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Abstract

For a tree T, Leaf(T) denotes the set of leaves of T, and T —
Leaf(T) is called the stem of T. For a graph G and a positive inte-
ger m, om(G) denotes the minimum degree sum of m independent
vertices of G. We prove the following theorem. Let G be a connected
graph and k > 2 be an integer. If 03(G) > |G| — 2k + 1, then G has
a spanning tree whose stem has at most k& leaves.

Keywords: spanning tree, tree with k-ended stem, stem of a tree

1 Introduction

In this paper, we consider finite simple graphs, which have neither loops
nor multiple edges. Let G be a graph with vertex set V(G) and edge set
E(G). We write |G| for the order of G, that is, |G| := |V(G)|. Let Ng(v)
and dg(v) denote the set of neighbours of v and the degree of v in G,
respectively. For a subgraph H of G and a vertex v € V(G), we define
Ng(v) := Ne(v) N V(H) and dg(v) := |Ng(v)|. For a subset X of V(G),
the subgraph induced by X is denoted by (X)¢g. If there is no confusion,
we often identify a subgraph H of a graph G with its vertex set V(H).
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For an integer k > 2, the invariant 0% (G) of a graph G is defined to be
the minimum degree sum of k independent vertices of G, that is,

ox(G) :==min{) _ dg(z) : Y CV(G), [Y| =k, Y is independent}.
z€Y

Recently, in [3], Kano, Yan and the first author considered a new con-
cept of a spanning tree. We focused on the properties of a tree which can
be obtained by removing all the leaves of a spanning tree. We call a vertex
of a tree T, which has degree one, leaf of T'. For convenience, we call an
end-vertex, which has degree one, of a graph also a leaf. Let S be a graph.
The set of leaves of S is denoted by Leaf(S). The subgraph S — Leaf(S)
of S is called the stem of S and denoted by Stem(S). Note that a cater-
pillar is nothing but a tree whose stem is a path. Especially, we focused
on a k-tree (a tree whose maximum degree is at most k) as a property of
the stem of a spanning tree in a graph. We proved the following theorem,
and also showed the best possibility of the lower bound of the degree sum
condition.

Theorem 1 (Kano, Tsugaki and Yan [3]) Let k > 2 be an integer. If
a connected graph G satisfies 0x4+1(G) > n—k — 1, then G has a spanning
tree T such that Stem(T) is a k-tree.

In (2], Bondy gave a sufficient condition for a graph to have a caterpillar.

Theorem 2 (Bondy (2]) Let G be a 2-connected graph. If 03(G) > |G|+
2, then G has a dominating cycle, in particular, G has a spanning cater-
pillar.

But, the lower bound of 03(G) of Theorem 2 is not best possible for a
graph to have a spanning caterpillar. In fact, by Theorem 1, |G| — 3 is best
possible.

In this paper, we deal with a k-ended tree as a property of the stem
of a spanning tree in a graph. A tree which has at most k leaves is called
a k-ended tree. A stem which is a k-ended tree is called a k-ended stem,
and so a tree whose stem has at most k leaves is called a tree with k-ended
stem.

In [4], a sufficient condition for a graph to have a spanning k-ended tree
was introduced by Las Vergnas.
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Theorem 3 (Las Vergnas [4]) Let k > 2 be an integer, and let G be a
connected graph. If o2(G) > |G| — k + 1, then G has a spanning k-ended

tree.

We shall prove a similar result for a graph to have a spanning tree with
k-ended stem.

Theorem 4 Let k > 2 be an integer. If a connected graph G satisfies
03(G) > |G| — 2k + 1, then G has a spanning tree T with k-ended stem.

In fact, the condition of Theorem 4 is sharp. Let k > 2 be an integer.
Let G be a graph of order 2k +3 with k-1 leaves such that the stem of G is
K k+1, and for each z € Lea f(G), = connects to only one leaf of K k41(see
Fig. 1). Then the spanning tree of G is itself whose stem is K k+1. So G
has no spanning tree with k-ended stem. Note that o3(G) = 3 = |G| — 2k,
therefore the condition of Theorem 4 is sharp.

K+1
I

Figure 1: A graph G which has no spanning tree with k-ended stem.

We can also deal with spanning trees whose stems have some other prop-
erties. Many results on spanning k-ended trees and some other spanning
trees can be found in a recent book [1] and a survey [5}.

2 Proof of Theorem 4

We define a system to be a set of subgraphs of G whose stems are paths
and cycles (including K; and K5) and whose elements are pairwise vertex-

247



disjoint. For convenience, we let Stem(S) = S if § = K,;. We often
view the system as a subgraph. Let 8 be a system in a graph. We define
a function f : 8 — {1,2} as follows. For each S € 8, define f(S) = 2 if
Stem(S) is a path of order at least 3, and f(S) = 1 otherwise (i.e. Stem(S)
is a vertex, an edge or a cycle). We denote Ps := {S € 8 : f(S) =2} and
Cs := {S € 8: f(S) = 1}. Let €} := {S € Cs : Stem(S) = Ki},
€2 := {S € G5 : Stem(S) = K,} and €} := {S € Cs : Stem(S) is a cycle}.
We define V(8) := [Uges V(S) and £(8) := 3 g¢s f(S). We call 8 a k-ended
stem system if f(8) < k, and a spanning k-ended stem system if f(S) < k
and V(8) = V(G).

For S € 8, we sometimes give an orientation to Stem(S). For each
P € PsUCE, let ap and bp be an initial and terminal vertices of Stem(P),
respectively, and let End(P) be a set of vertices of Lea f(P) which are ad-
jacent to ap or bp in P. For S € 8 and z € V(Stem(S)), we denote the
successor and the predecessor of = on Stem(S) by z1(5) and z~(5), respec-
tively (if exists). If there is no danger of confusion, we abbreviate z+(5)
and =5 by z* and z~, respectively. For § € § and X C V(Stem(S)),
we define X~ = {z~: z € X}.

Theorem 4 is an immediate consequence of the following theorem.

Theorem 5 Let k > 2 be an integer. If a connected graph G satisfies
03(G) 2 |G| — 2k + 1, then G has a spanning k-ended stem system.

We now prove Theorem 5.

Proof of Theorem 5. Let G be a graph that satisfies the condition in
Theorem 5. Suppose that G has no spanning k-ended stem system. Let 8
be a k-ended stem system in G. Choose 8 so that

(S1) |V(8)] is as large as possible,

(82) Yo pep, |Stem(P)| is as large as possible subject to (S1),

(S3) |{S € 8:5 = K, }| is as small as possible subject to (S2) and,
(S4) |{S € 8:S 2 K,}| is as small as possible subject to (S3).

We give an orientation to Stem(S) for each S € 8. Since G has no
spanning k-ended stem system, there exists w € V(G) — V/(8).



Claim 1 Let 8 be an l-ended stem system in G such that V(8) C V(8').
Then | > k holds. Especially, 3 g5 f(S) =k holds.

Proof. If 3 ges f(S) < k, then we can add w to 8 to get a larger k-ended
stem system than 8, which contradicts the choice (S1). 0

Claim 2 Ps # 0.

Proof. Suppose that Ps = 0. Since k > 2, |Cs| > 2. Let C;,C; € Cs with
C, # Cs. Since G is connected, there exists a path {(or an edge) P which
connects a vertex of C; and a vertex of Cy. Since we can choose C; and C;
arbitrarily, we may assume that [V(P)NV(C))| = |[V(P)NV(C3)| =1 and
V(P)n (V(Cs) — V(C1) — V(Cz2)) = 0. By connecting C; and C; by P, we
obtain a subgraph C3 of G with Stem(C3) is a path. Now we show that
Stem(C3) is a path of order at least 3. Let 8; := (8 — {C1,C2}) U {C3}.
Then 8, is a (k — f(C1) — f(C2) + f(C3))-ended stem system such that
V(8) € V(81). By Claim 1, we obtain 2 = f(C})+f(C2) < f(Cs) < 2, that
is f(C3) = 2. This implies that 8, is a k-ended stem system and Stem(C3)
is a path of order at least 3. By the choice (S1), [V(8;)| = [V(8)|. But,
then ) PePs, |Stem(P)| > 3" pep, |Stem(P)|, which contradicts the choice
(52). O

By Claim 2, there exists P € Ps. Let a € Np(ap) N End(P) and
b e Np(bp) N End(P). We choose 8, P € Ps, and a,b € V(P) so that

(S5) dp(a) + dp(b) is as small as possible subject to (S4).
Claim 3 (i) (Ng(a) U Ng(b)) N (V(G) - V(8)) = 0.

(it) (Ne(a)UNa(b) NV(Cs) = 0.

(ili) (Ne(a)UNg(b) n{apr,ak, (@)t bp} = 0 for any P’ € Ps —{P}.
(iv) (No(a)U Ne(b) N Leaf (P') = 0 for any P’ € Ps.

(v) bp & Ng(a) and ap & Ng(b).

Proof. (i) Suppose not. By the symmetry of a and b, we may assume that
there exists r € Ng(a) N (V(G) — V(8)). Then 8 + ra is a larger k-ended
stem system than §, which contradicts the choice (S1).
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(ii) Suppose not. By the symmetry of a and b, we may assume that
there exists S € Cg such that Ng(a) NV(S) # 8. Let r € Ng(a) N V(S).
Let P, := PUarUS if S € C} U €%; otherwise if r € Stem(S) let P, :=
PUaru (S —rr=®), if r € Leaf(S) let P, := PUaru (S — zz~)
where z € Ng(r) N Stem(S). Let 8; := (8 — {P,S})U{P,}. Then f(P) =
f(P) + f(S) — 1, and hence we can see that 8; is a (k — 1)-ended stem
system such that V(8;) = V/(8), which contradicts Claim 1.

(iii) Suppose that apr € Ng(a). Let P, := PUaap U P’, and let
81 :=(8—{P,P'})u{P,}. Then f(P)= f(P)+ f(P')—2, and hence we
can see that 8; is a (k — 2)-ended stem system such that V' (8;) = V(8),
which contradicts Claim 1. In the same way, we can get bpr € Ng(a) and
ap,bp: & Nc(b).

Suppose that af, € Ng(a). Let P/ and P! be two components of
P'—apia}, such that ap € V(P/) and bpr € V(P}). Let Py := Puaa},UP!,
and let §; := (8—{P, P'})U{P,, P/}. Then f(P)+f(P]) = f(P)+f(P')-1,
and hence we can see that 8; is a (k — 1)-ended stem system such that
V(81) = V(8), which contradicts Claim 1. Therefore, a}, & Ng(a). In the
same way, we can get a}, & Ng(b).

By the same argument as above, we can also see that (a},)* & Ng(a)
and (a}.)* € Ng(b).

(iv) First, suppose that there exists a’ € Leaf(P’) — End(P’) such that
a' € Ng(a). Let ¥’ € Np:(a’). If P’ # Plet P, := PUad’, P, := P'—a’ and
let 8 := (8§—{P,P'Y)U{P,,P2}. If P’ = Plet P, ;= (P—a'b')Uad, 8, :=
(8 — {P}) U{P1}. Then 8, is a k-ended stem system such that |V'(S,)| =
[V(8)| and 3 gep,, [Stem(Q)] > X ges, |Stem(Q)|, which contradicts the
choice (S2). Therefore Ng(a)N(Leaf(P')— End(P')) = @ for any P’ € Ps.
Similarly, we can obtain Ng(b)N(Leaf(P')— End(P')) = @ for any P’ € Ps.

Next, suppose that there exists a’ € End(P’) such that a’ € Ng(a). If
P’ # P, then we can obtain a contradiction as in the proof of statement
(iii). Hence P' = P. If o’ € Np(ap) N End(P), then, by letting P, :=
(P-ad'ap)Uad’ and 8, := (8 — {P})U{P,}, we can obtain a contradiction
as in before case. Hence a’ € Np(bp) N End(P). Let C; := P Uaa’ and
let 8; := (8 — {P}) U {C1}. Then f(C1) = f(P)—1, and hence we can
see that 8; is a (k — 1)-ended stem system such that V(8;) = V(8), which
contradicts Claim 1. Therefore Ng(a) N End(P’) = @ for any P’ € Ps.
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Similarly, we can obtain Ng(b) N End(P’) = @ for any P’ € Ps.

(v) Statement (v) can be shown by the same way as statement (iv).
O

Claim 4 (i) Ng(w)n V(Stem(S)) =0 for any S € 8.
(ii) Ng(w)n Leaf(S) =0 for any S € 3.
(iii) Ng(w) N End(P) =0 for any P € Ps.
(iv) |Ne(w) N Leaf(S)| < |Leaf(S)| — 1 for any S € €% with S % K.

Proof. Statements (i)-(iii) hold since otherwise we can obtain a larger
k-ended stem system than 8, which contradicts the choice (S1).

(iv) Suppose that there exists S € €% with S % K such that Leaf(S) C
Ng(w). Let o’ € Ng(ag) N End(S), and ¥’ € Ng(bg) N End(S). Let C; :=
SUwa'Uwb', and let 8; := (8—{S})U{C1}. Then f(C}) = f(S), and hence
we can see that 8, is a k-ended stem system such that |V (8,)| = [V(S)|+1,
which contradicts the choice (S1). O

Claim 5 (Ng(a) N V(Stem(P’)))” N Ng(b) =@ for any P’ € Ps.

Proof. Suppose that there exists z € (Ng(a) N V(Stem(P’)))” N Ng(b).

First, suppose that P’ = P. Let C) := (P — zz*)Uaz* U bz, and let
81 := (8 — {P}) U {C:i}. Then f(C:1) = f(P) — 1, and hence we can see
that 8; is a (k — 1)-ended stem system such that V(8;,) = V(8), which
contradicts Claim 1.

Next, suppose that P’ € Pg—{P}. Let P, := PU(P'—zz*)Uazt Ubz,
and let 8; := (8—{P, P'})U{P,}. Then f(P,) = f(P)+f(P')—2, and hence
we can see that 8, is a (k — 2)-ended stem system such that V(8,) = V/(8),
which contradicts Claim 1. 0O '

By Claims 3 (iv) and 4 (iii), we can obtain the following claim.
Claim 6 {a,b,w} is an independent set.

Claim 7 {S€8: S= K} =0.
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Proof. Suppose that there exists S’ € 8 such that §' & K;. Let {s} :=
V(S'). By Claim 1, Ng(s) NV (Stem(S)) = @ for any S € 8. By the choice
(S1) or (S3), Ng(s) N Leaf(S) = @ for any S € 8. By the choice (S1),
Ng(s) N (V(G) — V(8)) = 9. These imply that Ng(s) = @. Since G is
connected, this is a contradiction. a

Claim 8 (i) ds(a) +dg(b)+ds(w) < |S|—2f(S) -1 for any S € 8§ — {P}
with S & Ks.

(i) dp(a) +dp(b) +dp(w) < |P| - 2f(P) +2.

Proof. (i) Let S € 8 — {P} with S % K,. By Claim 7, § % K, and hence
1S] > 3.

First, suppose that $ € Cs. If S € €}, then, by Claims 3 (ii) and 4 (i),
(ii), we obtain ds(a)+ds(b) +ds(w) = 0 < |S| -3 = |S|-2f(S)-1. If S €
€2, then, by Claims 3 (ii) and 4 (i), (iv), we obtain ds(a)+ds(b)+ds(w) =
ds(w) < |Leaf(S)| -1 = (|S| - |Stem(S)|) -1 = |§] - 3 = |§| - 2f(S) - 1.
If S € €}, then, by Claims 3 (ii) and 4 (i), ds(a)+ds(b) +ds(w) = ds(w) <
|Leaf(S)| < |S| — 38 = |S| — 2f(S) — 1. Therefore, in any cases, we obtain
ds(a) + ds(b) + ds(w) < |S] - 2f(5) - 1.

Next, suppose that S € Pg. By Claim 5, (Ng(a) N V(Stem(S))) ™ n
Ng(b) = 0. By Claim 3 (iii), (Ng(a)nV (Stem(S)))” U(Ng(b)nNV (Stem(S)))
C V(Stem(S))—{as,a},bs}. These imply that dgsem(s)(a)+dstem(sy(b) <
|Stem(S)| — 3..Therefore, it follows from Claim 4 (i) that

dStem(S) (a) + dStem(S) (b) + dStem(S) (w) < |Stem(.5‘)| -3. (1)

By Claims 3 (iv) and 4 (iii), d(Leas(s))0 (2)+d(Leas(s))6 (D) +d(Leas(spa (W) =
d(eas(sye () < |Leaf(S)| - |End(S)|. Since |End(S)| > 2, we obtain

diLeas(5)6(@) + d(Leaf(s))6 (D) + d(Leas(s))o(w) < |Leaf(S)| - 2. (2)

By the inequalities (1) and (2), we obtain dg(a)+ds(b)+ds(w) < |S|-5 =
11— 24(8) — 1.

(ii) Suppose that dp(a) + dp(d) + dp(w) = |P| — 2f(P) + 3. By Claim
5, ((Na(a) —{ap})N V(Stem(P)))_ N Ng(b) = 9. Hence, by Claim 4 (i),
we obtain

dstem(P)(a) + dstem(p)(b) + dstem(py(w) < |Stem(P)| +1.  (3)
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By Claim 3 (iv), (Ng(e) U Ng(b)) N Leaf(P) = 9. By Claim 4 (iii),
Ng(w) N Leaf(P) C Leaf(P) — End(P). Hence, we obtain

d(Leaf(S))o(a’) + d(Leaf(S))c(b) + d(Leaf(S))c(w) < |Lea‘f(P)| -2 (4)

By the inequalities (3) and (4), we obtain |P|-2f(P)+3 < dp(a)+dp(b)+
dp(w) < |P|—1 = |P|—2f(P)+3. Hence equalities hold above inequalities.
By the equality (4), End(P) = {a, b}. We consider two cases.

Case 1. |Ng(a) N Ng(b) NV (Stem(P))| =1

In this case, V(Stem(P)) € Ng(a) U Ng(b) by the equality (3). Let
{c} := Ng(a) N Ng(b) N V(Stem(P)). Let P, and P, be two components
of Stem(P) — c such that ap € V(P;) and bp € V(P,). Since ((Ng(a) —
{ap}) NV (Stem(P)))” N Ng(b) = @ and V(Stem(P)) C Ne(a) U Ng(b),
v € (Ng(a) — {ap}) N V(Stem(P)) implies v~ € Ng(a). This implies that
V(P) U {c} € Ng(a) N V(Stem(P)). Similarly, V(P,)U {c} C Ng(b) N
V(Stem(P)). Since ((Ng(a) — {ap}) NV (Stem(P))) ™ N Ng(b) = 9, these
imply that V(P)U {c} = Ng(e)nV(Stem(P)) and V(P,)U{c} = Ng(b)n
V{(Stem(P)).

Let a; € V(P) and P, := (P — a1a{) Uaaf. If (Leaf(P) — {a}) N
Np(a;) # @, then V(P) = V(P,) and V(Stem(P)) U {a} C V(Stem(P)),
which contradicts the choice (S2). Hence (Leaf(P) — {a}) N Np(a;) = 0.
Since dp(a) + dp(b) = |Stem(P)| + 1, it follows from the choice (S5) that
dp,(a1)+dp, (b) > |Stem(P)|+1. Since V(P,)U{c} = Ng(b)nV (Stem(P)),
this implies that V/(P) U {¢} = Ng(a1) N V(Stem(P)), especially a; €
Ng(c). These imply that V(P) U {a} C Ng(c) and Leaf(P)N Np(P,) =
{a}. Similarly, V(P,) U {b} C Ng(c) and Leaf(P) N Np(P,) = {b}.
Therefore, there exists a star S; such that V(S;) = V(P). Let 8; :=
(8 = {P}) U {S1}. Then f(S1) = f(P) — 1, and hence we can see that 8,
is a (k — 1)-ended stem system such that V(8,) = V(8), which contradicts
Claim 1.

Case 2. |[Ng(a) N Ng(b) NV (Stem(P)| > 2

In this case, there exist xo € Np(a) and yo € Np(b) such that yo and z¢
are distinct, and are arranged in this order along Stem(P). Choose such
To and yp so that distance between zo and yg along Stem(P) is as small as
possible. Since ((Ng(a) — {ap}) N V(Stem(P))) N Ng(b) = @, it follows
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from the equality (3) that y = z5. Suppose that Leaf(P)N N, plyd) #0.
Let P, := (P — yz0) Uazo. Then V(P,) = V(P) and V(Stem(P)) U
{a} € V(Stem(P,)), which contradicts the choice (S2). Hence Leaf(P) N
Np(yd) = 0. Let Cy := (P —yg zo) UazoUbyo and 8; := (8 — {P})U{C1}.
Then Stem(C)) is a cycle, and hence 8, is a (k — 1)-ended stem system
such that V(8;) = V/(8), which contradicts Claim 1. O

In the case k = 2, the theorem is proved in [3}, therefore, we may assume
that k > 3. Then 8 — {P} # 0.

Claim 9 S ¢ K5 holds for any S € 8 — {P}.

Proof. Suppose that there exists So € 8 — {P} such that Sp ¥ K. By
Claims 3 (ii) and 4 (i), ds(a) + ds(b) + ds(w) = 0 = |S| — 2f(S) for any
S € 8 with S = K,. Therefore, by Claims 1, 3 (i), 6, 7 and 8, we obtain
03(G) < dg(a) + dg(b) + da(w)
<Y (ds(a) + ds(b) + ds(w)) + div(c)-v(s)e ()

Ses
< Y (IS1-24(9) + (1P| - 2f(P) +2)
S€S—{P,Sc}
+ (IS0} = 2£(S0) — 1) + (IV(G) - V(8)| - 1)
<lel-2)" £(5)
Ses
= |G| - 2k.
This contradicts the assumption of Theorem 5. (]

Let S € 8 —{P}. By Claim 9, S & K. Let V(S) := {s,s'}. By Claims
1 and 9, Ng(S) N V(S’) = 0 for any S’ € S — {P, S}. By the choice (S1),
Ng(S)N (V(G) — V(8)) = 0. Suppose that there exists t € Leaf(P) such
that st € E(G). Note that t ¢ End(P) by Claim 1. Let 8; := (§—{S, P})U
{s'st, P — t}. Then 8, is a k-ended stem system such that V(8;) = V(8),
Zve?s, |Stem(U)| = Ypep, |Stem(U), {U € 8 : U= K1} = |{U €
S:UEKI}Iandl{UesleEKz}|<I{UGS:UEKg}l,which
contradicts the choice (S4). Therefore, by the symmetry of s and s/, we
may assume that Ng(s') N V(Stem(P)) # O because G is connected. Let
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r € Ng(s') NV (Stem(P)). If Ng(s) N V(Stem(P)) # 0, we can obtain a
(k — 1)-ended stem system 8’ such that V' (8’) = V'(8), which contradicts

Claim 1. This implies that Ng(s) = {s’}, and hence dg(s) = 1.
Case 1. [Stem(P)| = 3 and |End(P)| =2

Note that |G| > [{w}| +2Y ges f(S) +|P| -4 > 2+ 2k.

If » = ap or » = bp, then 8; := 8 + ¢'r is a (k — 1)-ended stem
system such that V(8,) = V/(8), which contradicts Claim 1. Hence r = a}.
Let 8 := (8 — apr) + s'r. Then 8, is a k-ended stem system such that
V(81) = V(8). In this system 85, a plays the same role of s in the system
8. By the symmetry of @ and b, we can see that b also plays the same role
of s. Note that {a,b,s} is an independent set by Claims 3 (ii) and (iv).
Then |G| — 2k + 1 < 03(G) £ dg(a) + dg(b) + dg(s) = 3 < |G| - 2k +
1. Hence equalities hold above inequalities. These equalities imply that
V(G) — V(8) = {w} and Leaf(P) = {a,b}. Then Ng(w) = @ by Claims 4
(i) and (iii). Since G is connected, this is a contradiction.

Case 2. |V (Stem(P))| > 4 or |[End(P)| 2 3

We shall prove that dp(a) + dp(w) < |P| — 2f(P). If |End(P)| > 3,
then, by Claims 3 (iv), (v), 4 (i) and (iii), dp(a)+dp(w) < |P|—|End(P)|-
l{bp}| < |P| — 4 = |P| — 2f(P). Suppose that |Stem(P)| > 4. Then, if
necessary, by changing the orientation of P, we may assume that r* # bp.
Suppose that r* € Ng(a). Let 8; := (8 —rr+) + s'r + art. Then 8, is
a (k — 1)-ended stem system such that V(8;) = V/(8), which contradicts
Claim 1. Therefore, r* € Ng(a). Then, it follows from Claims 3 (iv), (v),
4 (i) and (iii) that dp(a) +dp(w) < |P|—|End(P)| - |{bp,7*}| < |P|-4 =
|P| - 2f(P).

By Claims 3 (ii) and 4 (i), dg(a) + do(w) = 0 = |Q] - 2 = |Q| - 2/(Q)
for any Q € 8 — {P}.

By Claim 3 (i), d(v(c)-v(s))6 (@) +dv(0)-v(s))c (W) < [V(G) -V (8)| -
1.

Note that {a, s, w} is an independent set.
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Therefore,

03(G) < dg(a) + de(w) + dg(s)

<Y (ds(a) +ds(w)) + (IV(G) - V(8)| - 1) +1
Seé
<D (181 -2£(8) +IV(G) - V(3)|
Se8
=1G|-2)_ (S)
Ses$
= |G| - 2k.

This contradicts the assumption of Theorem 5. Therefore Theorem 5 holds
and so does Theorem 4. O
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