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Abstract

A proper vertex coloring of a graph is equitable if the sizes of
color classes differ by at most 1. The equitable chromatic threshold
of a graph G, denoted by x2(G), is the minimum k such that G is
equitably k’-colorable for all k¥’ > k. Let G x H denote the direct
product of graphs G and H. For n > m > 2 we prove that x= (Km X
K.) equals [ 28] ifn=2,...,m (mod m + 1), and equals m [ %]
if n = 0,1 (mod m + 1), where s* is the minimum positive integer
such that s* {nand " > m+ 2.
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1 Introduction

All graphs considered in this paper are finite, undirected and without loops
or multiple edges. For a positive integer k, let [k] = {1,2,--- ,k}. A (prop-
er) k-coloring of a graph G is a mapping ¢ : V(G) — [k] such that ¢(z) #
c(y) whenever zy € E(G). We call the set ¢~1(i) = {z € V(G) : ¢(z) = i}
a color class for each ¢ € [k]. A graph is k-colorable if it has a k-coloring.
The chromatic number of G, denoted by x(G), is the smallest integer k
for which G is k-colorable. An equitable &-coloring of G is a k-coloring for
which any two color classes differ in size by at most 1, or equivalently, each
color class is of size ||V(G)|/k] or [|V(G)|/k]. The equitable chromatic
number of G, denoted by x~(G), is the smallest integer k such that G
is equitably k-colorable, and the equitable chromatic threshold of a graph
G, denoted by x%(G), is the smallest integer k£ such that G is equitably
k'-colorable for all k' > k. The concept of equitable colorability was first

*Corresponding author: wangwei.math@gmail.com

ARS COMBINATORIA 114(2014), pp. 235-243



introduced by Meyer [13] and has received a lot of attention. We refer the
reader to a survey given by Lih [9] for some related results.

The direct (or Kronecker) product of graphs G and H is the graph Gx H
with vertex set V(G) x V(H) and edge set {(z,y)(z',¥’) : zz’ € E(G),yy’' €
E(H)}. This product is commutative and associative in a natural way (see
[7] for a detailed description on product graphs).

Chen et al. [3], Furmarizyk (5] and Lin and Chang [10] investigated
equitable colorability of direct products and obtained exact values and
upper bounds on equitable chromatic numbers and thresholds for direc-
t products of some highly-structured graphs. For example, if m < n then
x=(Km xKp) =m [3]1 X=(K1.m XKI,n) =m+l [5] and X::(Kl.m XKI,n) =
m + 1 [10]. Chen et al. [3] gave the following conjecture.

Conjecture 1. [3] x2(G x H) < max{|V(G)|,|V(H)|} for any graphs G
and H.

Notice that Conjecture 1 holds if it holds for complete graphs. At the
end of (3], they leave it as an open problem to determine the exact value of

X=(Km x Ky) for any m and n.
Conjecture 1 was verified by Lin and Chang [10]. In fact, they proved
a slightly better upper bound on x%(Km X K,).

Theorem 1. [10] For positive integers m < n, we have X% (Km x K,) <
[l

In the same paper, Lin and Chang also determined the exact value of
Xe{Km x Kp) for m = 2,3, respectively. The case when m = 1 is trivial
since K; x K, is the empty graph O, and hence x%(K; x K,,) = 1.

Theorem 2. [10] If integer n > 3, then x~ (K3 x K,) =2[ 2], where s*
is the minimum positive integer such that s* {n and 2 [Z] < [%2].

We note that the formula in the above theorem also holds when n = 2.

Theorem 3. [10] If integer n > 3, then
3n] if n=2 (mod 4);
ol K;) = %81, '
X= (K3 x Kn) {3 [Z], otherwise,

e
where s* is the minimum positive integer such that s* t n and 3[Z&] <
3
[%1-

The main purpose of the current paper is to determine x%(K,, X Ky)
for any m and n. We may assume n > m > 2 by commutativity of the
direct product and the trivial case mentioned above. Our main result is
the following.
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Theorem 4. If integers n > m > 2, then

Xt (Kom x Kn) ={ mifls #n=2..,m=1 (mod m+1);

m[Z], if n=0,1,m (mod m+1),
where s* is the minimum positive integer such that s* { n and m [al.] <
|-

Although Theorem 4 is a natural generalization of Theorems 2 and
3, the special skills in proving Theorems 2 and 3 do not apply in this
generalization. Instead of proving Theorem 4 directly, we shall show that
it has the following two equivalent forms.

The first form simplifies the case when n =m (mod m +1).

Theorem 5. If integers n > m > 2, then
(K xK)—{m_”:"nT.I’ ifn=2,...,m (mod m +1);
= m n; —

m[Z], if n=0,1(mod m+1),
where s* is the minimum positive integer such that s* { n and m [aﬁ] <
Sl
Under the assumption that n = 0,1 (mod m + 1), we show that the
definition of s* can be simplified. To avoid confusion, we use notation s*
in the next equivalent form. (We shall show s* = s*, see Lemma 2.)

Theorem 6. If integers n > m > 2, then
on if n=2,...,m (mod m + 1);
oy | 1] =2 ,
X=(Km x Kn) {m[;n,], if n=0,1 (mod m +1),
where s* is the minimum positive integer such that s* {n and s* > m + 2.

In Section 2, we shall prove the equivalence of Theorems 4-6. The proof
of Theorem 6 is given in Section 3. We end this section by remarking that
many other properties of direct products of complete graphs have been
studied, such as idomatic partitions [4, 8], cycle decomposition [1, 15], min-
imum cycle basis [6], L(7, k)-labelling [11], vertex vulnerability parameters
(14], ete.

2 Equivalence of Theorems 4-6

Note that Theorems 4 and 5 give the same expression for xZ(Km x K,,)
when n £ m (mod m + 1). To establish the equivalence between the two
theorems, we need to show that two different expressions for xz (Km % K)
take the same value when n = m (mod m + 1).

Lemma 1. Letn > m > 2. Ifn=m (mod m+1), then [ﬂ’ﬂ =m fsﬁ.] ,
where s* is the minimum positive integer such that s* { n and m [ =] <

[
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Proof. Since n = m (mod m + 1), we have n = (m + 1)p + m, where p =
. m 2
|51 Since [37] = |y) +1=p+1 and [ 2] = [mlmtlptn® | _

m+1
mp + [m+1 = m(p + 1), we see that m[ 23] = [ 28 ]. Since m + 1 { n,
the minimality of s* implies s* < m+ 1. Combining this with the definition
of s*, we have

mn n n mn
> —_ > = .
[m+1]_m[s*]"ml—m+1] [m+11 @
Therefore, equalities hold throughout (1). The lemma follows. O

We are left to show the equivalence of Theorems 5 and 6.

Lemma 2. Letn>m > 2. Ifn=0,1 (mod m + 1), then for any positive

st n, the following two conditions are equivalent.

(1) m[3] < [Z5].

2ysz2m+2.

Proof. Let n = (m+ 1)p+r, where r = 0 or 7 = 1, and hence p > r by the

assumption of the lemma. We have [28] = [ZmtDetmr] _ 1 when

r=0and fm+1] = mp+1 when r = 1. Either case implies mp < [2%] <
m(p + 1) since m > 2.

If s < m+1then [%] >2 >4 +1 > p, where the strict inequality follows
from the assumption that s { n. Therefore, m [2] > m(p+1) > [ 2
This proves that (1) implies (2).

Ifs > m+2then [2] < [('""'1)"""] < [('""'1)’;""’] = p. Hence, m [2] <
mp < [ 2]. This proves that (2) implies (1). O

From Lemma 2, we see that s* = s*, where s* and s* are defined,
under the same assumption that n > m > 2 and n = 0,1 (mod m + 1),
in Theorem 5 and Theorem 6, respectively. The equivalence of the two
theorems follows.

3 Proof of Theorem 6

By Kyn(n) we denote the complete m-partite graph with n vertices in each
part. As noted in [10}, K, X K, is a span subgraph of Kp,(») and hence any
equitable k-coloring of K (n) yields an equitable k-coloring of Km x K.
Therefore, studying the equitable colorability of Kp(n) plays a key role
in determining x% (K, x K,). We mention that the equitable colorings of
complete m-partite graphs are also studied in [2, 12, 16, 17]. Our discussion
on the equitable colorability of complete m-partite graphs is similar to [16].
We start with the empty graph O,,.
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Lemma 3. The empty graph O,, is equitably k-colorable with color classes
of sizeq org+1 zfandonlyzf[ 1] <k< |2].

Proof. (=) Let c be an equitable k-colormg of O,, with color classes of size
gorg+1. Thenkg <n < k(g+1),ie., FFy <k < 2. Since k is an integer,
we have [#] <k< |_€-J

(¢) Since [2r] <k < 2], wehave 2y <k < Z,ie, kg <n < k(g+
1). Let r = n—kq. We have 0 5 r<k. Hencen = kq+r = (k—r)g+r(g+1),
where k — r and r are nonnegative. We can partition V(O,) into (k — r)
subsets of size ¢ and r subsets of size g + 1.

Lemma 4. K;n) is equitably k-colorable with color classes of size q or
g+ 1 if and only zfm[q_H] <k< m{%]

Proof. Suppose Xi,...,Xm are the parts of K, with [X;| = - =
| Xm| = n.

(<) Let k; = |®t:=L] for i € [m]). Then 312 ki = k and |£] <
ki < [ ] for each i € [m]. Since m[q%lk] <k k_<_ m|2|, we see that
[q+1 < £ < |2], and hence [E-?Ti] <lEl<[&] < [%J Therefore,
|'q +1] <k < [ J By Lemma 3, we can partition X; into k; independent
sets of size ¢ or ¢ + 1 for i € [m]. Hence, Ky(n is equitably k-colorable
with color classes of size g or ¢+ 1 since 3.~ k; = k.

(=) Let ¢ be an equitable k-coloring with color classes of size ¢q or
g+ 1. Since different parts of K,,(n) should be colored with different colors,
we see that each X; is equitably colored with |¢(X;)| colors and hence
Yt le(Xi)| = k. By Lemma 3, [Z7] < |e(Xi)| < |2] for i € [m].
By adding these m inequalities, we have qu"?] ST ledX) =k <
m|z]. g

Lemma 5. m| ;27| < | /2% | with equality if and only ifn = 0,1 (mod m+
1).

Proof. Let n = (m + 1)p + r with 0 < 7 < m. Since m[mHJ = mp and
(g ) = |memdetmr | = mp 4+ I.m+lJ we see that m| 0] < |.m+lJ
where the equality holds if and only if
|;25] =0if and only if r =0,1. O

As noted earlier, any equitable k-coloring of K, naturally leads to
an equitable k-coloring of K,, % Kﬂ' The next lemma indicates that the
converse is also true when k is small.

Lemma 6. If K, x Ky, is equitably k-colorable for some k < [ 2%, then
Kun(n) 15 also equitably k-colorable.
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Proof. Let ¢ be an equitable k-coloring of K, X K, for some k < [m +1]
Then the size of each color class is at least | 32 |. Now 32 > Ty 2
iy = m+ 1. It follows that |52 >2m+1. We clalm that each color
class is contained in {z} x V(K,) for some z € V(K,,).

We show the claim by the way of contradiction. If there exists some color
class S containing two vertices (z;,y;) and (z2, y2) with z; # z3, theny; =
o since otherwise (1, 1) is adjacent with (z2, y2) by the definition of direct
products, contradicting the fact that S is a color class. Set y = y1 = y2.
Let (z,y') € V(Km) x V(Kn — y). Note y' # y. If  # z; then (z,y’) and
(z1,y) are adjacent, otherwise = # z3 since x; # 72 and hence (z,y’) and
(z2,y) are adjacent. This proves that any vertex in V/(Kn) X V(Kn —y) has
a neighbor in S, hence S C V(K,,) x {y} since S is independent. Therefore,
|S| < m, a contradiction. This proves the claim.

For the equitable coloring ¢ of K, X Ky, by the claim, each color class
is also independent in the spanning supergraph Kp(n). Hence, Kp(n) is
also equitably k-colorable. O

Lemma 7. Let n > m > 2. If ¢ is an equitable | 2% |-coloring of Km(n),
then each color class is of sizem + 1 or m + 2.

Proof. Let p = | 2% |. Since each color class is of size | 2] or [22], it
suffices to show that m+1 < B2 < m+2,
It is clear that &2 > -—7-(—’;— =m+ 1. Toshow 22 < m+2, we

mn/(m+1
consider the followmg three cases. ,
Case 1. n=m. Wehave p= 25| =m —1 and hence B = 7 =
m+1l+ =ty <m+2.
Case 2. n=m+ 1. We have p = m and hence % =n<<m+2

Case 8. n > m+2 Since p = |2%|, we have mn = (m+ 1)p+r

with 0 < 7 < m +1 and hence p = 75 > Z2E. Therefore, an <

+1
e = e = m 14 2 <m 2, =

Now we show Theorem 6 when n=2,...,m (mod m + 1).

Corollary 1. Letn>m 2> 2. Ifn=2,...,m (mod m+1), then xt(Kn X
K) [m+l]

Proof. Since x=(Km x K,) < [m +1] by Theorem 1, it suffices to show that
Km x Kp is not equitably ([;2%] — 1)-colorable. Since m + 1 and m are
coprime, and m + 1 { n, we see that m + 1 { mn and hence [ 28] -1 =
|5l

Suppose to the contrary that K,, x K, is equitably [m 1 ] -colorable.
By Lemma 6, Ky n) is also equitably |;2% |-colorable. Let ¢ be such a

240



coloring of Ky,(n). By Lemma 7, each color class of ¢ is of size m + 1 or
m + 2. It follows that | 2% | < m| 27| by Lemma 4.

On the other hand, since n =2,...,m (mod m + 1), Lemma 5 implies
that m| 2= | < |22 |. This is a contradiction. m]

Lemma 8. Letn>2m >2. Ifn=0,1 (mod m +1), then [&] < 2],
where s* is the minimum positive integer such that s* tn and s* > m + 2.

Proof. By the assumption that s* > m + 2, we consider the following two

cases.
Case 1. s* > m + 2. Since s* — 1 > m + 2, the minimality of s* implies

& —1[n. Hence, [2] € [+21] = [72)-

Case 2. s* =m+2. Leten=(m+1)p+r,wherer=0o0rr =1, and
hence p > r by the assumption of the lemma. Hence, [&] = [!1"%%&] <

8*

(2282 =p = |57) = 2] o

The following lemma is from [10]. We give a different proof for conve-
nience.

Lemma 9. If m,s and n are positive integers with m > 2 and s { n, then
Kom(ny is not equitably (m [2] —i)-colorable for 1 <i < m.

Proof. Suppose to the contrary that Kom(n) is equitably (m [2] — i)-colorable
for some i € [m — 1]. By Lemma 4, there exists ¢ > 0 such that

ol mf] -5l ®

We shall show either of the following two cases will yield a contradiction.
Case 1. g > s. Since s { n and i < m, we have m|_f;-J < m|2] =
m([2] — 1) < m[2] - i. It contradicts the right inequality of (2).

Case 2. g < s. Since 7 > 1, we have m[;l-z—l] > m[-';‘-] > m[ﬂ -1, a
contradiction to the left inequality of (2). O

We are ready to prove Theorem 6 for the remaining case n = 0,1 (mod m+
1). For integers a < b, by [a, b] we denote the interval of all integers between

a and b, including both.

Corollary 2. Letn > m > 2. Ifn =0,1 (mod m + 1), then x& (K x
Kn) =m[Z), where s* is the minimum positive integer such that s* { n
and s* > m+ 2.
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Proof. By Lemma 2, the definition of s* implies m [Z] < [ ]. Hence,
m[&]-1< |28 2. Since Kon(n) is not equitably (m [Z&] — 1)-colorab1e by
Lemma 9, Lemma 6 implies that K, x K, is also not equitably (m [ Z]-1)-

colorable. We are left to show that K,, x K, is equitably k-colorable for
alk>m[Z].

Claim 1. K (n) is equitably k-colorable for k € [m[Z&],m|-25]].

Since [2] < |27 by Lemma 8, we see that K., is equitably k-
colorable for k € [m[&],m| 25 )] by Lemma 4. If s* = m+2 we are done.
Now we assume s* = m+2 +1 for some | > 0. Let fp = [m[&],m|25]]
and we shall find additional ! integer intervals I1,...,I; such that

Uf =[5l ®

and Kp,(n) is equitably k-colorable for k € I; and 1 <i < L.
Let 1 <7 <I. Then s* —¢ > m + 2 and hence the minimality of s*
implies s* — i | n. Consequently,

7=l e s le=i o sise (4)

Define I; = [m| 25 ], m|5+=2=]] for 1 <i <!. By Lemma 4, we see that
K (n) is equitably k-colorable for k € I; and 1 <i <.

Finally, by the equality of (4), we see that m[25| = m| 25|, that is
the left endpoint of interval I; coincides with the right endpoint of previous
one I;_; for each 1 < i < I. Therefore, equation (3) holds and hence Claim
1 follows.

Notem|-2<| = |2 | by Lemma 5. Since K, x K, is a span subgraph
of Ky(n), by Claim 1 we see that K, x K, is equitably k-colorable for
ke [m[Z], | 2%]] I k> | 2] then k > [2%] and hence K x Kp
is equitably k-colorable by Theorem 1. Hence, K,, x K, is equitably k-
colorable for all k > m[al] This proves the corolla.ry. a

The proof of Theorem 6 is complete by Corollaries 1 and 2.
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