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Abstract. In this paper, we introduce the notion of blockwise-bursts
in array codes equippped with m-metric [13] and obtain some bounds
on the parameters of m-metric array codes for the detection and
correction of blockwise-burst array errors.
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1. Introduction

In a classical coding setting, codes are subsets/subspaces of ambient
space F' and are investigated with respect to the Hamming metric (12].
In [13], m-metric or RT-metric array codes which are subsets/subspaces of
linear space of all m by s matrices Matm,xs(F,) with entries from a finite
field F; endowed with a non-Hamming metric were introduced and some
bounds on code parameters were obtained. Motivated by the occurrence of
cluster errors in parallel channel communication systems, the author has
already introduced the class of usual bursts [7), CT-bursts (8], cyclic bursts
[11] in m-metric array codes. In this paper, we introduce another category
of bursts viz. blockwise-bursts of order p X r and study the error detecting
and error correcting capabilities of linear m-metric array codes with respect

to these types of errors.

2. Definitions and Notations

Let F, be a finite field of g elements. Let Mat,,x;(F,) denote the linear
space of all m X s matrices with entries from F;. An m-metric array code is
a subset of Mat,,x(F,) and a linear m-metric array code is an F,—linear
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subspace of Matpxs(Fy) . Note that the space Mat,,x,(F,) is identifiable
with the space F{™*. Every matrix in Matmxs(Fy) can be represented as
a 1 x ms vector by writing the first row of matrix followed by second row
and so on. Similarly, every vector in FJ** can be represented as an m x s
matrix in Mat,, xs(Fy) by separating the co-ordinates of the vector into m

groups of s-coordinates.
The weight and metric defined by Rosenbloom and Tsfasman [13] on
the space Mat,,,xs(F,) are as follows :
Let X € Matnx1(F,) with
T
X= mE
ITm
then column weight (or weight) of X is given by

m— max {i|zx=0 foranyk<i} if X#0
wto(X) =
0 if X=0.

This definition of wt. can be extended to m x s matrices in the space
Matmxs(Fy) as

wto(A) = iwtc(A,)
j=1

where A = [A;, A2, -+, A;] € Mat,,xs(F,) and A; denotes the j** column
of A. Then wt. satisfies 0 < wt.(A) < n(= ms) and determines a metric
on Mat,s(Fy) if we set d(A4,A’) = wt.(A— A")V A, A’ € Matpmx:(Fy).
We call this metric as column-metric. Note that for m = 1, it is just the
usual Hamming metric.

There is an alternative equivalent way of defining the weight of an
m X s matrix using the weight of its rows [4]:

Let Y € Mat;,(Fg) with Y = (y1,92,- -, ys). Define row weight (or
weight) of Y as

mex {i|y; #0} fY #0
wt,(Y) =
0 if Y=0.
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Extending the definitions of wt, to the class of m x s matrices as

wty(A) = Y _wt,(Rs)
i=1
Ry
where A = R2 € Mat,xs(F,) and R; denotes the i*" row of A. Then
Rm

wt, satisfies 0 < wt,(A) < n(= ms) V A € Mat,,xs(F,) and determines a
metric on Mat,, s (F,) known as row-metric or p-metric.

It turns out that row weight of a vector is equal to the column weight
of transpose of the vector with its component reversed and hence the two
metrices viz. row-metric and column-metric give rise to equivalent codes
and both the metrices have been known as m-metric or RT-metric.

In this paper, we take distance and weight in the sense of row-metric
(or p-metric). Throughout this paper, < z,y > will denote the minimum
of z and y and [z] as the greatest integer less than equal to z.

3. Blockwise-Bursts in m-Metric Array Codes

We now define blockwise-bursts in m-metric array codes:

Definition 3.1. A blockwise-burst of orderl pr(or px r)(1 < p<m,1 <
r < s) in the space Maty,xs(F;) is an m X s matrix A such that all the
nonzero entries of matrix A are confined to a p x r submatrix B of it with
first and last entry in each of the p rows of B are nonzero.

Remark 3.2. (i) For p = 1, the class of blockwise-bursts reduces to the
class of classical bursts [5].

(ii) For r = 1, every entry in p x 1 column vector B in the definition of
blockwise-burst is required to be nonzero

Definition 3.3. A blockwise-burst of order pr or less (1 < p<m, 1 <
7 < s) in the space Mat, xs(F) is & blockwise-burst of order ¢d (or ¢ x d)
where ]l <c<p<mand1<d<r<s.

Example 3.4. Consider the linear space Matzx3(F2). Then all blockwise-
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bursts of order 2 x 3 are given by:

‘We now obtain a bound for the correction of blockwise-burst errors in

linear m-metric array codes.

Theorem 3.5. An (n,k) linear m-metric array code V. C Maty,xs(Fy)
where n = ms that corrects all blockwise-bursts of order pr(1 <p<m,1 <
r < s) must satisfy

¢"* > 1+ B (Fy), (1)

where B (Fy) is the number of blockwise-bursts of order pr(1 < p <

mxs

m,1 <7 < s)in Matynx(Fy) and is given by

ms(qg —1) ifp=1,r=1,

BE(Fp)=¢ (m—p+1)s(g—1)? ifp>2,r=1, (2)

(m—p+1)(s—r+1)(g—1)%Pg"2Pif p>1, r>2.

Proof. Consider a blockwise-burst A € Mat,xs(F,) of order pr(l < p <
m,1 <r <s). Let B be the p x r nonzero submatrix of A such that all the
nonzero entries of A are confined to B with first and last entries in each
of the p rows of B are nonzero. There are three cases depending upon the

values of p and 7.
Case 1. Whenp=1, r=1.

In this case, the number of starting positions for the 1 X 1 nonzero
submatrix B in m X s matrix A is ms and these ms positions can be filled
by (g — 1) nonzero elements from Fj. Therefore, the number of blockwise-
bursts of order 1 x 1 in Mat,xs(Fy) is given by

B (Fy) = ms(g - 1).
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Case 2, Whenp>2, r=1.

In this case, the number of starting positions for the p x 1 nonzero
column submatrix B in m x s matrix A is (m — p + 1)s and entries in the
p % 1 submatrix B can be selected in (¢ — 1)? ways. Therefore, the number
of blockwise-bursts of order p x 1 in Mat,x,(F,) is given by

BEXL(Fy) = (m—p+1)s(g — 1)P.

mxs

Case 3. Whenp>1, r > 2.

In this case, the number of starting positions for the p x r nonzero
submatrix B is (m — p+ 1)(s — r + 1) and entries in B can be selected in
(g — 1)?Pg{"=2? ways. Therefore, the number of blockwise-bursts of order
pxr(p2>1, r>2)in Mat,x,(Fy) is given by

B,’;,"x’s(Fq) =(m—-p+1)(s—-r+1)g- 1)2Pq(7‘-—2)p‘

Combining the three cases, we get (2).

Now, since the linear m-metric array code V' C Mat,x,(Fy) corrects
all blockwise-bursts of order pr(l < p £ m,1 < r < s), therefore, all the
blockwise-bursts of order pr(1 < p < m,1 <7 < s} including the null m x s
matrix must belong to different cosets of the standard array. Since number
of available cosets = ¢"~*. Therefore, we must have

g F > 1+ BL(Fy)
where BE( (Fy) is given by (2) and we get (1). i
Remark 3.6.
(i) Take m = s = 3,p = 2,r = 3 and g = 2 in B}/ (F,) computed in

(2). We get B3X3(F,) = 2 x 4 = 8 and these 8 blockwise-bursts of

order 2 x 3 in Matsy3(F>) are listed in Example 3.4.

(ii) Take m = s = 3,p = 1,7 = 2 and ¢ = 2 in BE/ (F,) computed in
(2). We get BIX2(F;) = 3 x 2 = 6 and these 6 blockwise-bursts of
order 1 x 2 in Matgz.3(F3) are listed below:

110 011 00O 000
ooo0}J],J]oooO0},l110]},{011],
0 00 00O 0 00O 0 0O
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000 0 00
00O0])},{000O0].
110 011

Now, we prove Fire’s bound in linear m-metric array codes for blockwise-

burst error correction.

Theorem 3.7. (Fire’s bound) The number of parity check digits required
for an (n, k) linear m-metric array code V C Maty«s(Fy) where n = ms,
that corrects all blockwise-bursts of order pr orless (1 <p<m,1<r<s)
is at least

log, [1 + Z ZBf,fxd, ]

c=1 d=1
where BEXZ (Fy) is given by (2).

Proof. Follows directly from Theorem 3.5 and Definition 3.3. 0

4. Blockwise-Bursts with Weight Constraint in m-
Metric Array Codes

In this section, we obtain a lower bound on the number of parity
check digits required to correct all blockwise-bursts of order pr or less (1 <
p < m,1 < r < s) in Mat,,x(F,;) having weight (or p-weight) w or less
(1< w < ms).

The bound obtained is analogous to the Hamming bound for random
error correction [13]. We first prove a lemma that enumerates the number
of blockwise-bursts of order pr(1 < p < m,1 < r < s) having p-weight w

or less.

Lemma 4.1. The number of blockwise-bursts of order pr(1 <p < m,1 <
r < 8) in Matnx(Fy) having p-weight w or less (1 < w < ms) is given by

( m x min(w,s) x (g—1) ifp=r=1,

mxminfw—r+1,s—r+1)x
_12 -2 : —_ >9
BPXT (Fq,'lU)={ X(q )q 1fp 1,7‘_ ?

mXs

(m—p+1) xmin([3},8) x (g-1)F ifp22,r=1,

\ (m—p+1)xLx(q-—l)szq("‘2)Pifp22,rZ2,
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where

L=ma.x(0,min<[%]—r+1,s—r+1)). (4)

A
Proof. Consider a blockwise-burst A = A2 where A; = (ai,, iy, -,
Am
a;, ), of order pr(1 < p < m,1 < r < s) having p-weight w or less (1 < w <
ms). Let B be the p x r nonzero submatrix of A such that all the nonzero
entries of A are confined to B with first and last entries in each of the p
rows of B are nonzero. There are four cases depending upon the values of

pandr.

Case 1. Whenp=1, r=1.

In this case, the number of starting positions for the 1 x 1 nonzero
submatrix B in m x s matrix A is m X min(w, s) and these m x min(w, )
positions can be filled by (¢ — 1) nonzero elements from F,;. Therefore,
the number of blockwise-bursts of order 1 x 1 having p-weight w or less in
Mat,xs(Fy) is given by

B}nxxla(Fq’w) =m x min(w, s) x (g — 1).

Case 2. Whenp=1, r > 2.

In this case, the number of starting positions for the 1 x r nonzero
submatrix B in m X s matrix A is m x min{w~r+1,s—r+1) and entries in
the 1 x 7 submatrix B can be selected in (g — 1)2¢"~2 ways as the first and
last components of the single rowed submatrix B can be chosen in (g —1)2
ways and intermediate (r — 2) components can be chosen in ¢"~2 ways.
Therefore, the number of blockwise-bursts of order 1 x » having p-weight
w or less in Mat,,x(Fy) is given by

B,lnxx"s(Fq,'LU) =m X min(w —r+1l,s—7r+ 1) X (q _ 1)2qr—2.

Case 3. Whenp>2, r=1.

In this case, the p x 1 nonzero column vector B can have (i, j) as its
starting positions in m x s matrix A where i can vary from 1 to (m—p+1)
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and j can vary from 1 to min ([%J , s). With (7, j) as the starting position

of p x 1 nonzero column matrix B, entries in B can be filled in (g — 1)?
ways. Therefore, number of blockwise-bursts of order p x 1 having p-weight
w or less in Mat,,x,(F}) is given by

B (Fov) = (m—p+ 1) xmin (| 2] ) x (g - 107

Case 4. Whenp>2, r > 2.

In this case, the number of starting positions for the p x r nonzero
submatrix B in m x s matrix A is (m — p+ 1) x L where L is given by (4)
and entries in submatrix B can be filled in (g—1)??¢("~2)? ways. Therefore,
the number of blockwise-bursts of order p x r having p-weight having w or
less in Maty,xs(Fy) is given by

BoSa(Fpyw) = (m—p+1) x L x (g—1)*P¢"=2P,

where L is given by (4). u}

Remark 4.2. For w = ms, the expression for BE, (Fy,w) computed in
(3) reduces to B (F,) computed in (2).

Example 4.3. Take m=s=3,p=r=2,g=2 and w = 3 in Lemma 4.1.
Then number of blockwise-bursts of order 2 x 2 having p-weight 3 or less
in Matgx3(F3) is given by :

BX%(F,,3) = 2xmax(0,min(0,2))x1=2x0=0

Thus, there is no blockwise-burst of order 2 x 2 having p-weight 3 or less
in Mat3x3(F2).

Example 4.4, Take m = s =3,p=2,7r = 3,g =2 and w = 6 in Lemma
4.1. Then B2}3(F3,4) is given by:

BE3(Fy,3) = 2x max(0,min(1,1)) x 22 =8.

These 8 blockwise-bursts of order 2x3 having p-weight 6 or less in Matsy3(F3)
are listed in Example 3.4.
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Now, we obtain a lower bound on the number of parity check digits
for the correction of blockwise-bursts of order pr(or less) having p-weight
w or less (1 < w < ms).

Theorem 4.5. An (n,k) linear m-metric array code V C Matyyo(Fy)
where n = ms that corrects all blockwise-bursts of orderpr 1 <p<m,1<
r £ 8) having p-weight w or less (1 < w < ms) must satisfy

qn_k >1+ Bglxxra(FQ’w)

where BhY (Fg,w) is given by (3) in Lemma 4.1.

mxs

Proof. The proof follows from the fact that the number of available cosets
must be greater than or equal to the number of correctable error matrices

including the null matrix. a

Theorem 4.6. An (n,k) linear m-metric array code V. C Maty, xs(Fy)
where n = ms that corrects all blockwise-bursts of order pr orless (1 <p <
m,1 < r < s) having p-weight w or less (1 < w < ms) must satisfy

p r
214 B (Fyw)

c=1 d=1
where B (Fy,w) is given by Lemma 4.1.

Proof. Follows directly from Theorem 4.5 and Definition 3.3. ]

5. Construction Bounds for Blockwise-Burst Error
Detection and Correction in Linear m-Metric Array
Codes

In this section, we obtain construction bounds for blockwise-burst
error detection and correction. To obtain the desired bounds, we shall
identify the space Mat,,xs(Fg) with the space Fg’“ i.e. an m X s matrix
over F; is considered as an ms-tuple over F, arranged into m groups of s
elements each. Each group of s elements in an ms-tuple is called a block.
Also, s is called the block length or block size and m is the number of blocks.
Each block of an ms-tuple has a p-weight and sum of p-weights of all the
m blocks of an ms-tuple is the p-weight of that ms-tuple. Also, columns of
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generator matrix G and parity check matrix H of a linear m-metric array
code V are grouped into m blocks of s columns each. Therefore, generator
matrix G and parity check matrix H of a linear m-metric array code V
are represented as G = [G),Ga, -+,Gn], H = [Hy,Ha, - -, Hy,] where G;
and H; are the i** block (1 < i < m) of generator and parity check matrix
respectively of the code V and are given by

Gi = [Gill Gi21 Ty Gis]r
and
H; = [Hy,Hy, -, Hi),

where each G;;(1 i <m,1 <j<s)isakx1 column vector and each
Hij(1<i<m,1<j<s)isan (ms—k)x 1 column vector.

Throughout our discussion, we use the following terminology:

Definition 5.1. A vector v € FJ is said to be a strict linear combination
of the vectors vy, vs, - - -, Uy from the left hand side (respectively right hand
side) if

v=av + V2 4+ +0mUnm, o €F

where ¢ # O(respectively o, # 0).

Definition 5.2. A vector v € F‘;‘ is said to be a strict linear combination

of the vectors vy, va,- - -, Uy, from both sides if
v=01v + a2 + - + OmUm, o € Fy

where o, oy, # 0.

Definition 5.3. A vector v € F.;‘ is said to be a strict linear combination

of the vectors vy, vg, -+, vy, if
v =010 + Ve + - - F QU

where o; € F,;/{0}.

Now, we obtain a construction (upper) bound for blockwise-burst error
detection in linear m-metric array codes.
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Theorem 5.4. Let q be prime or power of prime and m, s, p, 7, k be positive
integers satisfying1 < p<m,1 <r <s andl < k < ms, then there exists
an [m x 8,k] linear m-metric array code over F, i.e. a linear m-metric
array code with m as the number of blocks and s as the block size, that has
no blockwise-burst of order pr or less as a code array provided

g™ > 14 (g - 17!

+i((q — 1)2q<Im2r=2)Pol(g — 1)g<ImEr2>), (5)
j=2

Proof. The existence of such a code will be proved by constructing a suit-
able (ms — k) x ms parity check matrix H for the desired code. To detect
any blockwise-burst of order pr or less, it is necessary and sufficient that no
strict linear combination from both sides involving r (or fewer) consecutive
columns in p(or fewer) consecutive blocks should be zero. Suppose that
1 —1(1 £ i £ m) blocks Hy, Ha, -+, Hi—1 have been chosen suitably. To
add the j** column (1 < j < s) in the i** block, we consider following two

cases:
Case 1. When j = 1.

In this case, the j* column (i.e. the first column) in the i** block may
be added provided it is not a strict linear combination (i.e. all the scalars
are non-zero) of the first column from the immediately preceeding < ¢ —
1,p — 1 > blocks. Therefore, column H;; in the i** block can be added to

H provided that

i1
Hy # Z ag1Hy1 whereag; #0V g. (6)

g=i—<%,p>+1
The number of linear combinations occuring in (6) is given by
(g~ 1)<=1e=1>, )
Case 2. When2 < j<s.

In this case, the j** column (2 < j < s) in the i*® block may be added
provided it is not a strict linear combination from both sides of l;",  +
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1)tk ..., j** columns from the immediately preceding < i—1,p—1 > blocks
(where [; =< 1, j—r+1 >) together with strict linear combination from left
hand side of l;", (Li+1)h, - (G = 1)*® columns in the i** block. Therefore,
column H;;(2 < j < s) in the i** block can be added to H provided

i-1

H'. ] # Z (agrlegrlJ' + ag’l.i"'lH »l.‘i+1 +-t ag!JHgﬂ)
g=i—<1i,p>+1
toi Hipy + cis v Higy41 + -+ i1 Hi i (8)

where ag,,,0,; # 0V g and also o;,; # 0.

Note that summation in (8) will not run at all if the lower limit of the
summation is greater than the upper limit and this will occur when <
i,p >=1 and in this case value of the summation is assumed to be zero.

Now, the number of linear combinations occuring in (8) is given by

((q _ 1)2q<j—2,r—2>)<1'—1.p—1>(q _ 1)q<j—2,r-2>. (9)

Therefore, it* block can be added to H provided the summation of number
of linear combinations enumerated in (7) and (9) for 1 < j < s including
the pattern of all zeros is less than the total number of (ms — k)-tuples.
Therefore, it* block H; can be added to H provided that

s
qms—k >14 (q _ 1)<t‘—l.p—l> + Z(q - 1)2(q<j—2,r—2>)<i—l,ﬁ—l> x
=2

x(g—1)g<i—2r=2>, (10)

For the existence of an [m x s, k] linear m-metric array code, inequality
(10) should hold for i = m so that it is possible to add up to the m** block
to form an (ms — k) x ms parity check matrix and we get (5). (Note that
1<p<mgives<m-1,p—1> =p-1). o

Example 5.5. Take m=s=3,p=r=2,k=4and g=2.
Then

3
1+1+ 2(2<5—2.0>)12<J’—2,0>
Jj=2

= 14+1+14+1=4

R.H.S. of (5)

284



Also, L.H.S. of (5) = g™*—% =29-4 =25 =32,
Therefore, L.H.S. of (5) = 32 > 4= R.H.S. of (5).

Thus, sufficient condition of Theorem 5.4. is satisfied for the chosen para-
meters and hence there exists a [3 x 2, 2] linear m-metric array code over F,
detecting all blockwise-bursts of order 2 x 2 or less. Consider the following
(3x2—-2)x(3x2) = 4x 6 parity check matrix of a [3 x 2, 2] linear m-metric
array code over Fy constructed by the algorithm discussed in the proof of
Theorem 5.4.

1010011
g_|o1io00 o1

00:10:10

00 i01:i00],,

The generator matrix of the code corresponding to the parity check matrix

G=[1°f1°f1°]
11:00:101]),,

The four code arrays of the code V' C Matzn2(F3) with G as generator
matrix and H as parity check matrix are given by

00 10 11 01
v=|00],um=10}vo=]00 J,u3=| 1 0]}.
00 1 0 01 11

We note that none of the code arrays is a blockwise-burst of order 2 x 2 or
less over F. Therefore, construction condition (5) is verified.

H is given by

Now, we obtain a construction (upper) bound for blockwise-burst error
correction analogous to Campopiano’s bound [2].

Theorem 5.6. Let q be prime or power of prime and m, s, p,, k be positive
integers satisfying 1 < p < [m/2],1 £ r < sand1 < k < ms, then a
sufficient condition for the existence of an [m x s, k] linear m-metric array
code over Fy that corrects all blockwise-bursts of order pr or less is given
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by

qms—k > 1+ ((q_ l)p—l + (i((q_ 1)2q<j—2,r—2>)p—l x

i=2

x(q - 1)g<I2r=) ) (Z isz:,i,,)x,(Fq)). (ay)

c=1 d=1

where BEX? | (F,) is given by (1).

(m—p)xs

Proof. The existence of such a code will be proved as in previous theorem
by constructing a suitable parity check matrix for the code. To correct all
blockwise-bursts of order pr or less, it is necessary and sufficient that no
code array consist of the sum of two blockwise-bursts of order pr or less.
Thus, no strict linear combination from both sides involving two sets of 7 (or
fewer) consecutive columns in p (or fewer) consecutive blocks should be zero.
Suppose that m — 1 blocks H,, Hs, - - -, Hy,—; of the parity check matrix H
have been chosen suitably. Then j** column (1 < j < s) in the m** block
may be added, provided that it is not a strong linear combination from both
sides of It*, (I;+1)*, . -, j** columns from the immediately preceding p—1
blocks (where l; =< 1,j —r+1 >) together with strong linear combination
from left of It*, (I + 1), .-, (5 — 1) columns in the m** block and any
set of r (or fewer) consecutive columns in p (or fewer) consecutive blocks
among the first (m — p) blocks which from a blockwise-burst of order pr
or less. In other words, column Hn;(1 < j < s) in the m** block can be
added to H provided that

m—1

HmJ ?é Z (ag»,j Hgvl.‘i + agvlj'*'lH 1lj+1 + ) ag!j’ Hg)j)
g=m-p+l1
+ Cm,l; Hm,lj + am,lj+1Hm,l,-+1 + oy 0myi-1, Hm,j—l

+ strong linear combination from both sides which form a

blockwise-burst of order pr or less among the first (m — p) blocks

= G;+P
where
m—1
G; = Z (ag,1; Hgi; + ag;41Hg 41 + -+ - + g i Hg 5)
g=m—p+1
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+om i Hmt; + 0m, 4 1Hm 41 + - + amj-1Hm 51,
P = strong linear combinations from both sides which form a

blockwise-burst of order pr or less among the first (m — p) blocks.
Also, as in Theorem 5.4, the value of G; (1 < j < s) is given by
| { (g—171 for j=1,

((g — 1)2q<i=2r=2>)p=1(g — 1)q<i~27-2> for 2<j<s.

= (12)

The number of strong linear combinations from both sides which form a
blockwise-burst of order pr or less in the space of (m — p) x s matrices is

given by

p r
D D BixE yxs(Fa).  (refer Theorems 3.5 and 3.7) (13)
c=1 d=1

To add all the s columns in the m** block, the number of available (ms—k)-
tuples must be greater 1+ R where R is obtained by adding G; fori < j <s
from (12) and then multiplying by (13) and is given by

R = ((q —1 s (Xs:((q- 1)?q<I=2=2)P= (g - 1)q<j_2,r_z>)) *

=2
p r
(2 B palF)
c=1 d=1

At worst, all these linear combinations might yield a distinct sum. There-
fore, mth block H,, can be added to H provided

s
qrns—k > 14 ((q _ l)p-l + (Z((q_ 1)2q<j—2,r—2>)p—l %
j=2

(g— 1)q<j—2,r—2>)) (2:; glsg;{ p)xs(F,,)).

Thus we conclude that if (11) is satisfied, then it is possible to construct an
(ms — k) x ms parity check matrix of an [m x s, k] linear m-metric array
code which corrects all blockwise-bursts of order pr or less. n|

Further, for a given r(1 < r < s), let p} be the largest value of p
satisfying inequality (11). Then for p = p} + 1, the opposite inequality
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is satisfied and the following theorem giving another upper bound on the
number of parity checks holds:

Theorem 5.7. There exists an [m x s, k| linear m-metric array code over
F, that corrects any single blockwise-burst of order py x r or less where
1<r <s,1<p; < [m/2], for which the following inequality is satisfied:

8

ms—k < zogq(1+ ((q—l)"3+ (Z((q—nzq“-’f-b)"; Y
j=2
pi+l o

x(q — 1)q<j—2;r-2>)) (Z ZBE’;‘ip;_l)m(Fq))) .

e=1 d=1

Example 5.8. Take m=s=3,p=1,7r =2,g =2 and k = 3, Then

3
RHS. of (11) = 1+ (1 + (Z(2<i—2,0>)02<j—2,0>)) X

=2
1 2
<3 Somsir)
c=1 d=1
= 1+(1+1+1)x (B;;‘;(Fg) + B;,’:g(Fz))
= 1+3(6+2x2) =31

Also, LHS. of (11) = 2ms—F = 29-3 = 26 — 64.

Therefore, L.H.S. of (11) = 64 > 31 =R.H.S. of (11) and hence by Theorem
5.6, there exists a [3 x 3, 3] linear m-metric array code over F3 that corrects
any blockwise-burst of order 1 x 2 or less.

Consider the following (3 x 3 — 3) x (3 x 3) = 6 x 9 parity check matrix of
a [3 x 3, 3] linear m-metric array code over F3 constructed by the synthesis
procedure outlined in the proof of Theorem 5.6.
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o O = O o ©
o B O O O ©
- O O © o O
Q O M= = O O

1
1
0
0
0
1

O O O O O M=
O O O © ~ O
o O O = O o

1
1
1
0
0
0

< 6x9

We now claim that the code V C mataxs(F2) which is the null subspace of
H corrects all blockwise-bursts of order 1 x 2 or less. The claim is verified
from Table 5.1 which shows that syndromes of all blockwise-burst errors of

order 1 x 2 or less are all distinct.

Table 5.1

Blockwise-burst Errors of order 1 x 2 or less Syndromes

110

( 00 0 = (110 000 000) (110000)
0 00
011
0 00 ) = (011 000 000) (011000)
0 00
0 00
1 1 0 | = (000 110 000) (000110)
0 00
000

( 01 13 = (000 011 000) (000011)
0 00
0 00

( 000 ) = (000 000 110) (111101)
110
0 00

(0 00 ) = (000 000 011) (110100)
011
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Blockwise-burst Errors of order 1 x 2 or less Syndromes
1 00
0 0 0 } = (100 000 000) (100000)
b
010
0 0 0 | = (010 000 000) (010000)
( 000
0 01
QO 00 ) = (001 000 000) (001000)
000
0 00
( 100 ) = (000 100 000) (000100)
0 00
0 00O
0 1 0 | = (000010 000) {(000010)
( 000 )
0 00
0 0 1 | = (000001 000) (600001)
( 0 00 )
000
0 0 0 | = (000000 100) (110001)
( 1 00 )
0 00O
( 0 00 ) = (000 000 010) (001100)
010
000
( 000 ) = (000 000 001) (111000)
001
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