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Abstract. A graph G of order n is called a bicyclic graph if G is con-
nected and the number of edges of G is n + 1. In this paper, we study the
lexicographic ordering of bicyclic graphs by spectral moments. For each
of the three basic types of bicyclic graphs on a fixed number of vertices
maximal and minimal graphs in the mentioned order are determined.

Keywords: bicyclic graph, spectral moment, lexicographical order.

AMS: 05C50

1 Introduction

In this paper, we will only consider simple graphs. We will generally follow
[1] for undefined notation and terminology. The path and cycle with n
vertices are denoted by P, and C,, respectively. The minimum length of
a cycle (contained) in a graph G is the girth ¢(G) of G. Suppose H C G
and let Ng(H) be the number of subgraphs of G, which isomorphic to H.

Let A1(G), A2(G), ..., An(G) be the eigenvalues in non-increasing order
of a graph G. The number Y"1, M(G) (k=0,1,...,n—1) is called the kth
spectral moment of G, denoted by Si(G). Let S(G) = (So(G), S1(G),...,
Sn-1(G)) be the sequence of spectral moments of G. For two graphs Gy,
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G2 we shall write G; =g G; if S;(G1) = Si(Gz) for i = 0,1,...,n — 1.
Similarly, we have G; <s G2 (G; comes before G2 in an S-order) if for
some k(k = 1,2,...,n — 1) we have S;(G1) = S;(G2)(t = 0,...,k —1)
and Sk(G1) < Sk(Gz2). We shall also write G; <5 G2 if G; <5 G2 or
G =5 Go.

D. Cvetkovié et al [3] present a catalogue of the 236(connected) bicyclic
graphs on eight vertices. Up to now, few results on the S- order of graphs
are obtained. D. Cvetkovié et al [4] obtained the following results.

Theorem 1 ([4]) In an S-order of trees on n wvertices, the first graph is
the path P, and the last graph is the star Ky n_1.

A graph G of order 7 is called a unicyclic graph if G is connected and
the number of edges of G is n. Let U(n) be the set of all unicyclic graphs
on n vertices. The set of unicyclic graphs on e + f vertices which contain
a cycle C, will be denoted by U.s. Let Ey be the graph obtained by the
coalescence of a cycle C. with a path Py, at one of its end vertices. Let
Fey be the graph obtained by the coalescence of a cycle C. and a star K ¢
at its central vertex.

Theorem 2 ([4]) In an S-order of Uey, the first graph is Ee; and the last
graph is Fey.

Theorem 3 In an S-order of graphs in U(n), the first graph is C,, and the
last graph is F3 3.

Proof. Suppose that G € U(n) and G # C,. Since N¢, (P3) = n and
Ng(Ps) 2 n+ 1, S4(C,) < S4(G). Hence C,, <s G. If S3(G) = 6, then
G € Us n—3. By Theorem 2, F3,_3 is the last graph in U(n). O

Bicyclic graphs are connected in which the number of edges equals the
number of vertices plus one. Let B(n) be the set of all bicyclic graphs on
n vertices. In this paper, we study the S- order of bicyclic graphs. We will
determine the first and the last graphs in the S-order in the class B(n).
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B(p,q) B(p,m,q)

Fig. 2.1: B(p,q) and B(p, m,q).
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Fig. 2.2: B(Pr41,Piy1, Prsa).

2 Three classes of bicyclic graphs and some
basic lemmas

A graph G of order n is called a bicyclic graph if G is connected and the
number of edges of Gis n + 1.

It is easy to see from the definition that G is a bicyclic graph if and only
if G can be obtained from a tree T (with the same order) by adding two
new edges to T'.

A pendant vertex of a graph is a vertex of degree 1.

Let G be a bicyclic graph. The base of G, denoted by G, is the (unique)
minimal bicyclic subgraph of G.

It is easy to see that G is the unique subgraph of G containing no
pendant vertices, while G can be obtained from G by attaching trees to
some vertices of G. It is well known that there are the following three types
of bicyclic graphs containing no pendant vertices [5]:

Let B(p, ) be the bicyclic graph obtained from two vertex-disjoint cycles
Cp and C, by identifying vertices u of C, and v of C,(see Fig 2.1).

Let B(p,m,q) be the bicyclic graph obtained from two vertex-disjoint
cycles Cp, and C, by joining vertices u of Cp and v of C, by a new path
uU U2 . . . Um—1v With length m(m > 1)(see Fig 2.1).

Let B(Prt+1, Pi+1, Pm+1)(1 < m < min{k, }) be the bicyclic graph ob-
tained from three pairwise disjoint paths from a vertex z to a vertex y.
These three paths are zvva...vk—1y With length k, zujus ... u—1y with
length ! and zwyws ... wn—1y with length m(see Fig 2.2).

Now we can define the following three classes of bicyclic graphs of order
n.

Bi(n) = {G € B(n)|G = B(p, q) for some p > 3 and q > 3},
By(n)={G e B(n)|§ = B(p,m,q) for some p > 3,¢ > 3 and m > 1},

By(n) = {G € B(n)IG = B(Pis1,Piy1, Prya) forsome1 < m <
min{k,}}.

The union of graphs Gy,...,Gk, written G; U ... U G, is the graph
with vertex set UX_,V(G;) and edge set US_, E(G; ) Further, we write

215



G1Y... WG} to denote Gy U...UGj with constrains that V(G;)NV(G;) =
0,1 <i#j <k Itis easy to see that

B(n)= By(n) WBa(n) WB;(n). Furthermore, B;(n),i = 1, 2, 3, consists of
two types of graphs: one type, denoted by B (n), are those graphs whose
bases are spanning subgraphs; the other type, denoted by B} *(n), are those
graphs whose bases are not spanning subgraphs.

Now we quote some basic lemmas which will be used in the proofs of
our main results.

Lemma 1 ([2]) The kth spectral moment of G is equal the number of closed
walks of length k.

Lemma 2 ([2]) For every graph, we have Sy = n,S) = 1,52 = 2m,S; =
6t,S4 = 2m+4p+8q, where n,l,m,t,p, q¢ denote the number of vertices, the
number of loops, the number of edges, the number of triangles, the number
of pairwise adjacent edges and the number of quadrengles of G, respectively.

Lemma 3 ([6]) Suppose that N is a positive integer. The number of par-
titions of N divided into r ordered parts with repetitions is (I:_‘ll).

Let Go be a minimal bicyclic graph and |V(Gy)| = {(4 <1 < n). Sup-
pose that u, v are two vertices of Go with d(u) = §(Go) and d(v) = A(Gp).
Let G be the graph obtained from Gy by attaching a new path uu; ... usq—y
at u. Suppose that v is the central vertex of star K; ,—;. Let Gg* be the
graph obtained from Go by attaching K ,,_; at v.

Lemma 4 Suppose G € B(n). If G = Gy, then Gy 25 G 25 G§*.

Proof. Set |V(Gg)| = n—m and Gy = Gy. Let G; be obtained from
Gi-1 by joining u;_j(such that dg,_, (ui-1) = 6(Gi-1)) to an isolated
vertex w;—1, and G} be obtained from Gj_; by joining v._l(such that
dg;_, (vi-1) = A(Gg_l)) to an isolated vertex wi-1, ¢ = 1,...,m. Then
Ng,(Ps) = Ng,_,(Ps) + 6(G;-1) and Ng:(P3) = NG;_l(P3) + A(Gi-1),
i = 1,...,m. By Lemma 2, S4(G;) < S4(G}), ¢+ = 1,...,m. Thus
S4(Gm) < S4(G) £ S4(G},). Hence G, Xs G <s GI,. By definitions
of G§ and G3*, G§ = G, and G§* = G.,,. Hence, Lemma 4 is true. O

Lemma 5 Suppose that G; € B} (n) and G, € Bf*(n), i = 1,2,3. If
min{g(G;), 9(G})} = 5, then G; <5 G}, i = 1,2,3.

Proof. Since S;(G;) = S;(G}),j € {0,1,2, 3}, it suffices to show that

S4(G’) > 84(Gi),t = 1,2,3. By Lemma 4, G' =s G; and S4(G}) >

S4(G' ),i=1,2,3. Since Ng, (Ps) = n+5 and Ng;- (P3) =n+6, S4(G1) =
l

216



6n+22 and S4(C’¥71*) = 6n+26. Since Ng,(P3) = n+4and N4+ (P3) = n+5,
i

S4(G;) = 6n + 18 and S.;(E'T) = 6n + 22,7 = 2,3. Hence S4(G;) <
Sa(@l") < S4(Gy), i = 1,2,3. Therefore, Lemma 5 is true. O

3 Main results

A graph H’ which is obtained from a graph H by replacing some edges of
H with independent paths between their vertices is called a subdivision of
H. Let TH = {H'|H’ is a subdivision of H}. Define

Tu(G) = {T|T € G,T € TKy 3,|E(T)| < k},
T'w(G) = {T|T € G,T € TK, 4, |E(T)| < k}.

Define

Xi(G) = {v|v € V(G), G has four Piy; with v as an end-vertex .}
Yi(G) = {v|v € V(G), G has three Py with v as an end-vertex .}
Zi(G) = {v|v € V(G), G has two P;;, with v as an end-vertex .}

If G € Bf (n)u B (n)U B (n) and i < | ZL)|, then
41X:(G)| +31Yi(G)| + 2|1Z:(G)l _ 2n +2|Xi(G)] +|Yi(G)|
2 2
1)

~] Y

~~
B(3,3) B**(3,3)

Ng(Piy1) =

Fig. 3.1 B(3,3) and B**(3,3)

Theorem 4 In an S-order of graphs in By(n), B(| 242 ], [242]) is the first
graph and B**(3,3) is the last graph (see Fig. 3.1).

Proof. By Lemma 5, It suffices to show that B(| 2$ ], [2£1]) is the first
graph of Bf (n).

Claim 1 Suppose G; € B (n),: = 1,2. If g(G1) < g(G2), then G, <g
Gy.
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By Lemma 1, Si(G;) are only related to the numbers of connected
subgraphs (such that the numbers of edges of them are at most %) in G;,
i = 1,2. First suppose k < g(G;). Since tree subgraphs only generate
even closed walks, Si(G1) = Sk(G2) = 0 when k is odd. Furthermore, for
each tree T C G with |[E(T)| < %, T can generate some closed walks of
even length k. These tree subgraphs of G; are: paths P,y ;(i < %), trees
Te Ti (Gj)and T’ € Té(Gj),j =1,2.

Since i < £, |X:(G;)| = 4(i — 1) + 1,|Yi(G;)| = 0 for j € {1,2}. By (1),

NGj(Pt'+l) =n+4i_31j=1’2' (2)
Since £ < [ﬂ%lj,
T4 (Gh) = Tg(Gg),Té(Gl) = Té(Gg). (3)

And for each T € T4 (G;), T' € Té(Gj), by Lemma 3, we have

Ne,(T) = 4 ('E(Tg| - 1) Ng,(T') = ('E(T2| - 1) =12 ()

By (2),(3) and (4), when k < g(G;) and k is even, Sx(G)) = Sk(G2).

Now suppose k£ > g(G,), and we consider two cases.

Case 1: g(G,) is odd.

Since Ci can generate 2k closed walks of length k, Sg(c,)(G1) = 2¢(G1).
Since g(G1) < 9(G2), Sy4(c,)(G2) = 0. So Sy(c,)(G1) > Sg(c,)(Gz2)- Hence
Gy <s Gl.

Case 2: g(G,) is even.

G
Since NGI(Pﬂng...l) = 2n+ﬂg(01)—1;.2x(ﬂ1‘u—lll =n+ 2Q(G1) — 3,

when 7 < %G—‘l, we have
NGJ(P1+1)=n+47'—31.7= L,2. (5)

By (3),(4) and (58), SgG,)(G1) = Syg(6,)(G2) + 29(G1). Thus G2 <s G1.
Hence Claim 1 is true.

If G € Bf (n), then g(G) < &1, B(| 2], [241]) is the only graph in
Bf(n) with girth [2f!]. By Lemma 5 and Claim 1, B(| 2, [2#L]) is
the first graph in an S-order of graphs in B;(n).

For every G € By(n), S3(G) < 12. If S3(G) = 12, then G = B(3,3). By
Lemma 4, G <5 B**(3,3). So B**(3,3) is the last graph of B;(n). Hence
we complete the proof of Theorem 4. O
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Define H, 1(G) = {H|H C G, H is obtained from P4, through attach-
ing its two end vertices to an inner vertex (i.e. not its end vertex) of P;y
and Pj4, respectively, |E(H)| <1 }. Define GF,, = {G|G € Bf (n),G =
B(P’ q, m)} and g;:m = {G|G € B;'(n))G = B(Pk+laf,l+11 Pm+l)}°

Lemma 6 Suppose G;,G> € g;m,j =2,3. If 9(G1) < 9(Ga), then Gy <s
G;.

Proof. First suppose that k¥ < g(G1) and k is even. Tree subgraphs of
Gj,j = 1,2, which can generate closed walks of even length k are : paths
P1(i < k), trees T e Tx(G;) and H € H,,, & (G;).

When £ < [ﬂ%lj, we have
T4 (G1) = T4(G2), Hon 4 (G1) = H,n 4 (Go). (6)

Foreach T € Tg (Gj), by Lemma 3, if |[E(T)] < m + 2, then

Moy =2 () 71) =12 ™

And if |[E(T')| > m + 2, then

Ne,(T) =2 ('E(Tg'_ 1) +2 ('E(T)|2'm'1) d=12 (8

For each H € H,,, 5(G;),

Ney(at) = (PN Zm=1) 12 ©

By (7) and (8), Ng,(T) is only related to m and the number of edge of T';
by (9), Ng,(H) is only related to m and the number of edge of H.

Claim 2 Suppose G € G},,,j =2,3. Ifi < [312—6-2], then

_ n+3i-2, i—1<m
NG(Pz‘+1)'—{n+4i—m—3. i-1>m (10)

By (1), it suffices to calculate | X;(G)| and |Y;(G)| for G € g,i','m,j =2,3.
First suppose G € G .. Let G = B(p,q,m).
If m+1 > 2i, then | X;(G)| =0, |Yi(G)| = 4(: — 1) + 2i.
If i <m+1 < 2i, then | X;(G)| =2i — (m+1), |Yi(G)| =4(i — 1) + 2(m +
1) — 2i.
If m+1 < ¢, then | X;(G)| = 4[i — (m + 1)) + m + 1,|Yi(G)| = 4m.
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Now suppose G € G3,,. Suppose G = B(Pi41, Piy1,Pms1) and 1 <
m <l < k. Suppose i < I_ﬂgij In what follows, we consider two cases.
Case 1: 21 —1)<i-1.
If m +1 > 2i, then | X;(G)| =0, |Yi(G)| =6(i - 1)+ 2.
Ifi<m+1<2i, then | X;(G)| =2 — (m+ 1), |Yi(G)| =2m + 2i - 2.
If m + 1 < i, then|X;(G)| = 4i — 3(m + 1), |Y:(G)| = 4m.
Case 2: [-1<2(i—-1).
First suppose 2(i —1) < k—1. Leta; =2i - 1-1, a2—2z m—1.
If m+1 2> 24, then | Xi(G)| = a1, |Yi(G)| =2(: = 1 —a;) + 4i — 2.
If i <m+1 < 2, then | X;(G)| = a1 + a2, |Yi(G)| =2(i —1—a1) + (m +
1-ag)+2(G—1).
If m+1 < i, then | X;(G)| = (m+1)+4[i— (m+1)]+ay, |Yi(G)| = 2(m—a,).
Now suppose 2(: —1) > k—1. Letag =2i —1—k.
If m > 2i, then | X;(G)| = ay +a3,|Yi(G)| = 2(i—1-a1) +2(: —1—a3) +2i.
If i <m+1< 2, then | X;(G)| = a) + a2 + a3, |Yi(G)| =2(i -1 —-ay) +
(m+1-a2)+2(i-1-a3).
If m+1 <4, then | X;(G)| = (m + 1) + 4[(: — (m + 1)) + a1 + a3, |Yi(G)| =
2(m - a1) + 2(m — a3).
Using (1), we thus obtain the values of Ng(P;+;) for every case. Hence
Claim 2 is true.

Since g(G1) < g(Gz), when k < g(G1), by (6)-(10), we have S(G1) =

Sk(Ge) for G; € gm,i =1,2,7€{2,3}.

Now suppose & > g(Gl) By (6)-(10), S4(c,)(G1) = Sy(c,)(Ge) +
29(G1). Hence Lemma 6 is proved. O

n—6
B(3,3,1) B**(3,3,1)

Fig. 3.2 B(3,3,1) and B**(3,3,1)

Theorem 5 In an S-order of graphs in GF,,, B(| 2=+t |, [2=2+1] m) is
the first graph. And B**(3,3,1)(see Fig.8.2) is the last graph in an S-order
of graphs in By(n).

Proof.  Suppose G = B(p,q,m) € G3,,. Then g(G) < |2=F+l|
B(| 2=l ], [2=2+1],m) is the only graph with girth [2=2+1| in Gf .
By Lemma 6,

B P m) 25 6.
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Claim 3 Suppose that B(3, 3, m;) are two minimal bicyclic graphs, i =
1,2. If 1 < my < my, then B**(3,3,mp) <5 B**(3,3,m;) <s B**(3,3,1).

By Lemma 2, S;(B**(3,3,m1)) = Si(B**(3,3,mz)) for i € {0,1,2,3}.
The number of pairs of adjacent edges of B**(3,3,m;) are ( n+8 . ) +6—
mi, 1 =1,2. When m; < mgy, we have

(n+82—-m|) +6—m1 > (n+82-m2)+6_m2_

Thus S4(B**(83,3,m,)) = S4(B**(3, 3, m2)). Sincem; > 1, B**(3,3,m;) <s
B**(3,3,1). Hence we complete the proof of Claim 3.

For G € B} *(n), S3(G) = 12 only when G = B(3,3,m;). By Lemma 4
and Claim 3, B**(3, 3, 1) is the last graph in an S-order of graphs in Ba(n).
Hence we complete the proof of Theorem 5. O

&

B(Ps, Ps, P) B (Ps, P3, Py)

Fig. 3.3 B(Ps, Ps, P;) and B**(Ps, P3, Py)

Theorem 6 In an S-order of graphs in B(n), the first graph is B(Prn 222049
Pn-r 2)_ |22 J,Pln-sz) and the last graph is B**(Ps, P3, Py) (Fig. 3.8).
Proof. Let G = B(Pi+1,Pi+1,Pm41) € Bf (n), 1 < m <1 < k. Since
9(G) £ I.E%-ﬂ_l: by Lemma 6, B(Plzt’é'ﬂij_m.;.pP[z:l:'!':ﬂ]_m+1’Pm+l)
is the first graph in an S-order of graphs in G7,.. Since m < |23%] +1, by
(7)-(10), Go = B(Prnzay49) Pa_[nz21- 252 Finza )y ,) is the first graph in
an S-order of graphs in BF (n).

As in the proof of Lemma 5, the first graph must be in B(n) or Bs(n).
If G € By(n), then g(G’) < [%). Since |3] < n - [252], g(G) < g(Go),
where g(Go) = n - [252].

Now we compare Sk(Go) with Sk(G) such that k& < g(G) and & is even.
Let mo = | 252| + 1. Then H oy, 5(Go) = 0. Since k < min{g(Go), 9(G)},
T5(Go)=T; (G). Forevery T € Ty (Go), by (7) and (8), Ng(T) = Ng,(T).

When i < |_9—(29-J < myg, by (10), we have Ng(Piy1) = Ngo(Pi+1)- Then,
Sk(Go) < Sk(G). Since g(G) < 9(Go), Sg(6)(Go) < Sg(c)(G). Hence Gy is
the first graph in an S- order of bicyclic graphs.

For each G € B+"'(n Sa(G) = 12 only when G = B(Pa,Pg, Pz)
By Lemma 4, B**(Ps, Ps, Pz) is the last graph of Bs(n). Then B}*(3,3),
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B3*(3,3,1), B3*(Ps, Ps, P2) are the last graph of Bi(n), Bz2(n), B3(n), re-
spectively. The number of pairs of adjacent edges of them are (";') + 4,
("31) +5, ("7%) + 7, respectively. If n. > 4, then (";) +5> (";%) +7.
By Lemma 2, B3*(Ps, P3, P,) is the last graph in an S- order of bicyclic
graphs. Hence Theorem 6 is true. O
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