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Abstract

For an undirected graph G and a natural number n, a G-design
of order n is an edge partition of the complete graph K, with n
vertices into subgraphs Gi,Ga,..., each isomorphic to G. A set
T C V(Ka) is called a blocking set if it meets the vertex set V(G;)
of each G; in the decomposition, but contains none of them. In a
previous paper [J. Combin. Designs 4 (1996), 135-142| the first and
third authors proved that if G is a cycle, then there exists a G-design
without blocking sets. Here we extend this theorem for all graphs G,
moreover we prove that for every G and every integer k > 2 there
exists a non-k-colorable G-design.

1 Introduction

Given a simple undirected graph G without isolated vertices, a G-design of
order n is a pair (X, B), where X is the vertex set of the complete graph K,
on n vertices, and B is an edge partition of K,, into subgraphs isomorphic
to G. For example, a Steiner triple system on n points is a K3-design of
order n.

Much attention has been focused on G-designs, and also on G-designs
with additional properties. The existence problem (see the surveys [1, 5]
and references therein) has been determined for many graphs G.
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A related issue is the existence problem concerning G-designs that sat-
isfy additional properties, such as those having or not having a 2-coloring.
If (X, B) is a G-design, a subset T of X is called a blocking set of (X, B)
if, for each B € B, V(B)NT # 0 and V(B) N (X \ T) # @ where V(B) is
the vertex set of the graph having edge set B. If T is a blocking set, the
partition {7, X \ T} is called a 2-coloring.

The terminology can be extended for any natural number & > 3 in the
standard way as follows. A k-coloring of (X, B) is a partition of X into
k classes such that no class contains V(B) for any B € B. A G-design
admitting a k-coloring is said to be k-colorable, and otherwise it is non-k-
colorable.

Numerous papers (see the survey (2] and the research articles [3, 4, 6,
7,8,9, 10, 11, 12, 13, 16, 17, 18, 19]) have been written on determining the
spectrum for 2-colorable ¢-designs, 2-colorable projective planes, 2-colorable
symmetric designs, 2-colorable block designs, 2-colorable balanced and al-
most balanced path designs and 2-colorable G-designs when G has fewer
than 5 edges.

The negative side (i.e., the existence of G-designs without a 2-coloring)
was proved by the first and third authors in [15] for the case where G is a
cycle. As it was noted in [16], the proof technique presented in [15] can be
applied also to show that the chromatic number of an m-cycle design can
be arbitrarily large. In this paper we extend that result to the following
very general one.

Theorem 1 For every graph G and every integer k > 2, there exists a
non-k-colorable G-design.

In the proof, the following further terminology will be needed.

o A hypergraph H is a pair (X, £) where X is a set called vertex set and
€ is a set system over X whose members e € £ are called hyperedges.
In the proof, only r-uniform hypergraphs will be considered for some
integer 7; that is, |e] = r will hold for all e € £.

e A cycle of length £ > 2 in a hypergraph H = (X, £) is a sequence
T1€1T2€2...T¢€¢T¢41

where it is £1 = z¢41, Zi,Tiy1 € ; forall 1 < i < € and z; # zj,
e; # e; for all 1 < i < j < L. The girth of H is the smallest integer g
such that H contains a cycle of length g. By the definition of cycles,
g > 2 always is valid.

o The chromatic number of H is the smallest integer m > 1 for which
there exists a vertex partition X; U--- U X, = X such that no X;
(1 £ i £ m) contains any e € £.
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2 The proof

(1) Given G, denote by r the number of (non-isolated) vertices in G. We
temporarily forget about G itself, only consider r and the given integer
k. It was proved by Lovész [14] that, for every r, there exist r-uniform
hypergraphs of arbitrarily large girth and chromatic number. We need
here girth at least three, i.e., where any two edges of the hypergraph share
at most one vertex (also called linear hypergraph in the literature). Let
Hi,r = (X&,r, Ek,r) be any non-k-colorable r-uniform hypergraph of girth
at least three, for the value & given in Theorem 1.

(2) For each e € &, we take a bijection f, : V(G) — e from the vertex
set of G onto the hyperedge e and put fe(zy) = {fe(z), fe(y)} for any edge
{z,y} € E(G). Let then H be the graph with vertex set V(H) = X, and

edge set
E(H) = {fe(zy) | {z,y} € E(G), e € &}

Since Hy,» has girth three or more, no two fe, fer (¢/,e” € & and €’ # €”)
can map any edge of G onto the same edge of H. Hence, by construction,
H admits an edge decomposition into subgraphs isomorphic to G in the
natural way, along the hyperedges of Hx ..

(3) By a theorem of Wilson [20], there exists an H-design over a K,,, for
some n. (In fact, the general theorem of [20] states that every sufficiently
large n satisfying certain divisibility conditions admits an H-design of order
n, but we do not need this strong assertion.) We denote such an H-design by
(X,Bp), where X = V(K,). Since G decomposes H, each block B € By
can be decomposed into a certain number, |E(H)|/|E(G)|, of subgraphs
isomorphic to G. Doing this for all B € By, we obtain a G-design (X, B)
over K,. Since H may admit several G-decompositions, it is essential to
take the one in which the blocks isomorphic to G are exactly the subgraphs
corresponding to the hyperedges e € £ of H.

(4) It remains to show that (X,B) is not k-colorable. Consider an ar-
bitrary vertex k-partition P = X; U.--U X, = X, and let B € By be
any block of the H-design. Then P induces a partition of V(B) into at
most k nonempty classes B; = X; NV(B) (1 < i < k). Moreover, B is
isomorphic to H, hence the isomorphism defines a vertex k-partition, say
P’,on V(H) = Xi,r. Since Hi, is not k-colorable, some partition class
entirely contains some hyperedge e € &, and this e contains the image
of G under the mapping f.. By assumption, f.(E(G)) is then a block in
(X, B), entirely contained in some B;. Thus, no P can be a k-coloring of
(X, B).
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3 Concluding remarks

(1) The construction above is very far from being economical. It remains
an open problem to determine — at least asymptotically — the smallest
order n = n(G, k) for which K,, admits a non-k-colorable G-design. Already
some tight estimates for k = 2 (the case of blocking sets) would be of great
interest. For some types of bipartite graphs (e.g., graceful ones), and also
for some 3-colorable graphs, the method of [15] yields smaller constructions
than the present one, but it is not clear whether it can be extended for all
graphs G.

(2) Since Wilson’s theorem provides a sequence of positive density for
the orders of H-designs, we obtain infinitely many examples satisfying the
conditions of Theorem 1 for every G and k. It is very likely, however, that
the density of existing G-designs with the required properties is much larger
than the one guaranteed by our method.
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