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Abstract

A k-chromatic graph G is uniquely k-colorable if G has only one
k-coloring up to permutation of the colors. In this paper, we focus
on uniquely k-colorable graphs on surfaces. Let F2 be a closed sur-
face except the sphere, and let x(F2) be the maximum number of the
chromatic number of graphs which can be embedded on F2. Then we
shall prove that the number of uniquely k-colorable graphs on F? is fi-
nite if k > 5, and we characterize uniquely x(F?)-colorable graphs on
F2. Moreover, we completely determine uniquely k-colorable graphs
on the projective plane, where k£ > 5.

1 Introduction

In this paper, we only deal with finite undirected simple graphs. Moreover,
let K, be a complete graph with n vertices and let H,, be a graph obtained
from K, by deleting an edge of K,,. A k-coloring of a graph G is a map
c: V(G) = {1,2,...,k} such that for any edge uv € E(G), c(uv) # c(v).
A graph G is k-colorable if there exists a k-coloring of G, and a chromatic
number of G, denoted by x(G), is the minimum number & such that G is
k-colorable. Moreover, a graph G with x(G) = k is called a k-chromatic
graph. A graph G is uniguely k-colorable if k = x(G) and G has only one
k-coloring up. to permutation of the colors, where the coloring is called a
unigue k-coloring. In other words, any uniquely k-colorable graph G has
only one partition of V(G) into k-independent subsets. Trivially, a complete
graph K, is uniquely n-colorable. Moreover, we denote the set of uniquely
k-colorable graphs by UC. For two distinct colors 4,5 € {1,2,...,k} ina
k-coloring c of a graph G, define G; ; to be the subgraph of G induced by
¢~ (i) U ¢~1(j). For uniquely k-colorable graphs, Harary et al. proved the
following theorem.
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Theorem 1 (Harary et al. [7]) Ifc: V(G) — {1,2,...,k} is a unique
k-coloring of G € UCk, then the graph G;; is connected for all i # j
(3,7 € {1,2,...,k}).

If a graph G is uniquely 1-colorable, then G has no edges. Hence,
throughout this paper, we only consider & > 2 for any uniquely k-colorable
graphs. Moreover, the following corollaries hold by Theorem 1. For a graph
G, we define §(G) to be the minimum degree of G.

Corollary 2 IfG € UCj with |V(G)| = n, then G has at least (k—1)n—(5)
edges.

Corollary 3 If G € UCk, then 6(G) > k—1.
Corollary 4 If G € UCy, then G is (k — 1)-connected.

For other results and related topics, see [6].

In this paper, we focus on uniquely colorable graphs on surfaces. Then,
following this, we regard a graph on a surface F2 as a map on F2. For
uniquely colorable graphs on the sphere, there are several known results,
see [3] and [6). However, for those on any other surface, there are no results
and research. Hence, in this paper, we consider uniquely colorable graphs
on surfaces except the sphere. Let F'2 denote a closed surface and let x(F2)
be the maximum number of the chromatic number of graphs which can be
embedded on F2. By known results [1, 2, 5, 10, 12], we have the following.
In the equation, K and (F2) mean Klein bottle and Euler characteristic
of F2, respectively.

x(F2)={ (7 + V49 — 24e(F2)) /2] (F? £K) M

(F? =K)

Hence, we have x(F?) > 6 for any surface F? except the sphere since
x(P) = x(K) = 6 by the above equation, where PP stands for the projective
plane.

First, we focus on the number of uniquely k-colorable graphs. It is easy
to see that there are infinitely many uniquely k-colorable graphs for any
positive integer k. However, the number of uniquely k-colorable graphs on
a closed surface F? is a (finite) constant that depends upon & and the Euler
characteristic £(F2) as follows.

Theorem 5 The number of uniquely k-colorable graphs on a closed surface
F? is finite if k > 5 except the case F? is the sphere.
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Following this, F'2 stands for a surface except the sphere. For an inte-
ger k > 5, we can also see the larger & becomes, the smaller the number of
uniquely k-colorable graphs on F2 is, where F2 is fixed since the connectiv-
ity of corresponding graphs becomes large by Corollary 4. Then, we focus
on uniquely x(F?)-colorable graphs on F2, and we completely determine
them as follows.

Theorem 6 Let G be a graph on a closed surface F? except the sphere.
Then G is unigquely x(F?2)-colorable if and only if G is isomorphic to either

Kx(Fzy or Hy(pays1-

By the above result, any uniquely x(F?)-colorable graph G on any
closed surface F'2 except the sphere must have a complete graph K, (r2) as
its subgraph. Classically, Albertson and Hutchinson [1] and Dirac [5] proved
that any x(F?)-chromatic graph on F? except the Klein bottle contains
K, (F2) as its subgraph. However, for the Klein bottle K, there exists a
X (K)-chromatic graph which has no K, as its subgraph [1]. In other
words, by adding the property “uniquely” into x(F?2)-chromatic graphs
on any surface F2 except the sphere, it must be guaranteed that those
graphs have K, (r2) as their subgraphs. (Note that there exists a uniquely
r-colorable graph containing no K, for any integer r > 3 (7). Moreover,
for the sphere, it was proved that any uniquely 4-colorable planar graph
is isomorphic to a spherical 3-tree, see [6].) Moreover, Chenette et al. [4]
recently exhibit an explicit list of nine graphs such that a graph on the
Klein bottle is 5-colorable if and only if it contains no subgraph isomorphic
to a member of the list. Since a lot is known about embeddings of K, (r2)
and H,(r2)41, we shall discuss it in Section 3.

Finally, we also focus on uniquely (x(F?2) — 1)-colorable graphs on F2.
By Theorem 5 and x(F?2) > 6, the number of those graphs is finite. Hence
we consider making a list of uniquely (x(F?2) — 1)-colorable graphs on F?2.
Then, this time, we complete the list of uniquely 5-colorable graphs on the
projective plane as follows. The graph B; is a graph on the projective
plane with 7 vertices shown in Figure 1, which is obtained from K4 on the
projective plane with the vertices z, v, z and w by joining three independent
vertices a, b and ¢ as shown in Figure 1. Moreover, it is easy to see that By
is uniquely 5-colorable.

Theorem 7 Let G be a graph on the projective plane. Then G is a uniquely
5-colorable if and only if G is isomorphic to either K5, Hg or Bs.

By Theorems 6 and 7, we have the following corollary.

Corollary 8 Let G be a set of uniguely k-colorable graphs on the projective
plane, where k > 5. Then we have G = {K3, Hg, K¢, Br}.
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Figure 1: By

2 Proof of theorems

In this section, we prove Theorems 5, 6 and 7.

Proof of Theorem 5. Let G be a uniquely k-colorable graph on F2, where
k > 5 and |V(G)| = n. By Corollary 2, we have |E(G)| > (k- 1)n — (g)
Moreover, by Euler’s formula, we have |E(G)| < 3n — 3¢(F2). Hence, by
combining the above two inequalities, we have

n< (g) ;_iein) .

Therefore, since the number of vertices is finite, the theorem holds. B

Proof of Theorem 6. 1t is easy to see that the “if” part follows. Hence we
prove the “only if” part.

Let G be a uniquely x(F?2)-colorable graph on a closed surface F'2 except
the sphere and the Klein bottle. By Corollary 2, we have |E(G)| > (x(F?)-
DIV(G)| - ("(f 2)), and by Corollary 3, any vertex of G has degree at least
x(F?) — 1. Hence, if |[V(G)| = x(F?), then G is isomophic to K,(pz), that
is, G is the complete graph with the maximum number of vertices which
can be embedded on F2. In this case, the number of edges which can be
added to G on F? is at most |V(G)| — 4 (in this case, since the largest face
size is |V(G)| — 1 and disregarding simplicity.) Otherwise, we can embed
Kv(c)+1 on F? by [10], this is a contradiction.

Let us consider the number of vertices of G. Now, we have |E(G)| >
(x(F?) - V|V(G)| - (*F 2)) by Corollary 2. On the other hand, for any
graph on F?, if the number of vertices increases by one, then the upper
bound of the number of edges increases by at most three by Euler’s formula,
that is, |E(G)| < 3|V(G)| — 3. Hence, two bounds on |E(G)| give that

V(@) < ﬁp—;%‘%,%%ﬂ. Therefore, by an easy calculation using the
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previous inequality, we can see that any uniquely x(F2)-colorable graph
on F? has at most x(F?) + 1 vertices. Then, it is easy to check that G is
isomorphic to either K, (r2y or Hy(p2)41.

Finally, we consider the Klein bottle case. Let G be a uniquely x(K)-
colorable graph on K. By Corollary 2, the equation (1) and Euler’s formula,
we have 5|V(G)| — 15 < |E(G)| < 3|V(G)|. Hence, we have |V(G)| < 7
by [V(G)| < 3. Therefore, we can also see that G is isomorphic to either
Kx) or Hyy+1- @

Proof of Theorem 7. We first show the “if” part. Clearly, if G is isomorphic
to Kg or Hg, then G is uniquely 5-colorable. Moreover, by Figure 1, it is
easy to see that By is uniquely 5-colorable since K4 is uniquely 4-colorable.
Hence, the “if” part holds.

Next, we show the “only if” part. Let G be a uniquely 5-colorable
graph on the projective plane. By Corollary 2, G has at least 4|V (G)| — 10
edges. On the other hand, since G is on the projective plane, we have
|E(G)| < 3|V(G)| — 3 by Euler’s formula. Hence, by combining the above
inequalities, we have |V(G)| < 7. Moreover, if |V(G)| = 5 (resp., 6),
then it is easy to see that G is isomorphic to Ky (resp., Hg). (In this
case, if |V(G)| = 5 (resp., 6), then G has exactly 10 (resp., 14) edges. If
G has |V(G)| = 6 and 15 edges, then G is isomorphic to Kg. However,
this contradicts G € UCs.) Hence, we may suppose that |V(G)| = 7 and
|E(G)| = 18.

Now, we re-define G to be a graph on the projective plane obtained from
K7 by removing three edges ey, ez, e3 of K7 (note that |E(K7)| = 21). Let
€1 = upv,e2 = ugvy and ez = ugvs be the three edges. Then let us prove
that e;,e; and es form a triangle, that is, we shall show v, = ug, v = us
and vg = uj by symmetry. If the three edges have no common vertex, then
it is easy to see that G is 4-colorable since u; and v; can be colored by the
same color for each i € {1,2,3}. Hence, we may suppose that the three
edges have at least one common vertex.

We first suppose v; = v; = v3 (the three edges form a K 3). In this
case, the graph induced by the six vertices of K except v, is isomorphic
to Kg, but this contradicts G € UCs. Next suppose that v; = uy and
{u1,v1,v2} N {u3,v3} = 0. Then we give 5-coloring ¢ to G, where c(u3) =
c(v3) = 1,¢(u1) = 2,¢(vz) = 3 and other two vertices except v; are colored
by 4,5. In this case, since there are two choices of ¢(v;), namely 2 or 3,
this contradicts G is uniquely colorable. Hence, we may suppose that e;, e2
and e3 share at least two vertices.

Without loss of the generality, we may suppose that v; = ug, v, = ug.
In this case, we consider whether the graph G can be embedded on the pro-
jective plane. We now see that the degree sequence of G is (6, 6, 6, 5, 5, 4, 4).
Let v be a vertex of degree 6 and let v, be a vertex of degree 6 which is
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Figure 2: Surrounding of v

a neighbor of v. Then, we now have a configuration shown in Figure 2.
(Note that G has only triangular faces on the projective plane by Euler’s
formula.)

In Figure 2, the third vertex of degree 6 is either vz or vz since any
vertex of degree 6 must be adjacent to all other vertices. Hence, without
loss of generality, we may suppose that deg(vs) = 6, and then, we have
deg(vs) = 5 and deg(vg) = 4. In this case, it is easy to see that deg(vs)
cannot be five, and hence, G cannot be embedded on the projective plane
satisfying the degree sequence (6,6,6,5,5,4,4). Therefore, G is obtained
from K7 by removing three edges which form a triangle.

Then we now see that the degree sequence of G is (6,6,6,6,4,4,4).
Therefore, since G has only triangular faces on the projective plane by
Euler’s formula, it is not difficult to see that G is isomorphic to B; by
being careful about any two vertices of degree 4 are not adjacent. B

3 Embeddings of H,(s24; on F?

Embeddings of H,(r2);1 on F? in Theorem 6 are now completely under-
stood. By [12], Ky(r2) embeds on F2. By Euler’s formula, except when F2
is the Klein Bottle K, Hy(r2)4+; embeds on F? only if x(F?) =1 (mod 3),
and then when x(F?) = 3k+1 (k > 2), e(F?) = ﬂ.{—:’k—z. When F2 =K,
it is not difficult to see that H; can be embedded on K. When F? is a
surface of Euler characteristic —1 (and x(F?)+ 1 = 8,k = 2), Ringel [11]
proved that Hg does not embed on F2. Moreover, Ringel [10] and Ko-
rzhik [8] proved that for all k£ > 3, Hy(r2)4+1 = Hag42 does embed on F?
a surface of Euler characteristic 4—‘t3—’°27—§’°—2 when x(F?) = 3k + 1. Thus we
need to include H, ()41 in the statement of Theorem 6 to cover these
exceptional cases.
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