On the Dynamic Coloring of Cartesian Product Graphs *[†]

S. AKBARI^{b,a}, M. GHANBARI^a, and S. JAHANBEKAM^a

^aDepartment of Mathematical Sciences, Sharif University of Technology ^bSchool of Mathematics, Institute for Research in Fundamental Sciences (IPM)

s_akbari@sharif.edu marghanbari@gmail.com sowkam305@gmail.com

Abstract

Let G and H be two graphs. A proper vertex coloring of G is called a dynamic coloring, if for every vertex v with degree at least 2, the neighbors of v receive at least two different colors. The smallest integer k such that G has a dynamic coloring with k colors denoted by $\chi_2(G)$. We denote the cartesian product of G and H by $G \square H$. In this paper, we prove that if G and H are two graphs and $\delta(G) \geq 2$, then $\chi_2(G \square H) \leq \max(\chi_2(G), \chi(H))$. We show that for every two natural numbers m and n, m, $n \geq 2$, $\chi_2(P_m \square P_n) = 4$. Also, among other results it is shown that if 3|mn, then $\chi_2(C_m \square C_n) = 3$ and otherwise $\chi_2(C_m \square C_n) = 4$.

1. Introduction

Let G be a graph. We denote the edge set and the vertex set of G, by

^{*} Key Words: Dynamic coloring, Cartesian product of graphs.

^{†2000} Mathematics Subject Classification: 05C15, 05C38.

E(G) and V(G), respectively. The number of vertices of G is called the order of G. A proper vertex coloring of G is a function $c:V(G)\longrightarrow L$, with this property: if $u, v \in V(G)$ are adjacent, then c(u) and c(v) are different. A vertex k-coloring is a proper vertex coloring with |L|=k. The smallest integer k such that G has a vertex k-coloring is called the *chromatic* number of G and denoted by $\chi(G)$. A proper vertex k-coloring of a graph G is called *dynamic* if for every vertex v with degree at least 2, the neighbors of v receive at least two different colors. The smallest integer k such that G has a dynamic k-coloring is called the dynamic chromatic number of G and denoted by $\chi_2(G)$. Recently, the dynamic coloring of graphs has been studied by several authors, see [1], [2], [3]. For any $v \in V(G)$, $N_G(v)$ denotes the neighbor set of v in G. Let c be a proper vertex coloring of G. For any $v \in V(G)$, we mean $c(N_G(v))$ the set of all colors appearing in the neighbors of v in G. In this article, P_n and C_n denote the path and cycle of order n, respectively. In the proof of our results we need the following lemma.

Lemma 1. [4, p.5] Let $n \geq 3$ be a natural number. Then we have,

(i)
$$\chi_2(P_n) = 3$$

(ii)
$$\chi_2(C_n) = \begin{cases} 3 & 3 \mid n \\ 4 & 3 \nmid n, \ n \neq 5 \\ 5 & n = 5 \end{cases}$$

Let G and H be two graphs. We recall that the *cartesian product* of G and H, $G \square H$, is a graph with the vertex set $V(G) \times V(H)$ such that two vertices (u,v) and (u',v') are adjacent if and only if u=u' and $vv' \in E(H)$ or v=v' and $uu' \in E(G)$. Clearly, $\Delta(G \square H) = \Delta(G) + \Delta(H)$. For any $(u,v) \in V(G \square H)$, $N_{G \square H}((u,v))$ denotes the neighbor set of (u,v) in $G \square H$.

In the next theorem, we provide an upper bound for the dynamic chromatic number of cartesian product of two graphs.

Theorem 1. Let G and H be two graphs. If $\delta(G) \geq 2$, then $\chi_2(G \square H) \leq$

 $\max(\chi_2(G),\chi(H)).$

Proof. Suppose that there are dynamic coloring $c_1:V(G)\longrightarrow\{1,\ldots,\chi_2(G)\}$ and the vertex coloring $c_2:V(H)\longrightarrow\{1,\ldots,\chi(H)\}$. Assume that $k=\max(\chi_2(G),\chi(H))$. For every $u\in V(G)$ and $v\in V(H)$, define a vertex coloring $c:V(G\square H)\longrightarrow\{1,\ldots,k\},\ c((u,v))\equiv c_1(u)+c_2(v)\ (mod\ k)$. Now, we claim that c is a dynamic coloring of $G\square H$. Clearly, c is a proper coloring. Moreover, for every vertex $u\in V(G),\ |c_1(N_G(u))|\geq 2$. Thus for every vertex $(u,v)\in V(G\square H),\ |c(N_{G\square H}((u,v)))|\geq 2$ and the proof is complete.

Theorem 2. For every two natural numbers m and n, $m, n \geq 2$, we have $\chi_2(P_m \Box P_n) = 4$.

Proof. Let $V(P_m) = \{u_1, \ldots, u_m\}, V(P_n) = \{v_1, \ldots, v_n\}$ and $G = P_m \square P_n$. First note that since $\Delta(G) \geq 2$, $\chi_2(G) \geq 3$. We claim that $\chi_2(G) \geq 4$. To the contrary, assume that $\chi_2(G) = 3$. Consider a dynamic 3-coloring c of G. With no loss of generality we can assume that $c((u_1, v_1)) = 1$ and $c((u_2,v_1))=2$. Also, since $N_G((u_1,v_1))=\{(u_1,v_2),(u_2,v_1)\}$ and c is a dynamic coloring of G, $c((u_1, v_2)) = 3$. Now, $\{2,3\} \subseteq c(N_G((u_2, v_2)))$ and so $c((u_2, v_2)) = 1$. Also, since $N_G((u_2, v_1)) = \{(u_1, v_1), (u_2, v_2), (u_3, v_1)\}$ and the dynamic property holds for $(u_2, v_1), c((u_3, v_1)) = 3$. Now, $\{1, 3\} \subseteq$ $c(N_G((u_3,v_2)))$ and so $c((u_3,v_2))=2$. By repeating this procedure, we conclude that the colors of the vertices $(u_1, v_1), \ldots, (u_m, v_1)$ are $1, 2, 3, 1, 2, 3, \ldots$ and the colors of the vertices $(u_1, v_2), \ldots, (u_m, v_2)$ are $3, 1, 2, 3, 1, 2, \ldots$, respectively. Since $N_G((u_m, v_1)) = \{(u_{m-1}, v_1), (u_m, v_2)\}$ and also $c(u_{m-1}, v_1) =$ $c(u_m, v_2)$ we have $|c(N_G((u_m, v_1)))| = 1$, a contradiction. So $\chi_2(G) \geq 4$. Now, we claim that the function $c:V(G)\longrightarrow \{1,2,3,4\}, c((u_i,v_i))\equiv$ $i+2j \pmod{4}$ is a dynamic 4-coloring of G. Since a pair of adjacent vertices is as (u_i, v_j) and (u_{i+1}, v_i) or (u_i, v_j) and (u_i, v_{i+1}) for some i, j, cis a proper coloring of G. In order to see that c is a dynamic coloring, it suffices to show that in the vertices of each subgraph isomorphic to C_4 of G, four different colors are appeared. Clearly, the vertices of each subgraph

isomorphic to C_4 of G, are $(u_i, v_j), (u_i, v_{j+1}), (u_{i+1}, v_{j+1})$ and (u_{i+1}, v_j) , for some i, j. We have $c((u_i, v_j)) \equiv i + 2j, c((u_i, v_{j+1})) \equiv i + 2j + 2, c((u_{i+1}, v_j)) \equiv i + 2j + 1$ and $c((u_{i+1}, v_{j+1})) \equiv i + 2j + 3, \mod 4$. Obviously, these four colors are different and so c is a dynamic 4-coloring of G and the claim is proved. Thus for every two natural numbers m and n, $m, n \geq 2, \chi_2(P_m \square P_n) = 4$.

In the following theorem, we obtain the dynamic chromatic number of the cartesian product of C_m and P_n .

Theorem 3. For every two natural numbers m and $n \ (m \ge 3)$,

$$\chi_2(C_m \square P_n) = egin{cases} \chi_2(C_m) & n=1 \ 3 & 3 \mid m \ 4 & otherwise \end{cases}$$

Proof. Let $V(C_m) = \{u_1, ..., u_m\}, V(P_n) = \{v_1, ..., v_n\} \text{ and } G = C_m \square P_n$. If n=1, then $G\simeq C_m$ and the assertion is trivial. So we can assume that $n \neq 1$. Since $\Delta(G) \geq 2$, $\chi_2(G) \geq 3$. If 3|m, then by Lemma 1 and Theorem 1, we conclude that in this case, $\chi_2(G) = 3$. Now, suppose that $3 \nmid m$ and $m \neq 5$. By Theorem 1, $\chi_2(G) \leq 4$. We claim that in this case, $\chi_2(G) = 4$. To the contrary, assume that $\chi_2(G) = 3$. Consider a dynamic 3-coloring c of G. Since $3 \nmid m$, by Lemma 1, $\chi_2(C_m) \geq 4$. Thus, there exists a vertex in the first copy of C_m in G, say (u_1, v_1) , for which the dynamic property does not hold. With no loss of generality assume that $c((u_1, v_1)) = 1$ and $c((u_2, v_1)) = c((u_m, v_1)) = 2$. Since the dynamic property holds for (u_1, v_1) in G, $c((u_1, v_2)) = 3$. Also, since $\{(u_2, v_1), (u_1, v_2)\} \subseteq N_G((u_2, v_2))$ and $\{(u_m, v_1), (u_1, v_2)\} \subseteq N_G((u_m, v_2)), c((u_2, v_2)) = c((u_m, v_2)) = 1.$ Moreover, since c is a dynamic coloring of G, $c((u_1, v_3)) = 2$. By repeating this procedure, we conclude that $|c(N_G((u_1, v_n)))| = 1$, a contradiction. So, in this case $\chi_2(G) = 4$. Now, suppose that m = 5. Since $n \neq 1$, then for every odd number $j, 1 \leq j \leq n$, define $c((u_1, v_j)) = 1, c((u_2, v_j)) =$

2, $c((u_3, v_j)) = 3$, $c((u_4, v_j)) = 4$, $c((u_5, v_j)) = 2$ and for every even number j, $1 \le j \le n$, define $c((u_1, v_j)) = 3$, $c((u_2, v_j)) = 1$, $c((u_3, v_j)) = 2$, $c((u_4, v_j)) = 1$, $c((u_5, v_j)) = 4$. Clearly, this provides a dynamic 4-coloring of $C_5 \square P_n$ and so $\chi_2(C_5 \square P_n) \le 4$. By a similar argument, as we did before, we have $\chi_2(C_5 \square P_n) \ge 4$. Hence, $\chi_2(C_5 \square P_n) = 4$ and the proof is complete.

Theorem 4. Let G be a graph and $m \ge 3$ be a natural number. Then the following hold:

(i) If $3 \mid m$, then $\chi_2(C_m \square G) = \max\{3, \chi(G)\}.$

(ii) If
$$3 \nmid m$$
 and $\chi_2(G) = 3$, then $\chi_2(C_m \square G) = \begin{cases} 3 & \delta(G) \geq 2 \\ 4 & \delta(G) = 1 \end{cases}$

(iii) If $3 \nmid m$ and $\chi_2(G) > 3$, then $\chi_2(C_m \square G) \geq 4$. Moreover, if G is a bipartite graph with no isolated vertex, then $\chi_2(C_m \square G) = 4$.

Proof. Let $V(C_m) = \{u_1, \ldots, u_m\}$, $V(G) = \{v_1, \ldots, v_n\}$ and $H = C_m \square G$. For every $i, 1 \le i \le m$, call the *i-th* copy of G in H, by G_i .

- (i) Note that by Theorem 1, $\chi_2(H) \leq \max(3, \chi(G))$. Moreover, since $\Delta(H) \geq 2$ and G is a subgraph of H, $\chi_2(H) \geq \max(3, \chi(G))$. So $\chi_2(H) = \max(3, \chi(G))$.
- (ii) If $\delta(G) \geq 2$, then using Theorem 1, $\chi_2(H) = 3$. Now, assume that $\delta(G) = 1$. First we prove that $\chi_2(H) \leq 4$. If $m \neq 5$, then by Theorem 1, $\chi_2(H) \leq 4$. Now, suppose that m = 5. We can assume that G is a connected graph. Let $c_1: V(G) \longrightarrow \{1,2,3\}$ be a dynamic 3-coloring of G. For every vertex (u_i,v_j) , $1 \leq i \leq 5$ and $1 \leq j \leq n$, define the vertex 3-coloring c of H as follows:

 $c((u_i,v_j))=c_1(v_j)+i \pmod 3$. Since c_1 is a dynamic coloring of G, for every vertex (u,v) in H with $d_G(v)\geq 2$, the dynamic property holds for this vertex in H. Also, clearly for every $2\leq i\leq 4$ and $1\leq j\leq n$, $|c(N_H((u_i,v_j)))|\geq 2$. Now, for every $j,1\leq j\leq n$, if $d_G(v_j)=1$, then we change the colors of vertices (u_2,v_j) and (u_4,v_j) to 4. Since G has

no two adjacent vertices of degree one, the new coloring is still a proper coloring, moreover the dynamic property holds for every vertex of H and so $\chi_2(H) \leq 4$. Now, it suffices to prove that $\chi_2(H) \geq 4$. To the contrary, suppose that c is a dynamic 3-coloring of H with colors $\{1,2,3\}$. With no loss of generality let $v_1 \in V(G)$ be a vertex of G such that $N_G(v_1) = \{v_2\}$, $c((u_1,v_1)) = 1$ and $c((u_1,v_2)) = 2$. Since the dynamic property holds for (u_1,v_1) in H, with no loss of generality we may assume that $c((u_2,v_1)) = 3$. Now, $\{2,3\} \subseteq c(N_H((u_2,v_2)))$ and so $c((u_2,v_2)) = 1$. Similarly, since the dynamic property holds for (u_2,v_1) in H, $c((u_3,v_1)) = 2$. Now, $\{1,2\} \subseteq c(N_H((u_3,v_2)))$ and so $c((u_3,v_2)) = 3$. By repeating this procedure, we conclude that $c((u_4,v_1)) = 1$, $c((u_5,v_1)) = 3$, $c((u_6,v_1)) = 2$,... Now, if $c((u_m,v_1)) = 3$, then $c(N_H((u_m,v_1))) = \{1\}$, a contradiction. Thus, $c((u_m,v_1)) = 2$. This implies that $3 \mid m$, a contradiction. Thus, $\chi_2(H) = 4$.

(iii) To the contrary, suppose that c is a dynamic 3-coloring of H with colors $\{1,2,3\}$. Note that $\chi_2(G)>3$ and so there exists a vertex, say (u_1,v_1) , such that $c((u_1,v_1))=1$ and for every $v_i\in N_G(v_1)$, $c((u_1,v_i))=2$. Since the dynamic property holds for (u_1,v_1) in H, with no loss of generality we may assume that $c((u_2,v_1))=3$. Hence for every $v_i\in N_G(v_1)$, $c((u_2,v_i))=1$. Thus $c((u_3,v_1))=2$. By repeating this procedure, we conclude that $c((u_4,v_1))=1$, $c((u_5,v_1))=3$, $c((u_6,v_1))=2$,... Now, if $c((u_m,v_1))=3$, then $c(N_H((u_m,v_1)))=\{1\}$, a contradiction. Thus, $c((u_m,v_1))=2$. This implies that $3\mid m$, a contradiction. Thus, $\chi_2(H)\geq 4$.

Now, assume that G = (X,Y) is a bipartite graph such that $X = \{x_1,\ldots,x_s\}$ and $Y = \{y_1,\ldots,y_t\}$. If m=5, then consider two vertex 4-colorings c and c' of C_5 , $c(u_1)=1$, $c(u_2)=2$, $c(u_3)=3$, $c(u_4)=4$, $c(u_5)=2$ and $c'(u_1)=3$, $c'(u_2)=4$, $c'(u_3)=1$, $c'(u_4)=2$, $c'(u_5)=1$. Now, define the dynamic 4-coloring c'' of H as follows:

For $1 \leq i \leq 5$ and $1 \leq j \leq s$, let $c''((u_i, x_j)) = c(u_i)$ and for $1 \leq i \leq 5$ and $1 \leq k \leq t$, let $c''((u_i, y_k)) = c'(u_i)$. This shows that in this case $\chi_2(H) \leq 4$ and so $\chi_2(H) = 4$. Now, suppose that $m \neq 5$. Since $3 \nmid m$, then $\chi_2(C_m) = 4$. Consider a dynamic 4-coloring c' of C_m . Then for every vertex (u_i, x_j) , $1 \leq i \leq m$ and $1 \leq j \leq s$, define $c((u_i, x_j)) = c'(u_i)$ and also for

every vertex (u_i, y_k) , $1 \le i \le m$ and $1 \le k \le t$, define $c((u_i, y_k)) \equiv c'(u_i) + 1$ $(mod\ 4)$. Clearly, c is a dynamic 4-coloring of H. Thus, we conclude that $\chi_2(H) \le 4$. So, $\chi_2(H) = 4$.

Theorem 5. Let $m, n \geq 3$ be two natural numbers. Then

$$\chi_2(C_m \square C_n) = \begin{cases} 3 & \text{if } 3 \mid mn \\ 4 & \text{if } 3 \nmid mn \end{cases}$$

Proof. Let $V(C_m) = \{u_1, ..., u_m\}, V(C_n) = \{v_1, ..., v_n\}$ and G = $C_m\square C_n$. Since $\Delta(G)\geq 2$, $\chi_2(G)\geq 3$. First suppose that $3\mid mn$. By Theorem 1, $\chi_2(G) = 3$. Now, suppose that $3 \nmid mn$. By Lemma 1 and Theorem 4, Part (iii), $\chi_2(G) \geq 4$. If one of the m and n is not 5, then by Theorem 1, $\chi_2(G) \leq 4$ and we are done. So, suppose that m = n = 5. Now, we define the dynamic 4-coloring c of $C_5 \square C_5$ as follows: Consider the following 5×5 matrix $A, A = [a_{ij}]$ and define $c((u_i, v_j)) = a_{ij}$,

for every i and j, $1 \le i, j \le 5$.

$$A = \begin{pmatrix} 1 & 2 & 1 & 2 & 3 \\ 2 & 3 & 2 & 3 & 1 \\ 3 & 1 & 3 & 1 & 2 \\ 2 & 4 & 2 & 4 & 1 \\ 4 & 1 & 4 & 1 & 2 \end{pmatrix}$$

So $\chi_2(C_5 \square C_5) \le 4$. Thus, $\chi_2(C_5 \square C_5) = 4$ and the proof is complete. \square

Acknowledgements. The research of the first author was in part supported by a grant (No. 87050211) from IPM.

References

- [1] S. Akbari, M. Ghanbari, S. Jahanbekam, On the dynamic coloring of strongly regular graphs, Ars Combin., to appear.
- [2] H.-J. Lai, J. Lin, B. Montgomery, T. Shui, S. Fan, Conditional colorings of graphs, Discrete Math. 306 (2006), 1997-2004.
- [3] H.-J. Lai, B. Montgomery and H. Poon, Upper bounds of dynamic chromatic number, Ars Combin. 68 (2003), 193-201.
- [4] B. Montgomery, Dynamic Coloring of Graphs, Ph.D Dissertation, Morgantown, West Virginia, 2001.