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Abstract

Let G be a planar graph with maximum degree A(G). The least
integer k such that G can be partitioned into k edge disjoint forests,
whose each component is a path of length at most 2, is called the
linear 2-arboricity of G, which is denoted by laz(G). we give new
upper bound of the linear 2-arboricity of some planar graphs.
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1 Introduction

In this paper we consider finite simple graphs. Let G be a planar graph
with maximum degree A(G) and minimum degree 6(G). The linear 2-
arboricity of G is the least integer & such that G can be partitioned into &k
edge disjoint forests, whose component trees are paths of length at most 2.
It is denoted by laz(G).

Lih, Tong and Wang [4] studied the linear 2-arboricity of a planar graph
G with maximum degree A and girth g. For planar graph they gave the
following upper bound of the linear 2-arboricity.

Theorem 1. 4] If G is a planar graph, then lap(G) < [(A +1)/2] +12.

Theorem 2. [4] Let G be a planar graph with girth g. If g > 4, then
lag(G) < [(A+1)/2] +6.

For a planar graph without 5-cycles or without 6-cycles, Ma, Wu and
Yu (5] got the following result.
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Theorem 3. [5] If G is a planar graph without 5-cycles or without 6-cycles,
then laa(G) < [(A +1)/2] +6.

For planar graphs without adjacent short cycles, Chen, Tan and Wu (3]
got the following results.

Theorem 4. [3] If G is a planar graph without adjacent 3-cycles, then
lag(G) < [(A)/2] +8.

Theorem 5. [3] If G is a planar graph without adjacent 4-cycles, then
la2(C) < [(A)/2] +10.

Theorem 6. [3] If G is a planar graph that any 3-cycle is not adjacent to
a 4-cycle, then lax(G) < [(A)/2] + 6.

In [7), the upper bound of lay(G) is improved to las(G) < [A/2] + 8 if
A = 0,3(mod 4) and lax(G) < [A/2] + 7 if A =1,2(mod 4). In this note,
we improve the upper bound of la3(G) in Theorem 2 ~ Theorem 6.

2 The Main Results

To get our results, we need the following Lemmas.

Lemma 7. (4] If a graph G can be edge-partitioned into m subgraphs
m

G1,Ga,...,Gm, then lax(G) < 3 lax(G).
i=1

Lemma 8. [2 For a forest T, we have lag(T) < [(A(T) +1)/2].
Lemma 9. (1} For a graph G, we have lag(G) < A(G).

For s > 2, an even cycle C=vjvs...vg,v; is called a 2-alternating cycle
if dc('vl) = dg(va) = ... = dc(‘vzs_l) =2.

Definition 10. A planar graph G is called a (k, 1)-graph if for each of its
nontrivial components H, one of the following holds:

(1) 6(H)=1;

(2) 6(H) = 2 and there exists an edge zy € E(H) such that dg(z) +
de(y)< k or there exists a 2-alternating cycle.

If G is a (k, 1)-graph and each subgraph of G is also a (k, 1)-graph, then
G is called a (k, 1)-hereditary graph.

Lemma 11. Let G be a (9, 1)-hereditary planar graph. Then G has an
edge-partition into two forests Ty, T, and e subgraph H such that, for every
v € V(G):
(1) If dg(v) > 4, thendr,(v) < [de(v)/2]-1 (i =1,2), and dy(v) < 4.
(2) If dg(v) < 4, then dr,(v) < min{2, [de(v)/2]} (i =1,2).
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Proof. We prove the result by induction on [V(G)| + |E(G)|. If |V(G)| +
|E(G)|<5, the result holds trivially. Now let |V (G)|+|E(G)|=6. If A(G)<4,
then let H = G,T) = T, = ¢, the result holds.

Suppose that A(G) > 5, without loss of generality assume that G is
connected. By induction, for any proper subgraph G’ of G, G’ has an edge-
partition into two forests T7,Tj and a subgraph H’, for every v €V(G’),
dp(v) < 4 and if dg/(v) > 4, then dr:(v) < [de(v)/2] — 1(i = 1,2), if
dg'(v) < 4, then dr(v) < min{2, l'dc,w(v)/2]}(z =1,2).

Case 1. §(G) = 1. Let ww € E(G) with d(u) = 1. Define G' = G — uwv.

Subcase 1.1. dy:(v) < 3. Let H=H'+uv, T; =T} (i =1,2).

Ifdg(v) > 5, then dg: (v) > 4, we get that dr, (v) = cbr‘g (v) £ [de(v)/2]-
1< [de(v)/2] - 1,i=1,2.

If dg(v) < 4, then dg:(v) < 3, we have dr,(v) = dr/(v) < min{2,
[de:(v)/2]} < min{2, [da(v)/2]}, i = 1,2.

Ifdg(v) = 5, then dg+(v) = 4, we have dr, (v) = drv(v) < min{2,[4/2]}
=2=[5/2]-1,i=1,2.

Subcase 1.2. dp/(v)=4. We may suppose that dr;(v) < dr;(v). Since
dg/(v) = dg(v) ~ 1 = dry (v) + dry (v) +4, we have dry (v) < (dg(v) - 5)/2.
Let Th =T +uv, To = T' and H = H'. Note that dc(v) > 5.

Ifdg(v) > 5, then dr, (v) = 14dry(v) < 14-(dg(v)-5)/2 < [dg(v)/2]—
1.

If dg(v) = 5, then dpy(v) = 0. dry (v) =1 < [de(v)/2] - 1.

Since dg(u) = 1, dn, (u) = 1 = min{2, [dg(u)/2]}. Obviously, for all
z € V(G), = # {u, v}, dr,(z) = dry(z); and for all z € V(G), dp,(z) =
dry(z), du(z) = d (z)

Case 2. §(G) = 2. Based on the definition of (9,1)-hereditary graph, we
consider two subcases.

Subcase 2.1. There is an edge zy € E(G) such that dg(z) +de(y) < 9.

Define G’ = G — zy, and assume that dg (z) < dg(y).

Ifdey(y) <3,let H=H'+zy, T; =T/,i =1,2. Then with the same
discussion as in 6(G) = 1, the lemma holds

If dg(y) = 4, then 1 < dor(2) < 3 and dgr(2) + dpy(y) + dry(y) < 3.
We may assume that dr;(z) < dry(z). Based on the degree of daf (z) we
consider three cases.

(a) dg'(z) = 3, theny ¢ T1, y ¢ T5. Let T\ = T| + zy, T = T3,
H = H'. Now dg(z) = 4, dr,(z) < 2 = min{2, [de(z) /2]} de(y) = 5,
dry(y) =1 < [de(y)/2] - 1.

(b) dg/(z) = 2, then dry(z) < min{2, [de(z)/2]} =1 (i = 1,2). Since
dri(y) +dry(y) < 1, then y ¢ T] or y ¢ T;. Suppose that y ¢ T{ (the
proof of the case y¢Tyis 51m11ar) Let h =T +zy, T, =T;, H=H'.
T is a forest, dr, (z) S 2 = min{2, [de(z)/2]}, de(y) 25, dn(y) =1<
[da(y)/2] - 1.
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(c) dg'(z) =1, thenz ¢ T|. Let Ty =Ty +zy, To = T3, H = H'.
Obviously, T is a forest and dr, (z) = 1 = min{2, [dg(x)/21}, dr;(y) £ 2,
dr,(y)=dr;(y) + 1, and 5 < dg(y) < 7. lf dy(y) < 1, thendr (y) <2 <
[de(y)/2] — 1. I dry(y) = 2, then dg(y) = 7, dr, (y) =3 = [7/2] - 1.

From the above discussion the lemma holds in case 2.1. In the following
we assume that for all zy € E(G), dg(z) + da(y) > 9.

Subcase 2.2. There is a 2-alternating cycle C = vjvs...v,v1, § > 2,
such that dg(v1) =dg(vs) =... =dg(vas—1) = 2.

Define G' = G — E(C). Let Ty = T} + {v1v2, vavq, ..., V251025 }, T2 =
T} + {vov3, vavs, ..., vosv1 }, and H = H'. Note that T} and T; are forests.
For each z € V(C), dg(z) = dg/(z) + 2, and dr,(vj) = dp(vj) =1 =
min{2, [d¢(v;)/2]}, 7 = 1,3,...,2s — 1. Since dg(v;) > 7, do(v;) >
5,5 =2,4,...,2s, we have dr,(v;) =dr:(v;) +1 < [der(v;)/2] -1+ 1=
[do(v;)/2] —1,i=1,2.

Form the above discussion the result holds. O

Similarly, we can prove that.

Lemma 12. Let G be a (k, 1)-hereditary planar graph (10 < k < 14). Then
G has an edge-partition into two forests Ty, T» and a subgraph H such that,
for every v € V(G):

(1) If do(v) > k — 5, then dr,(v) < [do(v)/2] = [k/2] +4 (i = 1,2),
and dy(v) < k5.

(2) If dg(v) < k — 5, then dr,(v) < min{2, [de(v)/2]} (i =1,2).

By Lemma 11 and Lemma 12, we get the following corollary.

Corollary 13. Let G be a (k,1)-hereditary planar graph (9 < k < 14)
and A(G) > k- 5. Then G has an edge-partition into two forests Ty, To
and a subgraph H such that A(T;) < [A(G)/2] — [k/2] +4 (i =1,2) and
A(H) < k-5.

Theorem 14. Let G be a (k,1)-hereditary planar graph (9 < k < 14), then
laa(G) < [A(G)/2] + [k/2] +1.

Proof. 1f A(G) < k-5, the result hold trivially. Now suppose that A(G) >
k — 4. By Corollary 13, and combining Lemma 7, 8, and 9, we get that:
lay(G) < laz(Th) + lao(T) + laz(H)
< [(A(Ty) +1)/2] + [(A(T2) +1)/2] + A(H)
<2[([A(G)/2] - [k/2]1 +4+1)/2]+ k-5
< JA(G)/2] — [k/2]+6+k -5
= [A(G)/2] + [k/2] + 1.
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It is proved in (6], [5] and (3] that a planar graph without 3-cycles, or
without 5-cycles or without 6-cycles, or a planar graph that any 3-cycle is
not adjacent to a 4-cycle are (9,1)-hereditary graphs. So we have

Corollary 15. Let G be a planar graph without 3-cycles, then lax(G) <
[A)/2] + 5.

Corollary 16. If G is a planar graph without 5-cycles or without 6-cycles,
then lag(G) < [A/2] + 5.

Corollary 17. If G is a planar graph that any 3-cylce is not adjacent to
a 4-cycle, then lag(G) < [(A)/2] + 5.

It is proved in (3] that a planar graph without adjacent 3-cycles is a
(11,1)-hereditary graph and a planar graph without adjacent 4-cycles is a
(13,1)-hereditary graph. So we have

Corollary 18. If G is a planar graph without adjacent 3-cycles, then
laz(G) < [(A)/2] + 6.

Corollary 19. If G is a planar graph without adjacent 4-cycles, then
laa(G) < [(A)/2] +7.
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