The cordiality of the complement of a graph

Xu Liping^{a)}, Liu Zhishan^{b)}, Li Zhi^{c) *†}
^{a,c)}School of Mathematics, Yangtze University, Jingzhou 434023, P.R.China.
^{b)}Yang-En University, Quanzhou, 362014, P.R.China.

abstract A necessary and sufficient condition of the complement to be cordial and its application are obtained.

Keyword Cordial Complement

1 Introduction

We shall consider finite, undirected, simple graphs and 0-1 labeling only.

Let G be a graph with vertex set V(G) and edge set E(G). We define a labeling f on V(G) by giving each $v \in V(G)$ a label f(v) = 0 or 1, and denote $V_i = \{v : v \in V(G), f(v) = i\}$, i = 0, 1. From a labeling on V(G), we derive a 0-1 labeling on E(G) by giving each $uv \in E(G)$ a label f(uv) = |f(u) - f(v)|, and denote $E_i = \{uv : uv \in E(G), |f(u) - f(v)| = i\}$, i = 0, 1. The vertex x is called i vertex, if f(x) = i. The edge uv is called i edge, if f(uv) = i. We denote by $v_i = v_i(G)$ and $e_i = e_i(G)$ the number of elements of $V_i(G)$ and $E_i(G)$, respectively.

of elements of $V_i(G)$ and $E_i(G)$, respectively.

If there exists a labeling f on V(G) such that $|v_0-v_1| \leq 1$ and $|e_0-e_1| \leq 1$, then G is said to be cordial [1] and f is said to be a cordial labeling of G. The cordiality of the union graphs, join graphs, Cartesian product graphs and so on have been discussed [2]. We shall consider the cordiality of the

complement of a graph.

2 Fundmental lemmas

Lemma 1 Let f be a labeling of K_{2n} or K_{2n+1} such that $|v_0 - v_1| \le 1$, then $e_1 = e_0 + n$.

^{*}Corresponding author,e-mail: xlp211@126.com

[†]This research is partially supported by cultivation project of Yangtze University for the NSF of China (2013cjp09) and basic research for application of Yangtze University (2013cjy03)

One can calculate the e_0 and e_1 easily. We omit the proof.

Lemma 2 Let |G| = 2n or 2n+1 and f be a labeling on V(G), then f is a cordial labeling of complement \overline{G} if and only if $|v_0(f,G)-v_1(f,G)| \leq 1$, $|e_1(f,G)-e_0(f,G)-n| \leq 1$.

Proof Let |G| = m. Note that $v_i(f, G) = v_i(f, \overline{G}), i = 0, 1$, and $e_i(G) + e_i(\overline{G}) = e_i(K_m)$. We have $|e_1(\overline{G}) - e_0(\overline{G})| = |e_1(K_m) - e_1(G) - [e_0(K_m) - e_0(G)]| = |e_0(G) - e_1(G) - [e_0(K_m) - e_1(K_m)]| = |e_1(G) - e_0(G) - n|$. It implies the statement in lemma 2.

Example 1 The cordiality on $\overline{P_2 \times P_n}$.

Case 1. When n is odd, let n=2m+1. Let the labels of the vertices in the first line of the grid $P_2 \times P_n$ 1, 1, 0, 0 alternatively in order, the labels of the vertices in the second line 0, 0, 1, 1 alternatively in order. We can get $v_0=v_1=2m+1$, $e=2\times2\times(2m+1)-2-(2m+1)=6m+1$, $e_0=2m$, $e_1=6m+1-2m=4m+1$, so $|e_1-e_0-2\times(2m+1)/2|=|4m+1-2m-(2m+1)|=0\leq 1$. By lemma 2, when n is odd, $P_2\times P_n$ is cordial.

Case 2. When n is even, let n=2m. Let the labels of the vertices in the first line of the grid $P_2 \times P_n$ 0, 1 alternatively in order except the last two, the labels of the last two 1,0 in order, the labels of the vertices in the second line 0, 1 alternatively in order. We can get $v_0 = v_1 = 2m$, $e_0 = 2m-1$, $e_1 = 2 \times (2 \times 2m - 2m - 2 - (2m-1)) = 4m-1$, so $|e_1 - e_0 - v/2| = 0$. By lemma 2, when n is even, $P_2 \times P_n$ is cordial.

Example 2 The coodiality on $\overline{P_2 \times C_n}$.

Case 1. When n is odd, let n=2m+1. We can see $\overline{P_2 \times C_n}$ is even degree graph and we can get $e=(4m+2-4)\times (4m+2)/2=(4m-2)(2m+1)\equiv 2(mod4)$, by proposition 1 of [4], $\overline{P_2 \times C_n}$ is not cordial. Case 2. When n is even, let n=2m. Let the labels of the vertices in the

Case 2. When n is even, let n=2m. Let the labels of the vertices in the outer circle of the grid $P_2 \times c_n$ 0, 1 alternatively in order, the labels of the vertices in the inner circle are same to the labels of the vertices in the circle of outside. We can get $e_0 = 2m$, $e_1 = 6m - 2m = 4m$, $|e_1 - e_0 - 2m| = 0$, By lemma 2, when n is even, $P_2 \times C_n$ is cordial.

3 The cordiality of $\bigcup_{i=1}^{m} P_{n_i}$

Lemma 3 For every path P_n of order n and $k \in \{1, 2, \dots, n-1\}, n \ge 2$, there exists a labeling f of P_n such that $|v_0(P_n) - v_1(P_n)| \le 1$ and $e_1(P_n) = k$

Proof When n=2, the statement is clear. Assume that the statement is true for $n \le m$. Put n=m+1. If $k \in \{1, 2, \dots, m-1\}$, we give a labeling

for P_m such that $|v_0(P_m) - v_1(P_m)| \le 1$ and $e_1(P_m) = k$. Choosing an edge $uv \in E(P_m)$ with f(uv) = 1. By adding a vertex w in uv, and putting f(w) = 0 if $v_0(P_m) \le v_1(P_m)$ or f(w) = 1, if $v_0(P_m) > v_1(P_m)$. We obtain a desired labeling f of P_{m+1} . If k = m, we give a labeling with 0,1 alternately from the first vertex of P_{m+1} to the end. It is just the labeling with $|v_0-v_1| \leq 1$ and $e_1=m$.

Lemma 4 If $n_i = 2$, $G = \bigcup_{i=1}^{m} P_{n_i}$, $m \ge 1$, $i = 1, 2, \dots, m$, then for each $k \in \{m, m+1, \dots, \sum_{i=1}^{m} n_i - m\}$, there exists a labeling f of G such that $|v_0(G) - v_1(G)| \le 1$ and $e_1(G) = k$.

Since $k \in \{m, m+1, \dots, \sum_{i=1}^{m} n_i - m\}$, it is easily to see that there are numbers r_1, r_2, \dots, r_m such that $k = r_1 + r_2 + \dots + r_m$, $1 \le r_i \le n_i - 1$. Note that when we change the label of each vertex of the path P_{n_i} , the label of each edge in P_{n_i} keep with same. Hence by lemma 3, we can give a labeling to each P_{n_i} , such that $e_1(P_{n_i}) = r_i$ and $|v_0(\bigcup_{i=1}^m P_{n_i}) - v_1(\bigcup_{i=1}^m P_{n_i})| \le 1$. The compound labeling is desired.

Every $\overline{G} = \bigcup_{i=1}^{m} P_{n_i}$ is cordial, $n_i \geq 2$.

Proof Note that $e_1(G) + e_0(G) = \sum_{i=1}^{m} n_i - m$ for every labeling of $G = \sum_{i=1}^{m} n_i$ $\bigcup_{i=1}^m P_{n_i}$. It implies that when $e_1(G)$ runs throughout $\{m,m+1,\cdots,\sum_{i=1}^m n_i - 1\}$ m}, $e_1(G) - e_0(G)$ runs throughout $\{3m - \sum_{i=1}^{m} n_i, 3m - \sum_{i=1}^{m} n_i + 2, \cdots, \sum_{i=1}^{m} n_i - 1\}$ $m-2, \sum_{i=1}^{m} n_i - m$. Since $3m - \sum_{i=1}^{m} n_i \le (\sum_{i=1}^{m} n_i)/2 \le \sum_{i=1}^{m} n_i - m$, there exists a labeling of $\bigcup_{i=1}^m P_{n_i}$ such that $|v_0(\bigcup_{i=1}^m P_{n_i}) - v_1(\bigcup_{i=1}^m P_{n_i})| \le 1$ and $|e_1 - e_0 - [(\sum_{i=1}^{m} (n_i))/2]| \le 1$. By lemma 2, $\bigcup_{i=1}^{m} P_{n_i}$ is cordial.

The cordiality of $\overline{C_n}$ 4

Lemma 5 Let C_k be a cycle of order k

(1) For any labeling of C_n , e_1 is even. (2) If $n \geq 2$, for each $k \in \{2, 4, \dots, 2n\}$, there exits a labeling f of C_{2n} such

that $v_0 = v_1$ and $e_1 = k$. (3) If $n \ge 1$, for each $k \in \{2, 4, \dots, 2n\}$, there exits a labeling f of C_{2n+1} such that $|v_0 - v_1| = 1$ and $e_1 = k$.

Proof (1) Note that changing the label of any vertex u of C_n , it just makes the labels of the two edges which incident to u changed. On the other hand, when every vertex of C_n has label 0, $e_1 = 0$ is even. Hence (1) is clear.

(2) The statement is trivial for n=2. Suppose the statement holds for 2n. If $k \in \{2, 4, \dots, 2n\}$, we give a labeling f as desired to C_{2n} . Choosing an edge $uw \in E(C_{2n})$ with f(uw) = 1. Adding two vertices x, y in the edge uw adjacent to u and w respectively, we give x and y two labels such that f(x) = f(u), f(y) = f(w), thus C_{2n+2} has a desired labeling. If k = 2n+2, let the labels of the vertices in C_{2n+2} 0, 1 alternatively in order. This is a desired labeling for C_{2n+2} .

(3) The proof is similar to (2).

Theorem 2 $\overline{C_n}$ is not cordial iff $n \equiv 4 \pmod{8}$ or $n \equiv 7 \pmod{8}$.

Proof (1)By lemma 5(2). There is a labeling f of C_{8m} such that $v_0 = v_1$ and $e_1(C_{8m}) = 6m$. Hence $e_1 - e_0 = 4m$. By lemma 2, we know that f is a cordial label of $\overline{C_{8m}}$.

(2)By lemma 5(3). There is a labeling f of C_{8m+1} such that $v_0 = v_1$ and $e_1(C_{8m+1}) = 6m$. Obviously $e_1 - e_0 = 4m - 1$. By lemma 2, f is a cordial

label of $\overline{C_{8m+1}}$.

(3)By lemma 5(2). There is a labeling f of C_{8m+2} such that $v_0 = v_1$ and $e_1(C_{8m+2}) = 6m + 2$. We obtain that $e_1 - e_0 = 4m$, then f is a cordial label of $\overline{C_{8m+2}}$.

(4) By lemma 5(3) and lemma 2 we can obtain a cordial labeling of \overline{C}_{8m+3} . (5)Since $v(\overline{C}_{8m+4}) + e(\overline{C}_{8m+4}) = 8m+4+(4m+2)(8m+1) \equiv 2(mod4)$

and [3]. We know that $\overline{C_{8m+4}}$ is not cordial.

(6) By lemma 5(3). There is a labeling f of C_{8m+5} such that $|v_0 - v_1| = 1$ and $e_1(C_{8m+5}) = 6m + 4$. It implies that $e_1 - e_0 = 4m + 3$. By lemma 2, f is a cordial labeling of $\overline{C_{8m+5}}$.

f is a cordial labeling of $\overline{C_{8m+5}}$. (7)By lemma 5(2). There is a labeling f of C_{8m+6} such that $v_0 = v_1$ and $e_1(C_{8m+6}) = 6m+4$. Obviously, $e_1 - e_0 = 4m+2$. By lemma 2, this is a

cordial labeling.

(8) Since $v(\overline{C_{8m+7}}) + e(\overline{C_{8m+7}}) = 8m+7+(8m+7)(8m+4)/2$ the degree of each vertex of $\overline{C_{8m+7}}$ is even. By proposition 1 of [4], we know that $\overline{C_{8m+7}}$ is not cordial.

5 The cordiality of $\overline{F_n}$

The fan F_n of order n is the join of a vertex w and a path $P_{x_1 \cdots x_{n-1}}$. Lemma 6 (1) For each $k \in \{n+1, n+2, \cdots, 3n-1\}$. There exists a labeling f of the fan F_{2n+1} of order 2n+1 such that $|v_0 - v_1| = 1$ and $e_1 = k$.

(2) For each $k \in \{n, n+1, \dots, 3n-2\}$, there exists a labeling f of the fan F_{2n} of order 2n.

Proof (1)Let F_{2n+1} be the join of vertex w and a path P_{2n} . For any

 $k \in \{n+1, n+2, \dots, 3n-1\}$ then $k-n \in \{1, 2, \dots, 2n-1\}$. By lemma 3, there is a labeling f of path P_{2n} such that $v_0(P_{2n}) = v_1(P_{2n})$ and $e_1(P_{2n}) = k-n$. Put f(w) = 0, then the fan F_{2n+1} has a labeling f. It is just desired.

(2) The proof is similar to (1).

Theorem 3 Every $\overline{F_n}$ is cordial for $n \geq 3$.

Proof (1)n = 2m

Subcase 1 m is odd. Since $m \leq (5m-3)/2 \leq 3m-2$, by lemma 6(2), there exists a labeling f of F_{2m} such that $v_0 = v_1$ and $e_1 = (5m-3)/2$. From $e(F_{2m}) = 4m-3$, we have $e_1 - e_0 = m$. By lemma 2, $\overline{F_{2m}}$ is cordial. Subcase 2 m is even. Since $m \geq 2$, we have $m \leq (5m-4)/2 \leq 3m-2$. By lemma 6(2), there exists a labeling f of F_{2m} such that $v_0 = v_1$ and $e_1 = 5m/2-2$. From $e(F_{2m}) = 4m-3$, we have $e_1 - e_0 = m-1$. By lemma 2, $\overline{F_{2m}}$ is cordial.

(2)n = 2m + 1

Subcase 1m is odd. Since $m+1 \le (5m-1)/2 \le 3m-1$. By lemma 6(1), there is a labeling f of F_{2m+1} such that $|v_0-v_1|=1$ and $e_1=(5m-1)/2$. From $e(F_{2m+1})=4m-1$, we have $e_1-e_0=m$. By lemma 2, $\overline{F_{2m+1}}$ is cordial.

Subcase 2m is even. Since $m+1 \le 5m/2 \le 3m-1$. By lemma 6(1), there is a labeling f of F_{2m+1} such that $|v_0-v_1|=1$ and $e_1=5m/2$. From $e_1+e_0=4m-1$, we have $e_1-e_0=m+1$. By lemma $2, \overline{F_{2m+1}}$ is cordial.

6 The coodiality of \overline{W}_{n+1}

Let W_{n+1} be a wheel of order n+1. It is the join of a vertex w and a cycle C_n . Denote the join by $W_{n+1} = W + C_n$, w is the center of wheel W_{n+1} .

Lemma 7 Suppose $n \ge 2$, then

(1) For each $k \in \{n+2, n+3, \dots, 3n-1, 3n\}$, there is a labeling of W_{2n+1} such that $|v_0 - v_1| = 1$ and $e_1 = k$.

(2) For each $k \in \{n+2, n+4, \cdots, 3n-2\}$, there is a labeling of W_{2n} such that $v_0 = v_1$ and $e_1 = k$.

Proof (1)Let $W_{2n+1} = W + C_{2n}$. If $k \in \{n+2, n+4, \cdots, 3n-2, 3n\}$, then $k-n \in \{2, 4, \cdots, 2n\}$. By lemma 5(2), there is a labeling of C_{2n} such that $v_0(C_{2n}) = v_1(C_{2n})$ and $e_1(C_{2n}) = k-n$. Put f(w) = 0, we have $v_0(W_{2n+1}) = v_0(C_{2n}) + 1 = v_1(C_{2n}) + 1 = v_1(W_{2n+1}) + 1$ and $e_1(W_{2n+1}) = e_1(C_{2n}) + n = k-n+n = k$. If $k \in \{n+3, n+5, \cdots, 3n-1\}$, then $k-1 \in \{n+2, n+4, \cdots, 3n-2\}$. From above statement, there is a labeling of W_{2n+1} with f(w) = 0, $v_0(C_{2n}) = v_1(C_{2n})$ and $e_1(W_{2n+1}) = k-1 \leq 3n-2$, then $e_1(C_{2n}) \leq 2n-2$, $e_0(C_{2n}) \geq 2$. By the lemma 1 of [5], we see that, there is an edge $x_1x_2 \in E(C_{2n})$ such that $f(x_1) = f(x_2) = 0$. Obviously, we can assume that x_2 has another neighbor $y \in V(C_{2n})$ with f(y) = 1. By changing the label of x_2 from 0 to 1, then we obtain a labeling with $v_1(W_{2n+1}) = v_0(W_{2n+1}) + 1$ and $e_1(W_{2n+1}) = k-1+1=k$. (2) Let $W_{2n} = W + C_{2n-1}$. If $k \in \{n+2, n+4, \cdots, 3n-2\}$, then $k-n \in V$.

 $\{2,4,\cdots,2n-2\}$. By lemma 5(3), there is a labeling f of C_{2n-1} such that $v_0(C_{2n-1})=v_1(C_{2n-1})-1$ and $e_1(C_{2n-1})=k-n$. Put f(w)=0, it yields the desired labeling of W_{2n} .

Theorem 4 For $n \ge 4$, $\overline{W_n}$ is not cordial iff $n \equiv 0 \pmod{8}$.

Proof If n = 8m, then the degree of each vertex of $\overline{W_{8m}}$ is even. $e(\overline{W_{8m}}) = (8m-1)(8m-4)/2 \equiv 2(mod4)$. By the proposition 1 of [4], $\overline{W_{8m}}$ is not cordial. If $n \neq 8m$. We distinguish the following. (1)n = 4m+1. Since lemma 7(1), there is a labeling f of W_{4m+1} such that $|v_0 - v_1| = 1$ and $e_1 = 5m$. Note that $e(W_{4m+1}) = 8m$. It implies that $e_1 - e_0 = 2m$. By lemma 2, we know that $\overline{W_{4m+1}}$ is cordial. (2)n = 4m + 3. Since lemma 7(1), there is a labeling of W_{4m+3} such that $|v_0 - v_1| = 1$ and $|v_0 - v_1| = 1$. Note that $|v_0 - v_1| = 1$ and $|v_0 - v_1| = 1$. Note that $|v_0 - v_1| = 1$ are $|v_0 - v_1| = 1$. By lemma 2, we know that $|v_0 - v_1| = 1$ is cordial.

that $e_1-e_0=2m$. By lemma 2, we know that $\overline{W_{4m+3}}$ is cordial. (3) n=8m+2. Since lemma 7(2), we can see that there is a labeling of W_{8m+2} such that $v_0=v_1$ and $e_1=10m+2$. Note that $e(W_{8m+2})=16m+2$. It implies that $e_1-e_0=4m+2$. By lemma 2, we see that $\overline{W_{8m+2}}$ is cordial. (4) n=8m+4. Since lemma 7(2), we can see that there is a labeling of W_{8m+4} such that $v_0=v_1$ and $e_1=10m+4$. Note that $e(W_{8m+4})=16m+6$. It implies that $e_1-e_0=4m+2$. By lemma 2, we see that $\overline{W_{8m+4}}$ is cordial. (5) n=8m+6. Since lemma 7(2), we can see that there is a labeling of W_{8m+6} such that $v_0=v_1$ and $e_1=10m+6$. Note that $e(W_{8m+6})=16m+10$. It implies that $e_1-e_0=4m+2$, $|e_1-e_0-v(W_{8m+6})/2|=1$. Hence $\overline{W_{8m+6}}$ is cordial.

References

- [1] Cahit R, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combinatoric 23(1987), 201-208.
- [2] Joseph A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of combinatorics 5(2005), 41-42.
- [3] M.Seoud and A.E.I.AbdelMaqsoud, On cordial and balanced labelings of graphs, J.Egyptian Math. Soc 7(1999), 127-135.
- [4] Xu Liping and Liu Zhishan, On cordiality of the 2-Regular graphs, Journal of YanBian University(Natural Science) (34)2008, 21-22.
- [5] Liu Zhishan and Du GenMin, On Cordiality of the Connected 3-Regular Graphs, Journal of Mathematical Study (40)2007, 114-116.