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Abstract

In (1], Hosam Abdo and Darko Dimitrov introduced the total
irregularity of a graph. For a graph G, it is defined as

irre(G) = § Lo vev [do(u) = da(v),

where dg(u) denotes the vertex degree of a vertex u € V(G). In this
paper, we introduce two transformations to study the total irregular-
ity of unicyclic graphs, and determine the graph with the maximal
total irregularity among all unicyclic graphs with n vertices.

Keywords: total irregularity of a graph; irregularity of a graph; uni-
cyclic graph.

1 Introduction

Let G = (V, E) be a simple undirected graph with vertex set V and
edge set E. For any vertices u,v € V, the degree of v is denoted by dg(v),
the distance dg(u,v) is defined as the length of the shortest path between
vand v in G. Let P,, C, and S, be the path, cycle and star on n vertices,
respectively.
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A graph is regular if all its vertices have the same degree, otherwise
it is drregular. Several approaches that characterize how irregular a graph
is have been proposed. In [4], Alberson defined the imbalance of an edge
e=uv € E as |dg(u) — dg(v)| and the irregularity of G as

irr(G) = 3 lde(u) — de(v)l. (1)
wveE

More results on imbalance, the irregularity of a graph G can be found in
(2]-(6], (8], [10]-[13].

Inspired by the structure and meaning of the equation (1), Abdo and
Dimitov [1] introduced a new irregularity measure, called the total irregu-
larity. For a graph G, it is defined as

irr(G) = 3 Zé |da(x) — de(v)|. (2)
u,v

Although two irregularity measures capture the irregularity only by a
single parameter, namely the degree of a vertex, the new measure is more
superior than the old one in some aspects. For example, (2) has an expect-
ed property of an irregularity measure that graphs with the same degree
sequences have the same total irregularity, while (1) does not have. Both
measures also have common properties, including that they are zero if and
only if G is regular. Obviously, irry(G) is an upper bound of irr(G). In [9],
the authors derived a relation between irry(G) and irr(G) for a connected
graph G with n vertices, that is,

irre(G) < n2%irr(G)/4.
Furthermore, they showed that for any tree T
irre(T) < (n — 2)-irx(T).

In [1], the authors obtained the upper bound of the total irregularity
among all graphs with n vertices, and they show the star graph S, is the
tree with the maximal total irregularity among all trees with n vertices.

Theorem 1.A. ([1]) Let G be a simple, undirected graph on n vertices.
Then irre(G) < {5(2n® — 3n? — 2n 4 3).

Theorem 1.B. ([1]) Let G be a tree on n vertices. Then
irrg(G) £ (n—1)(n —2),
with equality holds if and only if G = S,,.

In this paper, we will consider the total irregularity of unicyclic graphs
by introducing two transformations in Section 2, and determine the graph
with the maximal total irregularity among unicyclic graphs with n vertices
in Section 3.
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2 Transformations

In this section, we introduce two transformations which are important
to our main results.

Let n, 7 be integers and 3 < r < n. Let G(n,r) be the set of all unicyclic
graphs with n vertices in which the fundamental cycle C, has r vertices. A
rooted graph has one of its vertices, called the root, distinguished from the
others. Let T1,T,...,Tx be k rooted trees with |V(T})] > 2 (1 <i < k)
and roots wy, wo, . .., Wk.

Define G(n,r,0) = C,. For 1 < k < r < n, define G(n,r,k) be an
unicyclic graph on n vertices obtained from C,, T1,T3,..., T by attaching
k rooted trees T3, T3,...,T; to k distinct vertices of the cycle C,, that is,
G(n,r, k) is an unicyclic graph on n vertices by identifying some vertex of
C: with the root w; of T; for each i(1 <7 < k).

Let P* = {P|P is a rooted path and the root is its starting vertex},
S§* = {S|S is a rooted star and the root is its center}. For a path P € P*
and a star S, the rooted graph P + S is obtained by identifying the end
vertex of P with the center of S and the root of P + S is the root of P.
Define PS* = {P + S|P € P* and S is a star}.

2.1 o— transformation

Let n,r, k be integers with » >3 and 1 <k <r < n. Let Gy(n,r,k) be
the set of G(n,r, k) that obtained from C, and rooted trees T3, T5,..., T}
by identifying the roots of T}, T3,...,Tk, wy,ws,...,wk, with k distinct
vertices of C(see Fig.1), where T; € PS* US* for any i € {1,2,--- ,k}.

<

Fig.1. A graph in G,(n,r, k) with rooted tree T} € PS*, T3,--- , T, € S*

o-transformation: Let G(n,r, k) be defined as above, if G(n,r, k) ¢
Gi(n,r,1). Without loss of generality, let v € V/(T) be one of the maximal
degree vertices of G(n,r, k) and z be any pendent vertex of G(n, r, k) which
is adjacent to vertex y(y # u). G’ is obtained from G(n,r,k) by deleting
the pendent edge zy and adding a pendent edge uz(see Fig.2).
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Fig.2. a-transformation
Lemma 2.1. Let G’ be the graph obtained from G(n,r, k) by a-transformation.
Then irre(G(n,r, k)) <irry(G').

Proof. For convenience, let G = G(n,r, k). Note that after a-transformation,
only the degrees of u and y have been changed, namely, dg:(u) = dg(u)+1,
de(y) = de(y) — 1 and dgr(z) = de(zx) for any z € V\{x,y}. Thus, we
have

iI'I'; (GI) —irl‘; (G)
=lde(v)—da W)+ ¥ lde(w)—de()|l+ Y |do(y)—de ()

zeV\{u,y} z€V\{u,y}
—(de(v)—de()|+ 3 lde(w)—de(x)l+ 3 lde(y)—de(z)))
zeV\{u,y} zeV\{u,y}

= (ldg' (u) - de(y)| - ldo(u) — da(y)|)

+ ¥ (ldo(u) - do(z)| — |do(u) — da(z)])
zeV\{u,y}

+ Y (ldo'(y) — do(z)] — lde(y) — de(z)))-
zeV\{u,y}

Note that
lde (v) = dar (y)| = lde(v) — de(y)| =2,
> (lde'(v) — do(z)| — lde(u) — da(z)]) =n -2,

zeV\{u,y}
>, (lda'(y) — do(2)| - lde(y) — de(2)]) 2 —(n —2)
zeV\{u,y}
. _ | -1, ifa>0,
because of for any integer a, |a — 1| — |a| = 1, ifa<o.

Thus, we have irre(G')—irre(G) 22+ (n—2)+ (-n+2)=2>0. O

By the proof of Lemma 2.1 and the definition of a-transformation, we
have
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Lemma 2.2. Let G(n,r,k) be defined as above, G, be the graph obtained
from G(n,r k) by repeating a-transformation, and we cannot get other
graph from Gy by repeating a-transformation. Then

(1) G, e Gl(n, 7‘,1).

(2) irre(G) <irry(G1), and the equality holds if and only if G = G,.

2.2 (- transformation

Define Gy;(n,r,1)={G(n,r,1) € G1(n,r,1)| the unique rooted tree T
of G(n,,1) belongs to PS*} and Gia2(n,r,1)={G(n,r,1) € G1(n,r,1)| the
unique rooted tree T of G(n,r,1) belongs to S*}.

u

u
v Vu v
C. N \ 2 Uag
U Uy

(a) a graph in Gy;(n,n,1) (b) a graph in Gi3(n,7,1)

Fig.3. Two graphs in G1(n,n,1)

B-transformation: Let G(n,r,1) € Gy3(n,7,1), v be the root of T,

u be the maximal degree vertex of G(n,r,1) and u;, ug, ..., u {t 2 2) be
the pendent vertices adjacent to u, where ¢t = degg(n,r,1)(¢) — 1. G'(n,7,1)
is obtained from G(n,r,1) by deleting the pendent edges uu,, uu,, ..., vu;

and adding pendent edges vuy, vug, ..., vu(see Fig.4).

uy

C,. v e u/ ’%] >

3
G(n,r,1) G'(n,r1)

Fig.4. S-transformation

Lemma 2.3. Let G(n,r,1) be defined as above, G'(n,r,1) be the graph
obtained from G(n,r,1) by B-transformation as above. Then
irre(G(n,r, 1)) <irry(G'(n,1,1)).

Proof. For convenience, let G = G(n,r,1) and G’ = G'(n,,1). Note that
only the degrees of © and v have been changed after B-transformation,
namely, der(u) = 1, dgr(v) = dg(v) + dg(u) — 1 and dg/(z) = dg(z) for
any vertex £ € V\{u,v}. Thus, we have
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ldgr (u) — dgr (v)| — |da(u) — dg(v)| = 2dg(v) - 2, (2.1)
Y lde(w)—da(2)| - X lde(u) —de(z)l

z€V\{u,v} zeV\{u,v}
= ) [(del(z) —1) - (dg(v) — da())]
z€V\{u,v}
=2 3 dg(z) - (n-2)(de(u) +1), (2.2)
z€V\{u,v}

and for any z € V\{u, v}, dg(v) > dg(z), therefore

> lde(w)—de(@) - 3> lde(v) —de(2)|

z€V\{u,v} zeV\{u,v}

= Y [de(v) +de(u) — 1 -dg(z)) - (do(v) — de(z))]
z€V\{u,v}

= (n - 2)(de(v) — 1). (2.3)

From (2.1)-(2.3), we have
irry(G')—irr(G)
= 2dg(v)—2+42 eV\Z{ }dc;(z) —(n-2)(de(u)+1)+(n—2)(da(u)-1)

=2 ¥ de(z)-(n-1)
zeV\{u}
> 0. ad

3 The maximal total irregularity of unicyclic
graphs

In this section, the maximal total irregularity of unicylic graphs and
the extremal graph are determined.
Let G € Gj2(n,r,1) and u be the maximal degree vertices of G. By
simple calculation, we have
i (G) = Y }|dg(u) —dg(z)|

zeV\{u
+ X > lde(v) —do(z)|
veV(C\{u} zeV\{u,v}

= (n—r+2-2)(r—1)+(n—r+2-1)(n—r)+(2-1)(n—r)(r-1)
=(n—-r){n+r-1).

Theorem 3.1. Letn,r be positive integers with3 <r < n—1, G € G(n,7).
Then irr(G) < (n — r)(n+ r — 1), the equality holds if and only if G €
Gia(n,7,1).
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Proof. If G & G12(n,r,1), G is obtained from G by repeating a-transformation
and we cannot get other graph from G; by repeating a-transformation,
then Gy € Gy(n,r,1) and irry(G) <irre(G;) by Lemma 2.2. Let u be the
maximal degree vertices of G;.

Case 1: u e V(C,).

Then G; € Giz2(n,r,1), and irr(G) <irry(Gh) = (n—r)(n+r —1).
Case 2: u ¢ V(C,).

Then G, € Gy;(n,r,1) and dg, (u) > 4. Let G, be the graph obtained
from G, by B-transformation, therefore irri(G,) <irr¢(Gz) by Lemma 2.3.
If dg,(v,u) = 1, then G € Gy3(n,7,1) and irry(G) <irry(Gq) = (n —
rY(n+r —1). If dg,(v,u) > 1, then let G5 be the graph obtained from
G by repeating (dg, (v, u) — 1) times o-transformations. Obviously, G5 €
Gy2(n,r,1) and irr(Gs) <irry(G3) by Lemma 2.2. Thus

irre(G) <irre(Gh) <irre(Ge) <irrg(Gs) =(n~r)(n+7 - 1).

Combining the above arguments, irre(G) < (n — r)(n + r — 1) for any

G € G(n,r), and the equality holds if and only if G € Gy3(n,r,1). |

Let n be a given positive integer, and f(r) = (n — r)(n + r — 1), then
f'(r) =1-2r < 0 when 3 £ r £ n—1. Hence, f(r) is a decreasing function
when 3 <7 < n— 1. Moreover irr¢(C,) = 0, thus we immediately have

Theorem 3.2. Let G be an unicyclic graph with n vertices. Then
irrt(G) < n?—n-— 6,

and the equality holds if and only if G € Gy2(n, 3, 1) (see Fig.5).

Fig.5. A graph in Gy3(n,3,1)
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