

= 2 + 2 - A(2)
_ 171 1-32-322432%\ 22+20-1+(1-2)/(z+1)(1-3z)
T 2\z?  z2(1 -2z - 3x2)3/2 2z2(3z — 1)(z + 1)

VIi=3z—3z2-1
(z + 1)(8z — 1)v/1 — 2z — 32
z + 5z + 2023 + 74z* + 259z° + 881z° + 293227 + 9614z® + O(z?)

It is cumbersome, but not difficult, to show that Theorem 3 extends to s-Motzkin
paths as well. While we omit the details, we note that the proof follows the same
format as that of Theorem 3. Since the relationship between area under s-Motzkin
paths and the sum of the labels of the balls for s-MTBP is exactly the same as it
is for the case when s = 2, one can always produce a generating function for the
sum sequence in s-MTBP given a generating function for the area under s-Motzkin
paths.

4, CONCLUSIONS AND OPEN QUESTIONS

In [6], Merlini, et al. treat a variant of the s-TBP called the (4,2)-TBP which
supplies 4 balls at each turn but now throws out 2 at a time. In (7}, Mier and
Noy, provide a solution to the generalized (s,t)-TBP. This leads to a question not
addressed in this paper, e.g., what is the (s,t)-MTBP analagous result?

Furthermore, this paper examines a family of sequences related to the Motzkin
numbers. A natural question is: “What other pertubations can be made to the
original Tennis Ball Problem that will lead to other well known lattice path sequence
bijections, in particular the small and large Schroder numbers?”

In the case of the small Schroder numbers, s, «— 1,3,11,45, ..., we proceed as we
did in the original statement of the problem in section 1 with odd numbered balls
being two sided, i.e., one side is heads and the other side tails. So at each turn two
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consecutive balls are added one of which will be two sided and one ball is thrown
on the lawn. The 11 possibilities after n = 2 turns are as follows:
12 i2 13 13 i3 i3
14 14 23 23 24
To show this pertubation yields the Schréder numbers, i.e. answers Question 1, con-
sider the following Schréder Dyck paths: The n-th Schroder number, s,, is the num-
ber of lattice paths from (0,0) to (2n, 0) which use the step set {U(1, 1), D(1, -1)}
and never go below the z-axis and up steps at even heights can be one of two colors,
i.e. black and red. We establish a o bijection between these paths and the Schroder
Tennis Ball Problem (STBP) in the following way. Each label 1,...,2n is assigned
a step in the correpsonding path of length 2n + 2. Each path begins with an up
step then the labels on the balls dictate the next 2n steps in the path and the path
ends with a down step. For each STBP sequence, reading from left to right, the
label will indicate an up step. The type of up step is determined by whether the
label is odd or even as follows:
(1) If odd, the label will be heads or tails, associate black with heads and green
with tails to decide which color up step to use.
(2) If even, it is not a two sided ball, we associate a black up step.

If the label does not appear, then its corresponding step is a down step. See Figure 3

234 —
', \‘

’ N

FIGURE 3. If 234 are the balls left on the lawn after n = 3 turns,
then the corresponding Schréer path of length 8 is UDUUUDDD.

At each turn, there are n balls on the lawn so for some label 7, there must be
some label j > ¢ which does not appear on the lawn. Thus, in the corresponding
path of 2n + 2 for each U there is a corresponding D. So conversely, by the same
scheme each path corresponds uniquely to a STBP sequence.

In STBP, the relationship between the labels of a valid combination and the area
under the corresponding path does not appear to mimic that which we see in the
MTBBP, as it is no longer even obvious how to “sum” labels. However, one wonders
if there is a way to characterize the relationship between area and labels in such
a way that one can quantify the expected “value” of the labels for arbitrary n in
STBP.
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