Spanning trees whose stems have a few leaves

Masao Tsugaki * and Yao Zhang
Academy of Mathematics and Systems Science
Chinese Academy of Sciences, Beijing 100190, China
tsugaki@amss.ac.cn
zhangyao@amss.ac.cn

Abstract

For a tree T, Leaf(T) denotes the set of leaves of T, and T-Leaf(T) is called the stem of T. For a graph G and a positive integer m, $\sigma_m(G)$ denotes the minimum degree sum of m independent vertices of G. We prove the following theorem. Let G be a connected graph and $k \geq 2$ be an integer. If $\sigma_3(G) \geq |G| - 2k + 1$, then G has a spanning tree whose stem has at most k leaves.

Keywords: spanning tree, tree with k-ended stem, stem of a tree

1 Introduction

In this paper, we consider finite simple graphs, which have neither loops nor multiple edges. Let G be a graph with vertex set V(G) and edge set E(G). We write |G| for the order of G, that is, |G| := |V(G)|. Let $N_G(v)$ and $d_G(v)$ denote the set of neighbours of v and the degree of v in G, respectively. For a subgraph H of G and a vertex $v \in V(G)$, we define $N_H(v) := N_G(v) \cap V(H)$ and $d_H(v) := |N_H(v)|$. For a subset X of V(G), the subgraph induced by X is denoted by $\langle X \rangle_G$. If there is no confusion, we often identify a subgraph H of a graph G with its vertex set V(H).

^{*}Supported by Chinese Academy of Science Fellowship for Young International Scientists. Grant No.2012Y1JA0004

For an integer $k \geq 2$, the invariant $\sigma_k(G)$ of a graph G is defined to be the minimum degree sum of k independent vertices of G, that is,

$$\sigma_k(G):=\min\{\sum_{x\in Y}d_G(x)\ :\ Y\subset V(G),\ |Y|=k,\ Y\ \text{is independent}\}.$$

Recently, in [3], Kano, Yan and the first author considered a new concept of a spanning tree. We focused on the properties of a tree which can be obtained by removing all the leaves of a spanning tree. We call a vertex of a tree T, which has degree one, leaf of T. For convenience, we call an end-vertex, which has degree one, of a graph also a leaf. Let S be a graph. The set of leaves of S is denoted by Leaf(S). The subgraph S - Leaf(S) of S is called the stem of S and denoted by Stem(S). Note that a caterpillar is nothing but a tree whose stem is a path. Especially, we focused on a k-tree (a tree whose maximum degree is at most k) as a property of the stem of a spanning tree in a graph. We proved the following theorem, and also showed the best possibility of the lower bound of the degree sum condition.

Theorem 1 (Kano, Tsugaki and Yan [3]) Let $k \geq 2$ be an integer. If a connected graph G satisfies $\sigma_{k+1}(G) \geq n-k-1$, then G has a spanning tree T such that Stem(T) is a k-tree.

In [2], Bondy gave a sufficient condition for a graph to have a caterpillar.

Theorem 2 (Bondy [2]) Let G be a 2-connected graph. If $\sigma_3(G) \ge |G| + 2$, then G has a dominating cycle, in particular, G has a spanning caterpillar.

But, the lower bound of $\sigma_3(G)$ of Theorem 2 is not best possible for a graph to have a spanning caterpillar. In fact, by Theorem 1, |G|-3 is best possible.

In this paper, we deal with a k-ended tree as a property of the stem of a spanning tree in a graph. A tree which has at most k leaves is called a k-ended tree. A stem which is a k-ended tree is called a k-ended stem, and so a tree whose stem has at most k leaves is called a tree with k-ended stem.

In [4], a sufficient condition for a graph to have a spanning k-ended tree was introduced by Las Vergnas.

Theorem 3 (Las Vergnas [4]) Let $k \geq 2$ be an integer, and let G be a connected graph. If $\sigma_2(G) \geq |G| - k + 1$, then G has a spanning k-ended tree.

We shall prove a similar result for a graph to have a spanning tree with k-ended stem.

Theorem 4 Let $k \geq 2$ be an integer. If a connected graph G satisfies $\sigma_3(G) \geq |G| - 2k + 1$, then G has a spanning tree T with k-ended stem.

In fact, the condition of Theorem 4 is sharp. Let $k \geq 2$ be an integer. Let G be a graph of order 2k+3 with k+1 leaves such that the stem of G is $K_{1,k+1}$, and for each $x \in Leaf(G)$, x connects to only one leaf of $K_{1,k+1}$ (see Fig. 1). Then the spanning tree of G is itself whose stem is $K_{1,k+1}$. So G has no spanning tree with k-ended stem. Note that $\sigma_3(G) = 3 = |G| - 2k$, therefore the condition of Theorem 4 is sharp.

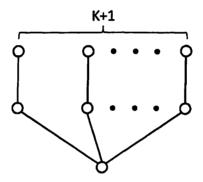


Figure 1: A graph G which has no spanning tree with k-ended stem.

We can also deal with spanning trees whose stems have some other properties. Many results on spanning k-ended trees and some other spanning trees can be found in a recent book [1] and a survey [5].

2 Proof of Theorem 4

We define a system to be a set of subgraphs of G whose stems are paths and cycles (including K_1 and K_2) and whose elements are pairwise vertex-

disjoint. For convenience, we let Stem(S) = S if $S \cong K_2$. We often view the system as a subgraph. Let S be a system in a graph. We define a function $f: S \to \{1,2\}$ as follows. For each $S \in S$, define f(S) = 2 if Stem(S) is a path of order at least 3, and f(S) = 1 otherwise (i.e. Stem(S) is a vertex, an edge or a cycle). We denote $\mathcal{P}_S := \{S \in S: f(S) = 2\}$ and $\mathcal{C}_S := \{S \in S: f(S) = 1\}$. Let $\mathcal{C}_S^1 := \{S \in \mathcal{C}_S: Stem(S) \cong K_1\}$, $\mathcal{C}_S^2 := \{S \in \mathcal{C}_S: Stem(S) \cong K_2\}$ and $\mathcal{C}_S^3 := \{S \in \mathcal{C}_S: Stem(S) \text{ is a cycle}\}$. We define $V(S) := \bigcup_{S \in S} V(S)$ and $f(S) := \sum_{S \in S} f(S)$. We call S a k-ended S stem S system if S if S is a cycle S and S and S if S is a cycle S and S if S is a cycle S and S if S is a cycle S is a cycle S if S is a cycle S is a cycle S if S is a cycle S is a cycle S if S is a cycle S is a cycle S is a cycle S is a cycle S if S is a cycle S is a cyc

For $S \in \mathcal{S}$, we sometimes give an orientation to Stem(S). For each $P \in \mathcal{P}_{\mathcal{S}} \cup \mathcal{C}^2_{\mathcal{S}}$, let a_P and b_P be an initial and terminal vertices of Stem(P), respectively, and let End(P) be a set of vertices of Leaf(P) which are adjacent to a_P or b_P in P. For $S \in \mathcal{S}$ and $x \in V(Stem(S))$, we denote the successor and the predecessor of x on Stem(S) by $x^{+(S)}$ and $x^{-(S)}$, respectively (if exists). If there is no danger of confusion, we abbreviate $x^{+(S)}$ and $x^{-(S)}$ by x^+ and x^- , respectively. For $S \in \mathcal{S}$ and $X \subseteq V(Stem(S))$, we define $X^- := \{x^- : x \in X\}$.

Theorem 4 is an immediate consequence of the following theorem.

Theorem 5 Let $k \geq 2$ be an integer. If a connected graph G satisfies $\sigma_3(G) \geq |G| - 2k + 1$, then G has a spanning k-ended stem system.

We now prove Theorem 5.

Proof of Theorem 5. Let G be a graph that satisfies the condition in Theorem 5. Suppose that G has no spanning k-ended stem system. Let S be a k-ended stem system in G. Choose S so that

- (S1) |V(S)| is as large as possible,
- (S2) $\sum_{P \in \mathcal{P}_8} |Stem(P)|$ is as large as possible subject to (S1),
- (S3) $|\{S \in S : S \cong K_1\}|$ is as small as possible subject to (S2) and,
- (S4) $|\{S \in \mathcal{S} : S \cong K_2\}|$ is as small as possible subject to (S3).

We give an orientation to Stem(S) for each $S \in S$. Since G has no spanning k-ended stem system, there exists $w \in V(G) - V(S)$.

Claim 1 Let S' be an l-ended stem system in G such that $V(S) \subseteq V(S')$. Then $l \ge k$ holds. Especially, $\sum_{S \in S} f(S) = k$ holds.

Proof. If $\sum_{S \in \mathcal{S}} f(S) < k$, then we can add w to \mathcal{S} to get a larger k-ended stem system than \mathcal{S} , which contradicts the choice (S1).

Claim 2 $\mathcal{P}_{8} \neq \emptyset$.

Proof. Suppose that $\mathcal{P}_{\delta} = \emptyset$. Since $k \geq 2$, $|\mathfrak{C}_{\delta}| \geq 2$. Let $C_1, C_2 \in \mathfrak{C}_{\delta}$ with $C_1 \neq C_2$. Since G is connected, there exists a path (or an edge) P which connects a vertex of C_1 and a vertex of C_2 . Since we can choose C_1 and C_2 arbitrarily, we may assume that $|V(P) \cap V(C_1)| = |V(P) \cap V(C_2)| = 1$ and $V(P) \cap (V(\mathfrak{C}_{\delta}) - V(C_1) - V(C_2)) = \emptyset$. By connecting C_1 and C_2 by P, we obtain a subgraph C_3 of G with $Stem(C_3)$ is a path. Now we show that $Stem(C_3)$ is a path of order at least 3. Let $S_1 := (S - \{C_1, C_2\}) \cup \{C_3\}$. Then S_1 is a $(k - f(C_1) - f(C_2) + f(C_3))$ -ended stem system such that $V(S) \subseteq V(S_1)$. By Claim 1, we obtain $2 = f(C_1) + f(C_2) \leq f(C_3) \leq 2$, that is $f(C_3) = 2$. This implies that S_1 is a k-ended stem system and $Stem(C_3)$ is a path of order at least 3. By the choice (S_1) , $|V(S_1)| = |V(S)|$. But, then $\sum_{P \in \mathcal{P}_{\delta_1}} |Stem(P)| > \sum_{P \in \mathcal{P}_{\delta}} |Stem(P)|$, which contradicts the choice (S_2) .

By Claim 2, there exists $P \in \mathcal{P}_{\mathcal{S}}$. Let $a \in N_P(a_P) \cap End(P)$ and $b \in N_P(b_P) \cap End(P)$. We choose \mathcal{S} , $P \in \mathcal{P}_{\mathcal{S}}$, and $a, b \in V(P)$ so that

(S5) $d_P(a) + d_P(b)$ is as small as possible subject to (S4).

Claim 3 (i)
$$(N_G(a) \cup N_G(b)) \cap (V(G) - V(S)) = \emptyset$$
.

- (ii) $(N_G(a) \cup N_G(b)) \cap V(\mathfrak{C}_8) = \emptyset$.
- (iii) $(N_G(a) \cup N_G(b)) \cap \{a_{P'}, a_{P'}^+, (a_{P'}^+)^+, b_{P'}\} = \emptyset$ for any $P' \in \mathcal{P}_{\delta} \{P\}$.
- (iv) $(N_G(a) \cup N_G(b)) \cap Leaf(P') = \emptyset$ for any $P' \in \mathfrak{P}_{\delta}$.
- (v) $b_P \notin N_G(a)$ and $a_P \notin N_G(b)$.

Proof. (i) Suppose not. By the symmetry of a and b, we may assume that there exists $r \in N_G(a) \cap (V(G) - V(S))$. Then S + ra is a larger k-ended stem system than S, which contradicts the choice (S1).

- (ii) Suppose not. By the symmetry of a and b, we may assume that there exists $S \in \mathcal{C}_{\mathcal{S}}$ such that $N_G(a) \cap V(S) \neq \emptyset$. Let $r \in N_G(a) \cap V(S)$. Let $P_1 := P \cup ar \cup S$ if $S \in \mathcal{C}_{\mathcal{S}}^1 \cup \mathcal{C}_{\mathcal{S}}^2$; otherwise if $r \in Stem(S)$ let $P_1 := P \cup ar \cup (S rr^{-(S)})$, if $r \in Leaf(S)$ let $P_1 := P \cup ar \cup (S xx^{-(S)})$ where $x \in N_S(r) \cap Stem(S)$. Let $\mathcal{S}_1 := (S \{P, S\}) \cup \{P_1\}$. Then $f(P_1) = f(P) + f(S) 1$, and hence we can see that \mathcal{S}_1 is a (k-1)-ended stem system such that $V(\mathcal{S}_1) = V(\mathcal{S})$, which contradicts Claim 1.
- (iii) Suppose that $a_{P'} \in N_G(a)$. Let $P_1 := P \cup aa_{P'} \cup P'$, and let $S_1 := (S \{P, P'\}) \cup \{P_1\}$. Then $f(P_1) = f(P) + f(P') 2$, and hence we can see that S_1 is a (k-2)-ended stem system such that $V(S_1) = V(S)$, which contradicts Claim 1. In the same way, we can get $b_{P'} \notin N_G(a)$ and $a_{P'}, b_{P'} \notin N_G(b)$.

Suppose that $a_{P'}^+ \in N_G(a)$. Let P'_l and P'_r be two components of $P'-a_{P'}a_{P'}^+$ such that $a_{P'} \in V(P'_l)$ and $b_{P'} \in V(P'_r)$. Let $P_1 := P \cup aa_{P'}^+ \cup P'_r$, and let $S_1 := (S - \{P, P'\}) \cup \{P_1, P'_l\}$. Then $f(P_1) + f(P'_l) = f(P) + f(P') - 1$, and hence we can see that S_1 is a (k-1)-ended stem system such that $V(S_1) = V(S)$, which contradicts Claim 1. Therefore, $a_{P'}^+ \notin N_G(a)$. In the same way, we can get $a_{P'}^+ \notin N_G(b)$.

By the same argument as above, we can also see that $(a_{P'}^+)^+ \notin N_G(a)$ and $(a_{P'}^+)^+ \notin N_G(b)$.

(iv) First, suppose that there exists $a' \in Leaf(P') - End(P')$ such that $a' \in N_G(a)$. Let $b' \in N_{P'}(a')$. If $P' \neq P$ let $P_1 := P \cup aa'$, $P_2 := P' - a'$ and let $\mathbb{S}_1 := (\mathbb{S} - \{P, P'\}) \cup \{P_1, P_2\}$. If P' = P let $P_1 := (P - a'b') \cup aa'$, $\mathbb{S}_1 := (\mathbb{S} - \{P\}) \cup \{P_1\}$. Then \mathbb{S}_1 is a k-ended stem system such that $|V(\mathbb{S}_1)| = |V(\mathbb{S})|$ and $\sum_{Q \in \mathcal{P}_{\mathbb{S}_1}} |Stem(Q)| > \sum_{Q \in \mathcal{P}_{\mathbb{S}_1}} |Stem(Q)|$, which contradicts the choice (S2). Therefore $N_G(a) \cap (Leaf(P') - End(P')) = \emptyset$ for any $P' \in \mathcal{P}_{\mathbb{S}}$. Similarly, we can obtain $N_G(b) \cap (Leaf(P') - End(P')) = \emptyset$ for any $P' \in \mathcal{P}_{\mathbb{S}}$.

Next, suppose that there exists $a' \in End(P')$ such that $a' \in N_G(a)$. If $P' \neq P$, then we can obtain a contradiction as in the proof of statement (iii). Hence P' = P. If $a' \in N_P(a_P) \cap End(P)$, then, by letting $P_1 := (P - a'a_P) \cup aa'$ and $S_1 := (S - \{P\}) \cup \{P_1\}$, we can obtain a contradiction as in before case. Hence $a' \in N_P(b_P) \cap End(P)$. Let $C_1 := P \cup aa'$ and let $S_1 := (S - \{P\}) \cup \{C_1\}$. Then $f(C_1) = f(P) - 1$, and hence we can see that S_1 is a (k-1)-ended stem system such that $V(S_1) = V(S)$, which contradicts Claim 1. Therefore $N_G(a) \cap End(P') = \emptyset$ for any $P' \in \mathcal{P}_S$.

Similarly, we can obtain $N_G(b) \cap End(P') = \emptyset$ for any $P' \in \mathcal{P}_{\delta}$.

(v) Statement (v) can be shown by the same way as statement (iv). \Box

Claim 4 (i) $N_G(w) \cap V(Stem(S)) = \emptyset$ for any $S \in S$.

- (ii) $N_G(w) \cap Leaf(S) = \emptyset$ for any $S \in \mathcal{C}^1_8$.
- (iii) $N_G(w) \cap End(P) = \emptyset$ for any $P \in \mathcal{P}_{\delta}$.
- (iv) $|N_G(w) \cap Leaf(S)| \leq |Leaf(S)| 1$ for any $S \in \mathcal{C}^2_{\delta}$ with $S \ncong K_2$.

Proof. Statements (i)-(iii) hold since otherwise we can obtain a larger k-ended stem system than S, which contradicts the choice (S1).

(iv) Suppose that there exists $S \in \mathcal{C}^2_{\mathbb{S}}$ with $S \not\cong K_2$ such that $Leaf(S) \subseteq N_G(w)$. Let $a' \in N_S(a_S) \cap End(S)$, and $b' \in N_S(b_S) \cap End(S)$. Let $C_1 := S \cup wa' \cup wb'$, and let $S_1 := (S - \{S\}) \cup \{C_1\}$. Then $f(C_1) = f(S)$, and hence we can see that S_1 is a k-ended stem system such that $|V(S_1)| = |V(S)| + 1$, which contradicts the choice (S1). \square

Claim 5 $(N_G(a) \cap V(Stem(P')))^- \cap N_G(b) = \emptyset$ for any $P' \in \mathcal{P}_{\delta}$.

Proof. Suppose that there exists $x \in (N_G(a) \cap V(Stem(P')))^- \cap N_G(b)$.

First, suppose that P' = P. Let $C_1 := (P - xx^+) \cup ax^+ \cup bx$, and let $S_1 := (S - \{P\}) \cup \{C_1\}$. Then $f(C_1) = f(P) - 1$, and hence we can see that S_1 is a (k-1)-ended stem system such that $V(S_1) = V(S)$, which contradicts Claim 1.

Next, suppose that $P' \in \mathcal{P}_{\mathcal{S}} - \{P\}$. Let $P_1 := P \cup (P' - xx^+) \cup ax^+ \cup bx$, and let $\mathcal{S}_1 := (\mathcal{S} - \{P, P'\}) \cup \{P_1\}$. Then $f(P_1) = f(P) + f(P') - 2$, and hence we can see that \mathcal{S}_1 is a (k-2)-ended stem system such that $V(\mathcal{S}_1) = V(\mathcal{S})$, which contradicts Claim 1. \square

By Claims 3 (iv) and 4 (iii), we can obtain the following claim.

Claim 6 $\{a, b, w\}$ is an independent set.

Claim 7 $\{S \in S : S \cong K_1\} = \emptyset$.

Proof. Suppose that there exists $S' \in S$ such that $S' \cong K_1$. Let $\{s\} := V(S')$. By Claim 1, $N_G(s) \cap V(Stem(S)) = \emptyset$ for any $S \in S$. By the choice (S1) or (S3), $N_G(s) \cap Leaf(S) = \emptyset$ for any $S \in S$. By the choice (S1), $N_G(s) \cap (V(G) - V(S)) = \emptyset$. These imply that $N_G(s) = \emptyset$. Since G is connected, this is a contradiction. \square

Claim 8 (i) $d_S(a) + d_S(b) + d_S(w) \le |S| - 2f(S) - 1$ for any $S \in S - \{P\}$ with $S \ncong K_2$.

(ii)
$$d_P(a) + d_P(b) + d_P(w) \le |P| - 2f(P) + 2$$
.

Proof. (i) Let $S \in S - \{P\}$ with $S \not\cong K_2$. By Claim 7, $S \not\cong K_1$, and hence $|S| \geq 3$.

First, suppose that $S \in \mathcal{C}_8$. If $S \in \mathcal{C}_8^1$, then, by Claims 3 (ii) and 4 (i), (ii), we obtain $d_S(a) + d_S(b) + d_S(w) = 0 \le |S| - 3 = |S| - 2f(S) - 1$. If $S \in \mathcal{C}_8^2$, then, by Claims 3 (ii) and 4 (i), (iv), we obtain $d_S(a) + d_S(b) + d_S(w) = d_S(w) \le |Leaf(S)| - 1 = (|S| - |Stem(S)|) - 1 = |S| - 3 = |S| - 2f(S) - 1$. If $S \in \mathcal{C}_8^3$, then, by Claims 3 (ii) and 4 (i), $d_S(a) + d_S(b) + d_S(w) = d_S(w) \le |Leaf(S)| \le |S| - 3 = |S| - 2f(S) - 1$. Therefore, in any cases, we obtain $d_S(a) + d_S(b) + d_S(w) \le |S| - 2f(S) - 1$.

Next, suppose that $S \in \mathcal{P}_{8}$. By Claim 5, $(N_{G}(a) \cap V(Stem(S)))^{-} \cap N_{G}(b) = \emptyset$. By Claim 3 (iii), $(N_{G}(a) \cap V(Stem(S)))^{-} \cup (N_{G}(b) \cap V(Stem(S)))$ $\subseteq V(Stem(S)) - \{a_{S}, a_{S}^{+}, b_{S}\}$. These imply that $d_{Stem(S)}(a) + d_{Stem(S)}(b) \leq |Stem(S)| - 3$. Therefore, it follows from Claim 4 (i) that

$$d_{Stem(S)}(a) + d_{Stem(S)}(b) + d_{Stem(S)}(w) \le |Stem(S)| - 3.$$
 (1)

By Claims 3 (iv) and 4 (iii), $d_{(Leaf(S))_G}(a) + d_{(Leaf(S))_G}(b) + d_{(Leaf(S))_G}(w) = d_{(Leaf(S))_G}(w) \le |Leaf(S)| - |End(S)|$. Since $|End(S)| \ge 2$, we obtain

$$d_{\langle Leaf(S)\rangle_G}(a) + d_{\langle Leaf(S)\rangle_G}(b) + d_{\langle Leaf(S)\rangle_G}(w) \leq |Leaf(S)| - 2. \tag{2}$$

By the inequalities (1) and (2), we obtain $d_S(a) + d_S(b) + d_S(w) \le |S| - 5 = |S| - 2f(S) - 1$.

(ii) Suppose that $d_P(a)+d_P(b)+d_P(w)\geq |P|-2f(P)+3$. By Claim 5, $\left((N_G(a)-\{a_P\})\cap V(Stem(P))\right)^-\cap N_G(b)=\emptyset$. Hence, by Claim 4 (i), we obtain

$$d_{Stem(P)}(a) + d_{Stem(P)}(b) + d_{Stem(P)}(w) \le |Stem(P)| + 1.$$
 (3)

By Claim 3 (iv), $(N_G(a) \cup N_G(b)) \cap Leaf(P) = \emptyset$. By Claim 4 (iii), $N_G(w) \cap Leaf(P) \subseteq Leaf(P) - End(P)$. Hence, we obtain

$$d_{\langle Leaf(S)\rangle_G}(a) + d_{\langle Leaf(S)\rangle_G}(b) + d_{\langle Leaf(S)\rangle_G}(w) \le |Leaf(P)| - 2. \tag{4}$$

By the inequalities (3) and (4), we obtain $|P|-2f(P)+3 \le d_P(a)+d_P(b)+d_P(w) \le |P|-1=|P|-2f(P)+3$. Hence equalities hold above inequalities. By the equality (4), $End(P)=\{a,b\}$. We consider two cases.

Case 1.
$$|N_G(a) \cap N_G(b) \cap V(Stem(P))| = 1$$

In this case, $V(Stem(P)) \subseteq N_G(a) \cup N_G(b)$ by the equality (3). Let $\{c\} := N_G(a) \cap N_G(b) \cap V(Stem(P))$. Let P_l and P_r be two components of Stem(P) - c such that $a_P \in V(P_l)$ and $b_P \in V(P_r)$. Since $((N_G(a) - \{a_P\}) \cap V(Stem(P)))^- \cap N_G(b) = \emptyset$ and $V(Stem(P)) \subseteq N_G(a) \cup N_G(b)$, $v \in (N_G(a) - \{a_P\}) \cap V(Stem(P))$ implies $v^- \in N_G(a)$. This implies that $V(P_l) \cup \{c\} \subseteq N_G(a) \cap V(Stem(P))$. Similarly, $V(P_r) \cup \{c\} \subseteq N_G(b) \cap V(Stem(P))$. Since $((N_G(a) - \{a_P\}) \cap V(Stem(P)))^- \cap N_G(b) = \emptyset$, these imply that $V(P_l) \cup \{c\} = N_G(a) \cap V(Stem(P))$ and $V(P_r) \cup \{c\} = N_G(b) \cap V(Stem(P))$.

Let $a_1 \in V(P_l)$ and $P_1 := (P - a_1 a_1^+) \cup a a_1^+$. If $(Leaf(P) - \{a\}) \cap N_P(a_1) \neq \emptyset$, then $V(P) = V(P_1)$ and $V(Stem(P)) \cup \{a\} \subseteq V(Stem(P_1))$, which contradicts the choice (S2). Hence $(Leaf(P) - \{a\}) \cap N_P(a_1) = \emptyset$. Since $d_P(a) + d_P(b) = |Stem(P)| + 1$, it follows from the choice (S5) that $d_{P_1}(a_1) + d_{P_1}(b) \geq |Stem(P)| + 1$. Since $V(P_r) \cup \{c\} = N_G(b) \cap V(Stem(P))$, this implies that $V(P_l) \cup \{c\} = N_G(a_1) \cap V(Stem(P))$, especially $a_1 \in N_G(c)$. These imply that $V(P_l) \cup \{a\} \subseteq N_G(c)$ and $Leaf(P) \cap N_P(P_l) = \{a\}$. Similarly, $V(P_r) \cup \{b\} \subseteq N_G(c)$ and $Leaf(P) \cap N_P(P_r) = \{b\}$. Therefore, there exists a star S_1 such that $V(S_1) = V(P)$. Let $S_1 := (S - \{P\}) \cup \{S_1\}$. Then $f(S_1) = f(P) - 1$, and hence we can see that S_1 is a (k-1)-ended stem system such that $V(S_1) = V(S)$, which contradicts Claim 1.

Case 2. $|N_G(a) \cap N_G(b) \cap V(Stem(P))| \geq 2$

In this case, there exist $x_0 \in N_P(a)$ and $y_0 \in N_P(b)$ such that y_0 and x_0 are distinct, and are arranged in this order along Stem(P). Choose such x_0 and y_0 so that distance between x_0 and y_0 along Stem(P) is as small as possible. Since $((N_G(a) - \{a_P\}) \cap V(Stem(P)))^- \cap N_G(b) = \emptyset$, it follows

from the equality (3) that $y_0^+ = x_0^-$. Suppose that $Leaf(P) \cap N_P(y_0^+) \neq \emptyset$. Let $P_1 := (P - y_0^+ x_0) \cup ax_0$. Then $V(P_1) = V(P)$ and $V(Stem(P)) \cup \{a\} \subseteq V(Stem(P_1))$, which contradicts the choice (S2). Hence $Leaf(P) \cap N_P(y_0^+) = \emptyset$. Let $C_1 := (P - y_0^+ x_0) \cup ax_0 \cup by_0$ and $S_1 := (S - \{P\}) \cup \{C_1\}$. Then $Stem(C_1)$ is a cycle, and hence S_1 is a (k-1)-ended stem system such that $V(S_1) = V(S)$, which contradicts Claim 1. \square

In the case k=2, the theorem is proved in [3], therefore, we may assume that $k \geq 3$. Then $S - \{P\} \neq \emptyset$.

Claim 9 $S \cong K_2$ holds for any $S \in S - \{P\}$.

Proof. Suppose that there exists $S_0 \in S - \{P\}$ such that $S_0 \ncong K_2$. By Claims 3 (ii) and 4 (i), $d_S(a) + d_S(b) + d_S(w) = 0 = |S| - 2f(S)$ for any $S \in S$ with $S \cong K_2$. Therefore, by Claims 1, 3 (i), 6, 7 and 8, we obtain

$$\sigma_{3}(G) \leq d_{G}(a) + d_{G}(b) + d_{G}(w)$$

$$\leq \sum_{S \in \mathcal{S}} \left(d_{S}(a) + d_{S}(b) + d_{S}(w) \right) + d_{\langle V(G) - V(\mathcal{S}) \rangle_{G}}(w)$$

$$\leq \sum_{S \in \mathcal{S} - \{P, S_{0}\}} \left(|S| - 2f(S)) + (|P| - 2f(P) + 2) + (|S_{0}| - 2f(S_{0}) - 1) + (|V(G) - V(\mathcal{S})| - 1) \right)$$

$$\leq |G| - 2 \sum_{S \in \mathcal{S}} f(S)$$

$$= |G| - 2k.$$

This contradicts the assumption of Theorem 5. \Box

Let $S \in \mathcal{S} - \{P\}$. By Claim 9, $S \cong K_2$. Let $V(S) := \{s, s'\}$. By Claims 1 and 9, $N_G(S) \cap V(S') = \emptyset$ for any $S' \in \mathcal{S} - \{P, S\}$. By the choice (S1), $N_G(S) \cap (V(G) - V(\mathcal{S})) = \emptyset$. Suppose that there exists $t \in Leaf(P)$ such that $st \in E(G)$. Note that $t \notin End(P)$ by Claim 1. Let $\mathcal{S}_1 := (\mathcal{S} - \{S, P\}) \cup \{s'st, P - t\}$. Then \mathcal{S}_1 is a k-ended stem system such that $V(\mathcal{S}_1) = V(\mathcal{S})$, $\sum_{U \in \mathcal{P}_{\mathcal{S}_1}} |Stem(U)| = \sum_{U \in \mathcal{P}_{\mathcal{S}}} |Stem(U)|, |\{U \in \mathcal{S}_1 : U \cong K_1\}| = |\{U \in \mathcal{S} : U \cong K_1\}| \text{ and } |\{U \in \mathcal{S}_1 : U \cong K_2\}| < |\{U \in \mathcal{S} : U \cong K_2\}|, \text{ which contradicts the choice (S4). Therefore, by the symmetry of <math>s$ and s', we may assume that $N_G(s') \cap V(Stem(P)) \neq \emptyset$ because G is connected. Let

 $r \in N_G(s') \cap V(Stem(P))$. If $N_G(s) \cap V(Stem(P)) \neq \emptyset$, we can obtain a (k-1)-ended stem system \mathcal{S}' such that $V(\mathcal{S}') = V(\mathcal{S})$, which contradicts Claim 1. This implies that $N_G(s) = \{s'\}$, and hence $d_G(s) = 1$.

Case 1. |Stem(P)| = 3 and |End(P)| = 2

Note that $|G| \ge |\{w\}| + 2 \sum_{S \in S} f(S) + |P| - 4 \ge 2 + 2k$.

If $r=a_P$ or $r=b_P$, then $S_1:=S+s'r$ is a (k-1)-ended stem system such that $V(S_1)=V(S)$, which contradicts Claim 1. Hence $r=a_P^+$. Let $S_2:=(S-a_Pr)+s'r$. Then S_2 is a k-ended stem system such that $V(S_1)=V(S)$. In this system S_2 , a plays the same role of s in the system S_2 . By the symmetry of a and b, we can see that b also plays the same role of s. Note that $\{a,b,s\}$ is an independent set by Claims 3 (ii) and (iv). Then $|G|-2k+1 \le \sigma_3(G) \le d_G(a)+d_G(b)+d_G(s)=3 \le |G|-2k+1$. Hence equalities hold above inequalities. These equalities imply that $V(G)-V(S)=\{w\}$ and $Leaf(P)=\{a,b\}$. Then $N_G(w)=\emptyset$ by Claims 4 (i) and (iii). Since G is connected, this is a contradiction.

Case 2. $|V(Stem(P))| \ge 4$ or $|End(P)| \ge 3$

We shall prove that $d_P(a)+d_P(w)\leq |P|-2f(P)$. If $|End(P)|\geq 3$, then, by Claims 3 (iv), (v), 4 (i) and (iii), $d_P(a)+d_P(w)\leq |P|-|End(P)|-|\{b_P\}|\leq |P|-4=|P|-2f(P)$. Suppose that $|Stem(P)|\geq 4$. Then, if necessary, by changing the orientation of P, we may assume that $r^+\neq b_P$. Suppose that $r^+\in N_G(a)$. Let $S_1:=(S-rr^+)+s'r+ar^+$. Then S_1 is a (k-1)-ended stem system such that $V(S_1)=V(S)$, which contradicts Claim 1. Therefore, $r^+\notin N_G(a)$. Then, it follows from Claims 3 (iv), (v), 4 (i) and (iii) that $d_P(a)+d_P(w)\leq |P|-|End(P)|-|\{b_P,r^+\}|\leq |P|-4=|P|-2f(P)$.

By Claims 3 (ii) and 4 (i), $d_Q(a)+d_Q(w)=0=|Q|-2=|Q|-2f(Q)$ for any $Q\in \mathbb{S}-\{P\}.$

By Claim 3 (i), $d_{(V(G)-V(\mathbb{S}))_G}(a) + d_{(V(G)-V(\mathbb{S}))_G}(w) \le |V(G)-V(\mathbb{S})| - 1$.

Note that $\{a, s, w\}$ is an independent set.

Therefore,

$$\sigma_{3}(G) \leq d_{G}(a) + d_{G}(w) + d_{G}(s)$$

$$\leq \sum_{S \in \mathcal{S}} (d_{S}(a) + d_{S}(w)) + (|V(G) - V(\mathcal{S})| - 1) + 1$$

$$\leq \sum_{S \in \mathcal{S}} (|S| - 2f(S)) + |V(G) - V(\mathcal{S})|$$

$$= |G| - 2\sum_{S \in \mathcal{S}} f(S)$$

$$= |G| - 2k.$$

This contradicts the assumption of Theorem 5. Therefore Theorem 5 holds and so does Theorem 4. \Box

References

- J. Akiyama and M. Kano, Factors and factorizations of graphs, LNM 2031, Chapter 8, Springer (2011).
- [2] Integrity in graph theory. The theory and applications of graphs (Kalamazoo, Mich., 1980), 117-125, Wiley, New York, (1981).
- [3] M. Kano, M Tsugaki and Y. Guiying, Spanning trees whose stems have bounded degree, *submitted*.
- [4] M. Las Vergnas, Sur une propriété des arbres maximaux dans un graphe, CR Acad. Sci. Paris Sér A 272 (1971) 1297-1300.
- [5] K. Ozeki and T. Yamashita, Spanning trees A survey, Graphs Combin. 27 (2011) 1-26.