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Abstract. Given a distribution D of pebbles on the vertices of a graph G,
a pebbling move consists of taking two pebbles off from a given vertex and
placing one of them onto an adjacent vertex (the other one is discarded).
The pebbling number of a graph, denoted by f(G), is the minimal integer
k such that any distribution of k pebbles on G allows one pebble to be
moved to any specified vertex by a sequence of pebbling moves. In this
paper, we calculate the pebbling number of the graph D, .., and consider
the relationship of pebbling number between the graph D, ¢, and the
subgraph of D, ¢, .
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1. INTRODUCTION

Graph pebbling is a mathematical game and area of interest played on
a graph with pebbles on the vertices. The game of pebbling was first
suggested by Lagarias and Saks, as a tool for solving a particular problem
in number theory. The pebbling number of a graph was first introduced
into the literature by Chung [1]. A pebbling move consists of removing two
pebbles from one vertex, throwing one away, and putting the other pebble
on an adjacent vertex. The pebbling number of a specified vertex v in a
graph G is the smallest number f(G,v) with the property that from any
distribution of f(G,v) pebbles on G, it is possible to move a pebble to
v by a sequence of pebbling moves. The pebbling number of a graph G,
denoted by f(G), is the maximum of f(G,v) over all the vertices of graph
G. The t—pebbling number of a connected graph G, denoted by f;(G), is
the smallest positive integer such that no matter how f;(G) pebbles are
placed on the vertices of G, ¢ pebbles can be moved to any vertex by a
sequence of pebbling moves.
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There are some basic results regarding f(G) (see[2,3,5,8]). If at most one
pebble is placed on each vertex other than the vertex v, then no pebble
can be moved to v. Moreover, if the vertex u is at a distance d from the
target vertex v, and only 2¢—1 pebbles are placed on u, then no pebble can
be moved to v. Obviously, f(G) > maz{|V(G)|,2¢}, where |V(G)| is the
number of vertices of G, and d is the diameter of G (see [6]). Furthermore,
the pebbling numbers of some graphs are given as follows.

Theorem 1.1. [1] Let P, be a path, then f(P,) = 2""1.

Theorem 1.2. [4] Let C, denote a simple cycle with n vertices, where
n > 3, then N
()f (Cam) = 2™ (i0)f (Comar) = 2| 252 ] +1 = =07

Theorem 1.3. [7] Let C, denote a simple cycle with n vertices, where
n > 3, then
(i)fe(Com) =t - 2™,

(i6)fe(Cam1) = 2| Zom | + 14 2m(¢ — 1) = Z25E0T |y gms ),

In this paper, G denotes a simple connected graph with vertex set V(G)
and edge set E(G). Let p(G) be the number of pebbles on a graph G and
p(v) be the number of pebbles on a vertex v. For u, v € V(G), the distance
between u and v in G denoted by d(u,v). As shown in Fig.1, the graph
D, c,. consists of n cycles with one common vertex, which denoted by w,
and each cycle has m vertices besides the center point u.

This paper is organized as follows. In Section 2 and 3, we start with
showing some preliminary lemmas and theorems relies on the pigeonhole
principle, and then, we calculate the pebbling number of the graph D, ¢,
by considering the parity of m. Finally, we mention possibilities for further
research, in Section 4.

2. THE PEBBLING NUMBER OF D, ¢, .

This section studies the pebbling number of D, c,,.. First we introduce the
following lemmas, which is necessary for the proof of the main theorems.

Lemma 2.1. Let z; be the number of objects in the ith boz, end let (p —
1)n + pa objects be in n bozes, where p, n are positive integers, then

()T %] 20
(it) If there ezists ig € {1,2,--- ,n} with z;, # pt+ (p — 1), where t is a
non-negative integer, then Y .., l% >a+1.
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FIGURE 1. The graph D, ¢,..

Proof. The first part of Lemma 2.1 and the cases a = 1 is easy to be
proved, so we will prove the second part of Lemma 2.1 by discussing the
range xz; of when a > 1.

If there exists i, € {1,2,---,n} with z;, # ap + p, then Y|, l%J >
-r;‘;-’- > a + 1. Otherwise, for every i € {1,2,--- ,n} with 0 < z; <
ap + (p — 1), all cases are as follows:

Case 1: If there exists i € {1,2,:--,n} with z;, = ap + (p — 1), then
(n —1)(p—1) objects are demanded to be put into the rest (n — 1) boxes.
Thus, not every box of these (n — 1) boxes has (p — 1) objects inside, since
there exists ip € {1,2,--- ,n} with z;, # pt + (p — 1). According to the
pigeonhole principle, there exists i3 € {1,2,--,n} — {iz} with z; > p.
n z; Fif

Thus, T%, |2 2 |22 + |22 20+ 1.

Case 2: If there exists i3 € {1,2,--- ,n} withap < z;; <ap+(p-1) -1,
such that at least (p — 1)(n — 1) + 1 objects need to be put into the rest
(n — 1) boxes. According to the pigeonhole principle, there exists i} €

{1,2,..- ,n} — i3 with zi, > p, then ELI [%J > I_x—;,"'-J + I_f-;i_’ >a+1.

Case 3: If there exists i4 € {1,2,---,n} with (a—1)p<2z;, < (e—1)p+
(p—1), then at least n(p — 1) + 1 = (p — 1)(n — 1) + p objects need to be
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put into the rest (n — 1) boxes. As it comes back to the Case a = 1, we get
T3] 2|5+ S [3] 2a-142=0 41

Case 4: If there exists iy € {1,2,--- ,n} withp < z;, <p+(p—-1), then at
least (p — 1)(n — 1) + p(a — 1) objects need to be put into the rest (n — 1)

boxes, then 37, [%J >(e—1)+1=a. Thecase0< z;,,, <p-1is
easy to be proved. ]
For the graph D, ¢,,, each cycle can be regarded as a box and pebbles can

be regarded as objects. Thus Lemma 2.2 is given as an inference of Lemma
2.1.

Lemma 2.2. Let f be the pebbling number of Cy, and place (f —1)n+k
pebbles on n cycles of Dy, c,, arbitrarily, then at least I_ "“‘kj pebbles can
be moved to the center point u, where k and n are positive integers.
Proof. Lemma 2.2 is equivalent to: Let (f —1)n+k objects be in n boxes,
then Z:;l [zfo > l_t?“'—kj, where z; is the number of objects in the ith
box. The mathematical induction is used to prove the Lemma 2.2.

Base case: If k = 1, according to the pigeonhole principle, there exists a
box having at least f objects. It is easy to get Y 1, I_EIIJ > ll%“’—k_l
Hence Lemma 2.2 is proven when k = 1.

Inductive case: Assume that Lemma 2.2 is true for k.

Subcase 1: When & is not a multiple of f, denoted by k # af, then I_L}'E J =
I.f;}i'ﬁj . Let z/ be the number of objects in the ith box for the case (k+1).

i n |z —1+k | _ | f+k| _ | f=l+k+1
s £ [] 2 T ) 2 2] - 1) = | 2]
Therefore, the inductive hypothesis holds for (k + 1) when k # af.
Subcase 2: When k is a multiple of f, denoted by £k = af. Suppose
k+1=af+1. According to Lemma 2.1, if there exists i € {1,2,--- ,n}
with z;; # ft+(f — 1), then Ff- J > [z—fﬂJ > a+1. Otherwise, according

to Lemma 2.1, for every ig € {1,2,--- ,n} with z;; = ft + (f — 1) and for
(f —1)n+af +1 objects, there exists ip € {1,2,--- ,n} with z{ > z;, +1,
then Ff-J > l?_}o.J + 1. In addition, for each i € {1,2,:--,n} — {io}, we
have z} = z;.

Therefore, according to the principle of mathematical induction, }".._; I.ifi J >
PV t%‘tJ+12a+1. o
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Theorem 2.3. The pebbling number of D, ¢, . is [f(Com) — 1)(n — 2) +
f(Pams1).

Proof. For convenience, [f(C2m) — 1](n — 2) + f(P2m41) is denoted by
A, respectively. Note u as the center vertex of all the cycles in D, ¢, ..
Let C* be the cycle with the target vertex ui,m and let C*/u be the cycle
C* without the center point u. Without lose of generality, we may assume
that u,n, is the target vertex. First, suppose that there are (4 — 1) pebbles
on the vertices of D, ¢, , according to the distribution is given below:
p(un,m) = f(Pam+1) = 1, P(uim) = f(Com) -1 (1 =2,3,---n— 1), p(u) =
pluij) =0 (¢ =2,3,---n,j5 # m), p(u1,m) = 0. In this case, there is no
pebble can reach u; n,. Thus f(D, c,..) = A

Next, we consider the distribution with A pebbles on the vertices of Dy, c,,, -
The graph D, c,,. has three kinds of target vertices, i.e.,(1) the center ver-
tex u. (2) u;,;, where j # m. (3) uj,m, Where d(u; m,u) = m. The proof of
(1) and (2) are easy to be checked, so we consider (3) in two cases. For con-
venience, the cycle C! is divided into two part P, = (uy,1,u1,2,"** ,%1,m)
and P, = (¥} 2m—1,%1,2m—2," " * ,%1,m), respectively.

Case 1: To prove the case when P, and P, are occupied by pebbles. If
there exist ji,j2, -+ ,jx € {1,2,--+,m — 1} with p(uy;,) # 0, where t €
{1,2,--- ,k} and there exist 3,42, -+ ,%r € {m +1,m+2,---,2m — 1}
with p(uy,;,) # 0, where ¢t € {1,2,---,r}, then one pebble can be moved
to uy,;m when 2:‘;1 plurg,)>2™ 1 —1lor Y, p(uys,) > 2™ 1 -1, since
d(u1,1,u1,m) = d(ur2m-1,%1,m) = m — 1 and f(Pa) = f(P) = 2™~ L.
Otherwise, both Ef=1 p(uy5,) and 3¢, p(u,:,) are less then 2™~1. There
will be at least A —2(2™~! — 1) = A — 2™ 4 2 pebbles are required to be
put on (n—1) cycles. Hence f(Csm)—1 pebbles can be moved to according
to Lemma 2.2.

Case 2: To prove the case when P, and P, are not occupied by pebbles.
For each j € {1,2,--- ,m,m + 1,--+,2m ~ 1} with p(uy ;) = 0, then A
pebbles are demanded to be put on the rest (n — 1) cycles. According to
Lemma 2.2, f(Cs,,) pebbles can be moved to u, then one pebble can be
moved to uy,m. Thus, f(Dn,c,.) < A

Therefore, f(Dn,cs.,) = [f(Cam) — 1)(n — 2) + f(Poms1)- o

3. THE PEBBLING NUMBER OF D, c,,..,

In order to calculate the number of the graph D, c,,..,, we first give the
following corollary, which relies on Theorem 1.1 and 1.2 given in Section 1.
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Corollary 3.1. A path Ppyo = (u,u11,%1,2* ,%1,m+1) 8 equivalent to a
cycle Crnya, if and only if for the path Ppya, both u and uy m+1 are target
vertices. Then

(i) f(Pny2) = f(Cms1) = 27 where is odd.

(i) f(Pmt2) = f(Cmy1) = 220 n¥ where is even.

3
Theorem 3.2. Let fom(Com41) be the 2™-pebbling number of the graph
Com41. The pebbling number of Dnc,,.., i [f(Com+1) — 1)(n — 2) +
[fom (Com+1) — 1] + f(Crnya)-

Proof. For convenience, [f(Com+1)—1](n—2)+[fam (Com+1)=1]+F(Crm+1)
is denoted by B. First, we consider the following distribution such that we
cannot move one pebble to the target vertex by a sequence of pebbling
move, when the total number of pebbles is (B —1).

Case i: For odd m, p(uim) = p(tim+1) = ﬁ.%nzﬂbl (i=23,---,n—
1),p(u1,_n_»F) = f(Cm+1) — l,let fam(Cam41) — 1 pebbles be on the cycle
C™, then 2™ —1 pebbles can be moved to z. Thus no pebble can be moved
to the vertex uj m

Case ii: For even m, p(ui,m) = p(¥im+1) = !Lc—'g%"‘)—'l (:=2,3,--- ,n-1),
p(ur,z) = p(ur,p+1) = LCm1)=1 et fym(Cam+1) — 1 pebbles be on the
cycle C™, then 2™ — 1 pebbles can be moved to u. Thus no pebble can be
moved to the vertex uim, i.e. f(DncCymss) = B.

Next, we consider the distribution with B pebbles on the vertices of Dn,c, .., -
If the target vertex is u or u; ; (j # m,m + 1 where misodd, or j # m
where m is even), then the proof is easy to check by the previous theorems
and lemmas. Therefore we consider the case when the target vertex is u;
by discussing the range of p(C!/u). Without loss of generality, we assume
that the target vertex is ujm. If p(u) > 2™, as d(u,u1,m) = m , then at
least one pebble can reach uj .

Case 1: If p(C'/u) > f(Cam+1), then at least one pebble can reach u; .

Case 2: If 3'26—'3(_—1)1 < p(C'/u) € f(Cam+1), then the remaining number
of pebbles on the vertices of the graph D, c,.,, without cycle C! will
be at least B — (f(C2m+1) — 1). Those pebbles are demanded to be put
into (n — 1) cycles of D, c,,.,,. According to the Pigeonhole principle
and Theorem 1.2 (ii), we can put at least 2™ — 2 pebbles on u. Then,
m m m+2 m

p(Cl) > AL L om 9 = 2+4'3:1L = f(C2m+1). Asin Case 1,
we have done.

Case 3: If f(Cmy1) < p(CH/u) < 2'"—”'6}("—1£—1, then the remaining num-
ber of pebbles on the vertices of the graph D, c,,.., Without cycle C! will
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FIGURE 2. The Graph D, g,.

be at least B — (31*'6—'3(:—1K - 1) . Those pebbles are demanded to be put

into (n —1) cycles of D, c,,.,,. As B— (2"'—*'6'55_—1): - 1) > (f(Com+1) —
1)(n—2)+ fom -1(Cam+1), at least 2™ —1 pebbles can reach u. Based on the
pigeonhole principle and Theorem 1.2 (ii), if p(uy,1, -+ ,41,m-1) = 1, then
p(u,u11,+ - ,u1,m) > 2™. Hence there will be at least one pebble on u; .
Otherwise, according to Corollary 3.1 more than one pebbles can be moved
t0 U OT Uy,m, since p(uy,m+1,U1,m+2:" " » U1,2m) 2 f(Pmy2) = f(Cnar)-
Case 4: If 0 < p(C*/u) < f(Cm+1) — 1, then the other vertices have at
least B — (f(Cm+1) - 1) = (f(02m+1) - 1)(n - 2) + fom (sz+1) pebbles.
Thus at least one pebble can be moved to the target vertex.

Therefore, f(Dn,cypmin) < B.

Above all f(Dn,cymyi) = [f(Comsr) = 1(n = 2) + [fom (Com1) — 1) +
f(Cma1).

4. FURTHER PROBLEMS

This paper calculate the pebbling number of the graph D, c,,, and it is
easy to verify for complete graph K, the pebbling number of the graph
Dnk, is [f(Kn) = 1](n — 2) + [fo(Kn) = 1] + (n — 2) + 1. D, g, is shown
in Figure 2. Since diam(K,) = 1, it is likely to conjecture the pebbling
number of a class of graph D, ¢ is [f(G) — 1](n — 2) + [f:(G) — 1] + O(1),
where t = f(FPy).
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There are many types of graphs such as complete graph, product graph, and
hypercube. It would be interesting to study whether a clique block graphs
combine together through a common vertex have similar conclusions.
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