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Abstract

A hypergraph H is said to be p-Helly when every p-wise intersecting partial
hypergraph H’ of H has nonempty total intersection. Such hypergraphs
have been characterized by Berge and Duchet in 1975, and since then
they have appeared in the literature in several contexts, especially for the
case p == 2, in which they are referred simply as Helly hypergraphs. An
interesting generalization of p-Helly hypergraphs due to Voloshin takes
into account not only the number of intersecting sets, but also the inter-
section sizes: we say that a hypergraph H is (p, g, s)-Helly when every
p-wise g-intersecting partial hypergraph H’ of H has total intersection
of cardinality at least s. In this work we propose a characterization for
(p, g, s)-Helly hypergraphs. This characterization leads to an efficient al-
gorithm to recognize such hypergraphs when p and q are fixed parameters.
Keywords: Helly Property, Helly Hypergraphs, Intersecting Sets

1 Introduction

A hypergraph H is an ordered pair (V(H), E(H)) where V(H) = {v1,...,v} is
a finite set of vertices and E(H) = {E,,..., E,} is a set of nonempty edges (or
hyperedges) E; C V(H) where V(H) = Ui<icmE;. For aset J C {1,...,m},
the hypergraph H' such that V(H') = Ujes E; and E(H') = {E; : j € J} is the
partial hypergraph of H generated by the set J. If every edge of a hypergraph
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contains k vertices, for an integer £ > 0, then H is said to be k-uniform. A
graph is a 2-uniform hypergraph.

A hypergraph H is said to be p-Helly when every p-wise intersecting partial
hypergraph H’ of H has nonempty total intersection. Such hypergraphs have
been characterized by Berge and Duchet in 1975 [2], and since then they have
appeared in the literature in several contexts, especially for the case p = 2, in
which they are referred simply as Helly hypergraphs.

In this work we investigate a generalization of p-Helly hypergraphs. This
generalization was originally defined by Voloshin in [13] in the context of hy-
pergraph coloring, and takes into account not only the number of intersecting
sets, but also the intersection sizes. For positive integers p, g, and s, a hyper-
graph H is said to be a (p, q, s)-Helly hypergraph if every p-wise g-intersecting
partial hypergraph H’ C H has total intersection of cardinality at least s. In
other words, g and s are additional parameters such that ¢ indicates the min-
imum number of elements required in the intersection of every group with p
or fewer edges of H', and s the minimum number of elements which must be
present in the total intersection of H’. In this notation, p-Helly hypergraphs are
precisely (p,1,1)-Helly hypergraphs, and Helly hypergraphs are (2,1, 1)-Helly
hypergraphs.

In this work we propose a characterization for (p, g, s)-Helly hypergraphs,
which generalizes Berge and Duchet’s theorem on p-Helly hypergraphs. As we
shall see, this characterization leads to a polynomial-time algorithm to recognize
such hypergraphs when p and g are fixed parameters. For the case ¢ = s, we
present another characterization in terms of induced matchings of a special
bipartite graph.

The study of the Helly property applied to general hypergraphs has exten-
sively been considered, e.g. [1] to [13]. The application of Voloshin’s concept to
the family of cliques of a graph leads to the class of (p, g, s)-clique-Helly graphs.
A characterization of (p, g, g)-clique-Helly graphs is described in [7].

A well-known corollary of Berge and Duchet’s theorem on p-Helly hyper-
graphs is that they can be recognized in polynomial time, for fixed p (see [1]
and [2], respectively). For (p,q, s)-Helly hypergraphs, besides the polynomial-
time recognition algorithm for fixed p, ¢ presented in this work, complexity as-
pects corresponding to situations where p or ¢ are not fixed are considered
in [6]. However, it remains open the complexity of recognizing (2, ¢, q)-Helly
hypergraphs; results on such hypergraphs are found in [12, 13].

Another generalization of the Helly property, called k-bounded p-Helly prop-
erty, forces the size of the subfamilies to be limited by a variable k. Such a
generalization was first studied by Roberts and Spencer in [11]. The problem
of recognizing whether a hypergraph is k-bounded p-Helly was proved to be
NP-hard in (5].

In [9], the notion of hereditary p-Helly property is introduced. Polynomial-
time algorithms for checking the hereditary 2-Helly property in hypergraphs are
given in [4, 14], and for hereditary p-Helly property in [8].

Other recent works concerning theoretic and algorithmic aspects of Helly
hypergraphs are [3, 10].
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The remaining of the text is organized as follows. In Section 3 we present
a characterization of (p, g, s)-Helly hypergraphs. In Section 4 we deal with the
natural case ¢ = s, corresponding to the (p, g, g)-Helly property. In Section 5
we discuss the computational complexity of the algorithms obtained from the
characterizations. The last section contains the conclusions.

2 Preliminaries

We start this section by giving some definitions and notation. We say that S
is an m-set when |S| = m, an m~-set when |S| < m, and an m*-set when
|S] > m. Throughout the remainder of this work, this notation will be applied

to any term standing for a set. The core of H is defined as core(H) = 1<f_1< E;.
<i<m

A hypergraph is p-wise g-intersecting, or simply (p, g)-intersecting, if every
p or fewer edges of it share at least g vertices.

We now present some characteristics and examples of (p, g, s)-Helly hyper-
graphs.

Example 2.1 Consider the family A of mazimal complete subgraphs of the
graph of Figure 1, i.e., E(A) = {{a,b,c,d},{a,b,d,e},{a,b,¢, f},{a,¢c,d,g}}.
Then A is not (3,2, 2)-Helly, because every three edges of A share two vertices,
while there is only one vertez in common to all edges of A. But A is (3,2,1)-
Helly, because a is a vertez present in all edges of A.

Figure 1: Example of the (p, ¢, s)-Helly property.

Example 2.2 Let p > 1and g > 0. Consider a circular sequence aj, . . ., @(p41)q
of distinct points on a circle and a family A = {o; : 1< i< p+1} of arcs, each
a; containing pq circularly consecutive points starting from a,(;_1)41. Then A
is (p, g)-intersecting but core(.A) = @. Thus A is not (p, g, s)-Helly for any s > 1.
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The following statements are valid for any hypergraph H and positive inte-
gers p, g, s:

e if H is (p, q, s)-Helly then H is (p + 1, g, s)-Helly;
e if H is (p, g, s)-Helly then H is (p,q + 1, s)-Helly;
e if H is (p,q, s)-Helly then H is (p, q, s — 1)-Helly.

3 Characterizing (p, ¢, s)-Helly hypergraphs

We divide the characterization in two cases, ¢ > s and s 2> q. The following
lemma is useful in the sequel.

Lemma 8.1 Let H be a t-hypergraph, t > 2. Any non-emptly hypergraph with
t' < t hyperedges, each containing at least t — 1 hyperedges of H, has core
containing at least t — t' hyperedges of H.

Proof. Let H' = {F},..., Fi'} be a hypergraph where each F; contains at least
t—1 hyperedges of a t-hypergraph H, and ¢’ < t. Since each F; does not contain
at most one hyperedge of H, then at least ¢ — t’ hyperedges of H appear in the
coreof H. =

Now we can describe the characterization of (p, g, s)-Helly hypergraphs. First
we deal the case g > s.

Theorem 3.2 Let p,s > 1, g > s be integers. A hypergraph H is (p,q, s)-Helly
if and only if:

(2) for every family S formed by p+ q — s+ 1 distinct s-subsets of V(H), the
partial hypergraph H' of H formed by all the edges of H containing each
at least p + q — s members of S satisfies the following statement:

H' is (p, q)-intersecting = |core(H')| > s;

(i) every (p, q)-intersecting partial hypergraph of H with p + q — s or fewer
edges has an s-core.

Proof. The theorem says that, for checking the (p, g, s)-Helly property in a
hypergraph H, it is not necessary to check whether every (p, g)-intersecting par-
tial hypergraph of H has s-core, but it is sufficient to check only few particular
partial hypergraphs of H. Hence we only need to prove the sufficiency.

Therefore, assume that H is not (p, g, s)-Helly. Then there exists a (p, q)-
intersecting partial hypergraph H’ of H such that |core(H')] < s. If |[H| <
p+q — s then H' is a (p, g)-intersecting partial (p + g — s)~-hypergraph of H
that violates Condition (iz).

Otherwise, write H' = {E},...,En}, then m’ > p+ g — s+ 1. Assume that
H’ is minimal, that is, H’\ {E} has an s*-core, for any E € H'. Note that, if H'
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is not minimal, one can successively remove hyperedges from H’ until obtaining
either a minimal (p + ¢ — s + 1)*-hypergraph or a (p + g — s)~-hypergraph
violating Condition (iz). For each i, 1 <i < m’, let S; C core(H’ \ {E;}) be an
s-subset of vertices such that S; € E; and S; C E; for every j # 4. This means
that there exists a set §’ = {v1, ..., v} such that each v; € §’ satisfies v; € E;
but v; € E; for every j # .

Let S = {S1,...,Sp+q-s+1} Note that S is a family formed by p+g—s+1
distinct s-subsets of V(H). Define H"” as the hypergraph formed by the edges
of H each containing p + ¢ — s edges of S. Since H’ is a partial hypergraph of
H", H" does not have an s-core. Let us show that H” is (p, q)-intersecting.

Consider any partial p-hypergraph 1" of H”. By Lemma 3.1, core(H")
contains at least ¢ — s + 1 hyperedges of S, say Si,...,5;_s4+1. Note that
S1U{v; € &:2< i< q— s+ 1} contains exactly s + g — s = g vertices. This
means that |core(H)| > g. Therefore, H" is (p, g)-intersecting and does not
have an s*-core. This violates Condition (i). =

Now we deal the case s > q.

Theorem 3.3 Let p,q > 1, s > q be integers. A hypergraph H is (p, q, s)-Helly
if and only if:

() for every family S formed by p + 1 distinct q-subsets of V(H), the partial
hypergraph H' of H, formed by all the edges of H containing each at least
p members of S, has s-core;

(i?) every (p, q)-intersecting partial hypergraph of H with p or fewer edges has
an s-core.

Proof. For the necessity we only need to prove that every partial hypergraph
H' of the Condition (%) is (p, g)-intersecting. But this is direct from Lemma 3.1.
For the sufficiency, the proof is essentially the same of Theorem 3.2. =

4 Thecaseg=s

An interesting case occurs when ¢ = s. In this situation, Condition (i) of
Theorem 3.2 and 3.3 is trivially satisfied. Hence:

Corollary 4.1 Let p,q > 1. A hypergraph 'H is (p, q, q)-Helly if and only if for
every family S formed by p+1 distinct q-subsets of V(H), the partial hypergraph
of H, formed by the edges containing each at least p edges of S, has a q-core.

The characterization for p-Helly hypergraphs [2] corresponds to the case
q = 1 of the above corollary.

Another characterization, for (p, g, ¢)-Helly hypergraphs, in terms of induced
matchings of a bipartite graph is possible. The following definitions will be used.
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Let G be a bipartite graph with color classes V3, V5. A matching M C E(G)
is said to be induced if no two edges of M are joined by an edge of E(G)\M.
In addition, we say that M dominates V; if every w € V3 is adjacent to some
M-saturated vertex u € V).

Given a hypergraph H = {Ey, ..., E,} and an integer q > 1, define B(H, q)
as the bipartite graph with color classes V], V5, where there is a vertex v; in ¥
for every hyperedge E; € H and a vertex u; in V5 for every g-subset Q; C V(H).
Finally, there exists an edge between v; € V; and u; € V; if and only if Q; Z E;.

Corollary 4.2 Let p,q > 1. A hypergraph ‘H is (p,q,q)-Helly if and only if
there is no induced (p + 1)* -matching dominating V2 in B(H,q).

Proof. Let H' = {F,...,Fu}, m" > p+ 1, be a minimal (p, q)-intersecting
partial hypergraph with no g-core of H. For each F;, choose one g-set Q;
contained in the core of H' \ {F;}. Observe that the edges contained in the
subgraph of B(H,q) induced by the vertices corresponding to F; and Q;, for
1< i< m’, form an induced (p+ 1)*-matching of B(H, q), dominating V2. The
converse is analogue. =

5 Complexity aspects

Now we analyze the computational complexity of the algorithms obtained by
the characterization of (p,q, s)-Helly hypergraphs we have presented. They
terminate within polynomial time whenever p and g are fixed.

Theorem 3.2 leads to an algorithm for recognizing (p, g, s)-Helly hypergraphs,
when ¢ > s. The complexity of testing Condition (¢) is O(pmPns(P+a—s+1)+1)
because there are O(n*(P+9-s+1)) families each with p+g—s+1 distinct s-subsets
of V(H). And, for each one, we spend (m(n + (p + g — s)s)) steps to construct
every H', O(pnm?) to check if H" is (p, q)-intersecting, and O(nm) to compute
its core. For Condition (ii), the complexity is O(pnmP+9=*(p +- q — s)P*1). The
overall time complexity is the sum of both.

Theorem 3.3 deals the case s > ¢. Analogue to the previous paragraph,
the complexity of testing Condition (i) is O(mn¥P+!)(n + g(p + 1))), because
it is not necessary to check if H” is (p,q)-intersecting, and O(pnmPpP+!) for
Condition (¢¢). For recognizing (p, g, g)-Helly hypergraphs we use the algorithm
which follows directly from Corollary 4.1, and it has the same complexity of
Condition (Z) of Theorem 3.3.

6 Conclusions

We have described a characterization for (p, g, s)-Helly hypergraphs, which gen-
eralizes the characterization of [2] for p-Helly hypergraphs. The characterization
leads to a polynomial-time algorithm for deciding if a hypergraph is (p, q, s)-
Helly, whenever p and ¢ are fixed, even if s is variable. In contrast, recognizing
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if a hypergraph is (p, g, s)-Helly hypergraph has been shown to be NP-hard,
whenever p or g are variable, even if s is fixed but arbitrary [6].

However, the above results leave unsolved the problem posed by Tuza in [12]
to describe a structural characterization for (2, ¢, ¢)-Helly hypergraphs. In par-
ticular, what is the complexity of recognizing (2, ¢, ¢)-Helly hypergraphs.
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