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Abstract

An edge irregular total k-labeling of a graph G = (V, E) is a la-
beling f : VUE — {1,2,...,k} such that the total edge-weights
wt(zy) = f(z) + f(zy) + f(y) are different for all pairs of distinct
edges. The minimum k for which the graph G has an edge irregular
total k-labeling is called the total edge irregularity strength of G.

In this paper, we determine the exact value of the total edge
irregularity strength of the categorical product of two paths P, and
Pr.. Our result adds further support to a recent conjecture of Ivanéo
and Jendrol.

Keywords : irregularity strength, edge irregular total labeling, total edge
irregularity strength, categorical product.

1 Introduction and Definitions

We consider finite undirected graphs G = (V, E'} without loops and multiple
edges with vertex-set V(G) and edge-set E(G), where |V(G)| = p and
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|E(G)| = q. The degree of a vertex z is the number of edges that have z
as an endpoint, and the set of neighbors of z is denoted by N(z).

By a labeling we mean any mapping that carries a set of graph elements to
a set of numbers (usually positive integers), called labels. If the domain is
the vertex-set or the edge-set, the labelings are called respectively vertez
labelings or edge labelings. If the domain is V' U E then we call the labeling
total labeling. Thus, for an edge k-labeling o : E(G) — {1,2,...,k} the
associated vertex-weight of a vertex z € V(G) is '

(@)= Y olay)

yEN(z)

and for a total k-labeling ¢ : V(G) U E(G) — {1,2,...,k} the associated
edge-weight is
wiy(zy) = ¢(z) + p(zy) + P(¥).

Chartrand et al. in [6] introduced edge k-labeling of a graph G such that
w(z) # w(y) for all vertices z,y € V(G) with = # y. Such labelings were
called irregular assignments and the irregularity strength s(G) of a graph G
is known as the minimum & for which G has an irregular assignment using
labels at most k.

The irregularity strength s(G) can be interpreted as the smallest integer k
for which G can be turned into a multigraph G’ by replacing each edge by
a set of at most k parallel edges, such that the degrees of the vertices in G’
are all different.

This parameter has attracted much attention (1], (2], (4], [7], (8], [9], [11].
Finding the irregularity strength of a graph seems to be hard even for
graphs with simple structure, see a survey article by Lehel [14].

Motivated by these papers and by a book of Wallis [19], Baga et al. in
[3] started to investigate the total edge irregularity strength of a graph, an
invariant analogous to the irregularity strength for total labelings.

A total k-labeling ¢ is defined to be an edge irregular total labeling of
a graph G if for every two different edges zy and z'y’ of G one has
wty(zy) # wity(z'y’). The minimum k for which the graph G has an
edge irregular total k-labeling is called the total edge irregularity strength
of G, tes(G).

Let ¢ be an edge irregular total k-labeling of G = (V,E). Since 3 <
wi,(zy) = ¢(z) + p(zy) + ¢(y) < 3k for every edge zy € E(G), we have
|E(G)| < 3k — 2 which implies tes(G) > [[ZQ142].
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If z € V(G) is a fixed vertex of maximum degree A(G), then there is
a range of 2k — 1 possible weights ¢(z) + 2 < wt,(zy) < @(z) + 2k for the

A(G) edges zy € E(G) incident with = which implies tes(G) > [9395&] .

So, we have that

tes(G)zmax{[lE(GgH?], [A(Gz)ﬂ]} W

The authors of [3] determined the exact value of the total edge irregularity
strength for certain families of graphs, namely paths, cycles, stars, wheels
and friendship graphs. They posed the problem to determine the total edge
irregularity strength of trees. Recently Ivanéo and Jendrol [10] proved that
for any tree T the total edge irregularity strength is equal to its lower
bound, i.e.

tes(T) = max{l-lE(Ta),l +2‘|, I‘A(T2) + 1'|} .

Moreover, they posed the following conjecture.

Conjecture 1 [10] Let G = (V, E) be an arbitrary graph different from Ky
and mazimum degree A(G). Then

tes(C) = max{ [|E(Gg| + 2]’ [A(Gz) + 1] } .

Note that for K5 the maximum of the lower bounds is 4 while tes(Ks) = 5,
(see Theorem 7 in [3]). Conjecture 1 has been verified for complete graphs
and complete bipartite graphs by Jendrol, Miskuf and Sotsk in [12] and
[13], and for the Cartesian product of two paths by Miskuf and Jendrol in
[15]. Brandt et el in [5] proved Conjecture 1 for large dense graphs, i.e.

a1 |EG)+2 . A(G)+1
for graphs G with L(s)' < (EL .

Motivated by the papers [7], [15] and [18] we investigate the total edge
irregularity strength of the categorical product of two paths P, x P,,. This
paper adds further support to Conjecture 1 by demonstrating that the
categorical product P, x P, has total edge irregularity strength equal to
[|E§P,. xaP,..)|+2]
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2 Main Result

For integers a and b let [a,b] be an interval of integers =, a < z < b.
In this section we deal with a categorical product of two graphs. The
categorical product G x H of two graphs G and H is the graph with vertex
set V(G) x V(H), where two vertices (u,u’) and (v,v’) are adjacent if and
only if u,v are adjacent in G and ', v’ are adjacent in H (see e.g. [16] or
(17]). If we consider graph G as the path P, with V/(P,) = {z;: € [1,n]},
E(P,) = {zizit1 : i € [I,n — 1]} and graph H as the path P, with
V(Pm) = {y; : j € [1,m]}, E(Pm) = {y;yj+1 : § € [1,m — 1]} then
V(Pn x Pp) = {(zi,y;) : ¢ € [1,n], j € [1,m]} is the vertex set of P, X Pp,
and E(P, X Pn) = {(zi,y;)(zx, ) : 4,k € [L,n], 5l € [1,m], |i — k| =
1, |7 —!| = 1} is the edge set of P, x P,;,. So, P, x P, is the graph of order
nm and size 2(n — 1)(m — 1). As the maximum degree A(P, x P,) =4
then from (1) it follows that tes(P, x Pp) > [Mé'"—_lﬁ] The main

goal of this paper is to prove equality.

Theorem 1 Let m,n > 2 be positive integers and P, x P, be the categor-
ical product of two paths P, and P,,. Then

tes(Pn x Pr) = |'2(n—1)(m—1)+2‘|‘

3

Proof. Let m,n > 2 be positive integers and let k = I-—(—)-(—L-2 n-l ;""1 "‘2],

We split the edge set of P, x P, into mutually disjoint subsets A; and B;,
where

Ai = {(2i, ) (i1, Y54+1) 1 § 2 1 0odd} U {(zi, Yj+1)(Tis1,95) : § = 2 even}
forie (1,n —1] and

B; = {(zi,y541)(®it1,95) 1 § 2 1 0dd} U {(@:,y5) (i1, Yj+1) 1 § = 2 even}
forie(l,n-1].

n—-1
Clearly, |4;| = |Bil =m —1and | {A;UB;} = E(P x Pn).
t=1

Because the graphs P,, x P, and P, x P,, are isomorphic, it is sufficient
to prove the statement for m < n. Let us distinguish two cases.
Case 1. m and n have the same parity, 2<m <n

It is easy to see that for m = n = 2 the total edge irregularity strength is
2. Now, for m > 2 and n > 3 we construct the function ¢ as follows:
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(1 ifi=1and j is even

21

([41-1)m+42, - #1<i<|2)eandjisodd

[-’é‘-]+(|_%]-1)m+-2i, if 2<i<|%) and jis even

k— |25t |m - 22l if [3]+1<i<mn, and
e((ziyy5)) = { J has the same parity as m

k—|2==lim—m+[4], if |2]+1<i<n-—1, and
j has different parity as m

k- moizl

4=, if i=n, and

J has different parity as m.

\

Observe that under the vertex labeling ¢ the weights of the edges
(i) from the set By admit the consecutive integers from 2 to m,

(i) from the set A; and Ay receive the consecutive integers from [Z] +
m(i—1)+2 to [Z] 4 mi forevery mand 1< i < |Z] -1 odd,

(i) from the set B; and B,y receive the consecutive integers from [Z] +
m(i — 1) + 2 to [ 3] + mi for every m and 2 <i < 2] — 1 even,

(i) from the set Az, for |5 ] even (respectively, B s, for 3] odd)
admit the consecutive integers from [%] + m (|3] —2) + 2 to [B] +
m (13 - 1),

(v) from the set A3 for | 3] odd (respectively, B| g for |§] even) admit
the consecutive integers from k + 2 — 3 to k + 3t if m is even and from
k+2—mto k if mis odd,

(vi) from the set B| 5 for | 5] odd (respectively, A| g for | 3| even) admit
the consecutive integers from k + 2 — % to k + % if m is even and from
k+2—mtokif mis odd, :

(vii) from the set A 24, for 3] even (respectively, By 3|4 for |3] odd)
admit the consecutive integers from 2k —m(n — |3[) + [ 5] + 2 to 2k —
m(n—1-[3))+ 12},

(viii) from the set A; and A;,; receive the consecutive integers from 2k +
m(i—n)+| 3] +2 to 2k+m(i+1-n)+| 3] foreverymand (3| <i<n-—1
even,

(iz) from the set B; and B,y receive the consecutive integers from 2k +
m(i—n)+| %] +2to2k+m(i+1-n)+| %3] foreverymand (3] <i<n-1
odd,
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(z) from the last set A,_; for n odd (respectively, B,_, for n even) admit
the consecutive integers from 2k — m + 2 to 2k.

To complete the labeling to a total one we label the edges of the graph
P, x P, according to which of the ten families they belong to:

(i) We label the edges from the set B; by the label 1 to obtain the first
m — 1 edge-weights [3,m + 1].

(it) The edges from the set A; (respectively, A;;1) we label by the label
2 — [2] +i(m — 2) (respectively, by the label m — [3] + 1 +i(m — 2) for
1<i<|%]-10dd. So, we create the edge-weights from the integer interval
[2i(m—1)—m+4, 2i(m—1)+2] (respectively, [2i(m—1)+3, 2i(m—1)+m+1].

(iti) The edges from the set B; (respectively, B;y1) we label by the label
2 — [%] + i(m — 2) (respectively, by the label m — [3] + 1 + i(m — 2) for
2 <i < |3)—1 even. We create the edge-weights from the integer interval
[2i(m—1)—m+4, 2i(m—1)+2] (respectively, [2i(m—1)+3, 2i(m—1)+m+1]).

(i) We label the edges from the set A|a)_; for [3] even (respectively,
B|g)_ for [5] odd) by the label |2 }(m —2) —m +4 — [F] to obtain the
edge-weights from the interval [(2|2] — 3) (m—1)+3, (2[3] — 2) (m—1)+
2].

(v) We label the edges from the set A 3 for |5 odd (respectively, Bz}
for | 2| even) by the label 2|3 |(m — 1) — k + 3 — 32* if m is even and by
the label (2|%] — 1) (m —1) —k+ 2 if m is odd to create the edge-weights
from the interval {(2{2] —2) (m - 1) +3,(2[3] -1) (m—1) +2].

(vi) The edges from the set By for | 5] odd (respectively, A 5 for | 3]
even) we label by the label (2|%] —2) (m — 1) — k + 3 if m is even and
by the label (2|2] —2)(m — 1) + 2m — k if m is odd. We obtain the
edge-weights from the interval [(2|2) — 1) (m — 1) +3,2[3](m — 1) +2].

(vii) We label the edges from the set Az, for [3] even (respectively,
By 3|41 for | ] odd) by the label |3 ](m—2)+mn+1-2k—|3] to create
the edge-weights from the interval (2|3 |(m—1)+3, (23] + 1) (m—1)+2].

(viii) For |3] <4 < n—1 even, we label the edges from the set A; (re-
spectively, A;;,) by the label m(n — 1) +i(m —2) +2 — 2k — | 3] (re-
spectively, by the label mn +i(m — 2) + 1 — 2k — | %) to create the edge-
weights from the interval [2i(m — 1) — m + 4,2i(m — 1) + 2] (respectively,
[2i(m — 1) + 3,2i(m — 1) + m + 1]).

(iz) With the same technique, for [$] < i <n —1 odd, we label the edges
from the set B; (respectively, B;41) by the label m(n — 1) 4+ i(m — 2) +
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2 — 2k — | ] (respectively, by the label mn +i(m —2)+1 -2k — [Z]) to
obtain the edge-weights from the interval [2i(m — 1) —m + 4, 2i(m — 1) + 2]
(respectively, [2i(m — 1) + 3,2i(m — 1) + m + 1]).

(z) We label the edges from the set A,_; for n odd (respectively, from the
set B,_; for n even) by the label 2(n —1)(m —1) + 2 — 2k to obtain the last
m — 1 edge-weights, i.e. the edge-weights from the interval [2(n — 1)(m —
1) =m+4,|E(P, x Pn)| +2].

Now, it is not hard to see that all vertex and edge labels are at most k and
the edge-weights of the edges from the sets A; and B;, i = 1,2,...,n -1,
are pairwise distinct and create the integer interval 3, |E(P, X Pp)| + 2].
Thus, the resulting total labeling is desired edge irregular k-labeling.

Case 2. m and n have a different parity, 2<m < n

For 2 £ m < n, define the function 1 in the following way:

(4, ifi=1and j is even
(M$1-1)m+ &L, if 1 <i<|[2)andjisodd

21+ (] -1)m+4, if 2<i< %] and j is even
k-2t m-m+[4], if [3)+1<i<n—1, and
Y((zi, ¥5)) = ¢ j has the same parity as m
k—"‘—;i, if i =n, and

j has the same parity as m

k— |25 jm — meg=l, if [3]+1<i<n, and

7 has different parity as m.

\

It is a matter for routine checking to see that under the vertex labeling
the edges from the sets A; and B;, for ¢ = 1,2,..., 3] — 1, receive the
weights like in (%), (%), (%) and (iv) from Case 1. For another sets A; and
B;, fori=|%],|5]+1,...,n -1, we have.

(v) The edges from the set A 5) for |5 odd (respectively, Bz for (3]
even) admit the consecutive integers from k + 2 — m to k if m is even and

fromk+2—"‘T'1tok+ﬂ§ﬂifmisodd.

(vi) The edges from the set By, for [3] odd (respectively, Ag) for 3]
even) admit the consecutive integers from &k + 2 — m to k if m is even and
from k +2 — 251 to k + = if m is odd.
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(vii) The edges from the set A2, for | 3] even (respectively, B|z )1 for
|3} odd) admit the consecutive integers from 2k — m(n — [3]) + [F] +2
to2k—m(n—1-|2])+[Z].

(viii) The edges from the set A; and A;4; receive the consecutive integers
from 2k +m(i —n) + [3] + 2 to 2k + m(i + 1 —n) + [F] for every m and
3] <i<n-—1even

(iz) The edges from the set B; and B;;, receive the consecutive integers
from 2k +m(i —n) + [2] +2 to 2k + m(i + 1 —n) + [ F] for every m and
3] <i<n-1odd

(z) The edges from the set A,—; for n odd (respectively, B,,_; for n even)
admit the consecutive integers from 2k — m + 2 to 2k.

Now, we complete the edge labels and create a total labeling of the graph
P, x Pp,. The edges from the sets A; and By, for i =1,2,...,|%2] -1, we
label by the same manner like in (i), (i), (%) and (%) from Case I and
we obtain their edge-weights from the interval [3, (2|3] —2) (m — 1) +2].
Another edges from the sets A; and By, for i = | 3], (3] +1,...,n—1, we
label as follows.

(v) Each edge from the set A 5} for |5] odd (respectively, B|z) for [§]
even) we label by the label (22| — 1) (m—1)+2—k if m is even and by the
label (2| 2] — 2) (m~1)+1—~k+25L if m is odd. Thus, we obtain the edge-
weights from the interval [(2(2] —2) (m—1)+3,(2|2] - 1) (m—-1)+2].

(vi) The edges from the set Bz, for | 3] odd (respectively, A 3 for 3]
even) we label by 2|2 |(m —1) +2—k if m is even and by (2|3] — 1) (m—
+1-k+ ﬂ2;1- if m is odd. We receive the edge-weights from the interval
(23] -1) (m-1)+3,2[F|(m—-1)+2].

(vii) We label the edges from the set A 3, for | 3] even (respectively,
By 3)41 for [3] odd) by |3](m —2) + mn + 1 — 2k — [F] to create the
edge-weights from the interval [2|2](m — 1) +3,(2|3] + 1) (m - 1) +2].

(viti) For |3} < i < n —1 even, we label the edges from the set A; (re-
spectively, Ai;1) by the label m(n — 1) +i(m — 2) + 2 — 2k — [F] (re-
spectively, by the label mn +i(m — 2) + 1 — 2k — [2]) to create the edge-
weights from the interval [2i(m — 1) — m + 4,2i(m — 1) + 2] (respectively,
[2i(m — 1) + 3,2i(m — 1) + m + 1]).

(iz) For |2] <i < n—1 odd, we label the edges from the set B; (respec-
tively, Bi+1) by the label m(n — 1) +i(m — 2) + 2 — 2k — [] (respec-
tively, by the label mn + i(m — 2) + 1 — 2k — [%]) to obtain the edge-
weights from the interval [2i(m — 1) —m + 4, 2i(m — 1) + 2] (respectively,
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[2i(m — 1) + 3, 2i(m — 1) +m + 1]).

(z) The last m — 1 edges from the set A,_, for n odd (respectively, from
the set B,,_; for n even) we label by the same manner like in previous case
and for edge-weights we obtain the same interval.

As in Case 1 it is straightforward to see that the resulting total labeling
has the required properties. This concludes the proof. O
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