The Linear 2-Arboricity of Some Planar Graphs *

Changqing Xu Jingjing Chang

Department of Applied Mathematics, Hebei University of Technology,

Tianjin 300401 P. R. China

chqxu@hebut.edu.cn

Abstract

Let G be a planar graph with maximum degree $\Delta(G)$. The least integer k such that G can be partitioned into k edge disjoint forests, whose each component is a path of length at most 2, is called the linear 2-arboricity of G, which is denoted by $la_2(G)$, we give new upper bound of the linear 2-arboricity of some planar graphs. Keywords: planar graph, linear arboricity, linear 2-arboricity.

1 Introduction

In this paper we consider finite simple graphs. Let G be a planar graph with maximum degree $\Delta(G)$ and minimum degree $\delta(G)$. The linear 2-arboricity of G is the least integer k such that G can be partitioned into k edge disjoint forests, whose component trees are paths of length at most 2. It is denoted by $la_2(G)$.

Lih, Tong and Wang [4] studied the linear 2-arboricity of a planar graph G with maximum degree Δ and girth g. For planar graph they gave the following upper bound of the linear 2-arboricity.

Theorem 1. [4] If G is a planar graph, then $la_2(G) \leq \lceil (\Delta + 1)/2 \rceil + 12$.

Theorem 2. [4] Let G be a planar graph with girth g. If $g \geq 4$, then $la_2(G) \leq \lceil (\Delta+1)/2 \rceil + 6$.

For a planar graph without 5-cycles or without 6-cycles, Ma, Wu and Yu [5] got the following result.

^{*}This research was supported by NSFC(11301135), HNSF(A2011202071) and HNSF(A2012202067) of China

Theorem 3. [5] If G is a planar graph without 5-cycles or without 6-cycles, then $la_2(G) \leq \lceil (\Delta+1)/2 \rceil + 6$.

For planar graphs without adjacent short cycles, Chen, Tan and Wu [3] got the following results.

Theorem 4. [3] If G is a planar graph without adjacent 3-cycles, then $la_2(G) \leq \lceil (\Delta)/2 \rceil + 8$.

Theorem 5. [3] If G is a planar graph without adjacent 4-cycles, then $la_2(G) \leq \lceil (\Delta)/2 \rceil + 10$.

Theorem 6. [3] If G is a planar graph that any 3-cycle is not adjacent to a 4-cycle, then $la_2(G) \leq \lceil (\Delta)/2 \rceil + 6$.

In [7], the upper bound of $la_2(G)$ is improved to $la_2(G) \leq \lceil \Delta/2 \rceil + 8$ if $\Delta = 0, 3 \pmod{4}$ and $la_2(G) \leq \lceil \Delta/2 \rceil + 7$ if $\Delta = 1, 2 \pmod{4}$. In this note, we improve the upper bound of $la_2(G)$ in Theorem 2 ~ Theorem 6.

2 The Main Results

To get our results, we need the following Lemmas.

Lemma 7. [4] If a graph G can be edge-partitioned into m subgraphs G_1, G_2, \ldots, G_m , then $la_2(G) \leq \sum_{i=1}^m la_2(G_i)$.

Lemma 8. [2] For a forest T, we have $la_2(T) \leq \lceil (\Delta(T) + 1)/2 \rceil$.

Lemma 9. [1] For a graph G, we have $la_2(G) \leq \Delta(G)$.

For $s \geq 2$, an even cycle $C=v_1v_2...v_{2s}v_1$ is called a 2-alternating cycle if $d_G(v_1)=d_G(v_3)=...=d_G(v_{2s-1})=2$.

Definition 10. A planar graph G is called a (k, 1)-graph if for each of its nontrivial components H, one of the following holds:

- (1) $\delta(H) = 1$;
- (2) $\delta(H) \geq 2$ and there exists an edge $xy \in E(H)$ such that $d_G(x) + d_G(y) \leq k$ or there exists a 2-alternating cycle.

If G is a (k, 1)-graph and each subgraph of G is also a (k, 1)-graph, then G is called a (k, 1)-hereditary graph.

Lemma 11. Let G be a (9,1)-hereditary planar graph. Then G has an edge-partition into two forests T_1, T_2 and a subgraph H such that, for every $v \in V(G)$:

- (1) If $d_G(v) > 4$, then $d_{T_i}(v) \le \lceil d_G(v)/2 \rceil 1$ (i = 1, 2), and $d_H(v) \le 4$.
- (2) If $d_G(v) \leq 4$, then $d_{T_i}(v) \leq \min\{2, \lceil d_G(v)/2 \rceil\}$ (i = 1, 2).

Proof. We prove the result by induction on |V(G)| + |E(G)|. If $|V(G)| + |E(G)| \le 5$, the result holds trivially. Now let $|V(G)| + |E(G)| \ge 6$. If $\Delta(G) \le 4$, then let H = G, $T_1 = T_2 = \phi$, the result holds.

Suppose that $\Delta(G) \geq 5$, without loss of generality assume that G is connected. By induction, for any proper subgraph G' of G, G' has an edge-partition into two forests T_1', T_2' and a subgraph H', for every $v \in V(G')$, $d_{H'}(v) \leq 4$ and if $d_{G'}(v) > 4$, then $d_{T_1'}(v) \leq \lceil d_{G'}(v)/2 \rceil - 1(i = 1, 2)$, if $d_{G'}(v) \leq 4$, then $d_{T_1'}(v) \leq \min\{2, \lceil d_{G'}(v)/2 \rceil\}(i = 1, 2)$.

Case 1. $\delta(G) = 1$. Let $uv \in E(G)$ with d(u) = 1. Define G' = G - uv. Subcase 1.1. $d_{H'}(v) \leq 3$. Let H = H' + uv, $T_i = T'_i$ (i = 1, 2).

If $d_G(v) > 5$, then $d_{G'}(v) > 4$, we get that $d_{T_i}(v) = d_{T_i'}(v) \le \lceil d_{G'}(v)/2 \rceil - 1 \le \lceil d_{G}(v)/2 \rceil - 1$, i = 1, 2.

If $d_G(v) \leq 4$, then $d_{G'}(v) \leq 3$, we have $d_{T_i}(v) = d_{T'_i}(v) \leq \min\{2, \lceil d_{G'}(v)/2 \rceil\} \leq \min\{2, \lceil d_G(v)/2 \rceil\}, i = 1, 2.$

If $d_G(v) = 5$, then $d_{G'}(v) = 4$, we have $d_{T_i}(v) = d_{T'_i}(v) \le \min\{2, \lceil 4/2 \rceil\}$ = $2 = \lceil 5/2 \rceil - 1$, i = 1, 2.

Subcase 1.2. $d_{H'}(v)=4$. We may suppose that $d_{T'_1}(v) \leq d_{T'_2}(v)$. Since $d_{G'}(v)=d_G(v)-1=d_{T'_1}(v)+d_{T'_2}(v)+4$, we have $d_{T'_1}(v)\leq (d_G(v)-5)/2$. Let $T_1=T'_1+uv$, $T_2=T'_2$ and H=H'. Note that $d_G(v)\geq 5$.

If $d_G(v) > 5$, then $d_{T_1}(v) = 1 + d_{T'_1}(v) \le 1 + (d_G(v) - 5)/2 \le \lceil d_G(v)/2 \rceil - 1$.

If $d_G(v) = 5$, then $d_{T_1}(v) = 0$. $d_{T_1}(v) = 1 < \lceil d_G(v)/2 \rceil - 1$.

Since $d_G(u) = 1$, $d_{T_1}(u) = 1 = \min\{2, \lceil d_G(u)/2 \rceil\}$. Obviously, for all $x \in V(G)$, $x \neq \{u, v\}$, $d_{T_1}(x) = d_{T_1}(x)$; and for all $x \in V(G)$, $d_{T_2}(x) = d_{T_2}(x)$, $d_H(x) = d_{H'}(x)$.

Case 2. $\delta(G) \geq 2$. Based on the definition of (9,1)-hereditary graph, we consider two subcases.

Subcase 2.1. There is an edge $xy \in E(G)$ such that $d_G(x) + d_G(y) \le 9$. Define G' = G - xy, and assume that $d_{H'}(x) \le d_{H'}(y)$.

If $d_{H'}(y) \leq 3$, let H = H' + xy, $T_i = T'_i$, i = 1, 2. Then with the same discussion as in $\delta(G) = 1$, the lemma holds.

If $d_{H'}(y)=4$, then $1\leq d_{G'}(x)\leq 3$ and $d_{G'}(x)+d_{T_1'}(y)+d_{T_2'}(y)\leq 3$. We may assume that $d_{T_1'}(x)\leq d_{T_2'}(x)$. Based on the degree of $d_{G'}(x)$ we consider three cases.

- (a) $d_{G'}(x) = 3$, then $y \notin T'_1$, $y \notin T'_2$. Let $T_1 = T'_1 + xy$, $T_2 = T'_2$, H = H'. Now $d_G(x) = 4$, $d_{T_1}(x) \le 2 = \min\{2, \lceil d_G(x)/2 \rceil\}$, $d_G(y) = 5$, $d_{T_1}(y) = 1 < \lceil d_G(y)/2 \rceil 1$.
- (b) $d_{G'}(x) = 2$, then $d_{T'_1}(x) \leq \min\{2, \lceil d_{G'}(x)/2 \rceil\} = 1$ (i = 1, 2). Since $d_{T'_1}(y) + d_{T'_2}(y) \leq 1$, then $y \notin T'_1$ or $y \notin T'_2$. Suppose that $y \notin T'_1$ (the proof of the case $y \notin T'_2$ is similar). Let $T_1 = T'_1 + xy$, $T_2 = T'_2$, H = H'. T_1 is a forest, $d_{T_1}(x) \leq 2 = \min\{2, \lceil d_G(x)/2 \rceil\}, \ d_G(y) \geq 5, \ d_{T_1}(y) = 1 < \lceil d_G(y)/2 \rceil 1$.

(c) $d_{G'}(x) = 1$, then $x \notin T'_1$. Let $T_1 = T'_1 + xy$, $T_2 = T'_2$, H = H'. Obviously, T_1 is a forest and $d_{T_1}(x) = 1 = \min\{2, \lceil d_G(x)/2 \rceil\}, d_{T'_1}(y) \le 2, d_{T_1}(y) = d_{T'_1}(y) + 1$, and $5 \le d_G(y) \le 7$. If $d_{T'_1}(y) \le 1$, then $d_{T_1}(y) \le 2 \le \lceil d_G(y)/2 \rceil - 1$. If $d_{T'_1}(y) = 2$, then $d_G(y) = 7$, $d_{T_1}(y) = 3 = \lceil 7/2 \rceil - 1$.

From the above discussion the lemma holds in case 2.1. In the following we assume that for all $xy \in E(G)$, $d_G(x) + d_G(y) > 9$.

Subcase 2.2. There is a 2-alternating cycle $C = v_1 v_2 \dots v_{2s} v_1$, $s \geq 2$, such that $d_G(v_1) = d_G(v_3) = \dots = d_G(v_{2s-1}) = 2$.

Define G' = G - E(C). Let $T_1 = T_1' + \{v_1v_2, v_3v_4, \dots, v_{2s-1}v_{2s}\}$, $T_2 = T_2' + \{v_2v_3, v_4v_5, \dots, v_{2s}v_1\}$, and H = H'. Note that T_1 and T_2 are forests. For each $x \in V(C)$, $d_G(x) = d_{G'}(x) + 2$, and $d_{T_1}(v_j) = d_{T_2}(v_j) = 1 = \min\{2, \lceil d_G(v_j)/2 \rceil\}$, $j = 1, 3, \dots, 2s - 1$. Since $d_G(v_j) > 7$, $d_{G'}(v_j) > 5$, $j = 2, 4, \dots, 2s$, we have $d_{T_i}(v_j) = d_{T_i'}(v_j) + 1 \le \lceil d_{G'}(v_j)/2 \rceil - 1 + 1 = \lceil d_G(v_j)/2 \rceil - 1$, i = 1, 2.

Form the above discussion the result holds.

Similarly, we can prove that.

Lemma 12. Let G be a (k, 1)-hereditary planar graph $(10 \le k \le 14)$. Then G has an edge-partition into two forests T_1, T_2 and a subgraph H such that, for every $v \in V(G)$:

- (1) If $d_G(v) > k 5$, then $d_{T_i}(v) \le \lceil d_G(v)/2 \rceil \lceil k/2 \rceil + 4$ (i = 1, 2), and $d_H(v) \le k 5$.
 - (2) If $d_G(v) \leq k 5$, then $d_{T_i}(v) \leq \min\{2, \lceil d_G(v)/2 \rceil\}$ (i = 1, 2).

By Lemma 11 and Lemma 12, we get the following corollary.

Corollary 13. Let G be a (k,1)-hereditary planar graph $(9 \le k \le 14)$ and $\Delta(G) > k-5$. Then G has an edge-partition into two forests T_1, T_2 and a subgraph H such that $\Delta(T_i) \le \lceil \Delta(G)/2 \rceil - \lceil k/2 \rceil + 4$ (i = 1, 2) and $\Delta(H) \le k-5$.

Theorem 14. Let G be a (k,1)-hereditary planar graph $(9 \le k \le 14)$, then

$$la_2(G) \le \lceil \Delta(G)/2 \rceil + \lceil k/2 \rceil + 1.$$

Proof. If $\Delta(G) \leq k-5$, the result hold trivially. Now suppose that $\Delta(G) \geq k-4$. By Corollary 13, and combining Lemma 7, 8, and 9, we get that:

$$\begin{aligned} la_2(G) &\leq la_2(T_1) + la_2(T_2) + la_2(H) \\ &\leq \left\lceil (\Delta(T_1) + 1)/2 \right\rceil + \left\lceil (\Delta(T_2) + 1)/2 \right\rceil + \Delta(H) \\ &\leq 2\left\lceil (\left\lceil \Delta(G)/2 \right\rceil - \left\lceil k/2 \right\rceil + 4 + 1)/2 \right\rceil + k - 5 \\ &\leq \left\lceil \Delta(G)/2 \right\rceil - \left\lceil k/2 \right\rceil + 6 + k - 5 \\ &= \left\lceil \Delta(G)/2 \right\rceil + \left\lceil k/2 \right\rceil + 1. \end{aligned}$$

It is proved in [6], [5] and [3] that a planar graph without 3-cycles, or without 5-cycles or without 6-cycles, or a planar graph that any 3-cycle is not adjacent to a 4-cycle are (9,1)-hereditary graphs. So we have

Corollary 15. Let G be a planar graph without 3-cycles, then $la_2(G) \leq \lceil \Delta / 2 \rceil + 5$.

Corollary 16. If G is a planar graph without 5-cycles or without 6-cycles, then $la_2(G) \leq \lceil \Delta/2 \rceil + 5$.

Corollary 17. If G is a planar graph that any 3-cycle is not adjacent to a 4-cycle, then $la_2(G) \leq \lceil (\Delta)/2 \rceil + 5$.

It is proved in [3] that a planar graph without adjacent 3-cycles is a (11,1)-hereditary graph and a planar graph without adjacent 4-cycles is a (13,1)-hereditary graph. So we have

Corollary 18. If G is a planar graph without adjacent 3-cycles, then $la_2(G) \leq \lceil (\Delta)/2 \rceil + 6$.

Corollary 19. If G is a planar graph without adjacent 4-cycles, then $la_2(G) \leq \lceil (\Delta)/2 \rceil + 7$.

References

- [1] J.C. Bermond, J.L. Fouquet, M. Habib, B. Péroche. On linear k-arboricity. Discrete Math., 52 (1984), 123-132
- [2] B.L. Chen, H.L. Fu, K.C. Huang. Decomposing graphs into forests of paths with size less than three. Austral J Combin., 3 (1991), 55-73
- [3] H.Y. Chen, X. Tan, J. Wu. The Linear 2-Arboricity of planar graphs without adjacent short cycles. Bull. Korean Math. Soc, 49 (2012), 145-154
- [4] K.W. Lih, L.D. Tong, W.F. Wang. The Linear 2-Arboricity of planar Graphs. Graphs and Combinatorics, 19 (2003), 241-248
- [5] Q. Ma, J.L. Wu, X. Yu. Planar graphs without 5-cycles or without 6-cycles. Discrete Math., 309 (2009), 2998-3005
- [6] J.L. Wu. On the linear arboricity of planar graphs. Graphs Theory, 31(2) (1999), 129-134
- [7] C.Q. Xu, L.S. An. An Upper Bound of the Linear 2-Arboricity of Planar Graph, submitted