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Abstract

Resistance distance was introduced by Klein and Randi¢ as a
generalization of the classical distance. The Kirchhoff index K f(G)
of a graph G is the sum of resistance distances between all pairs
of vertices. In this paper, we determine the bicyclic graph of order
n > 8 with maximal Kirchhoff index. This improves and extends an
earlier result by Zhang et al. [19).

1 Introduction

Let G be a connected graph with vertices labeled as vy,vs,...,v,." The
distance between vertices v; and v; , denoted by dg(v;,v;), is the length
of a shortest path between them. The famous Wiener index W(G) [14]
is the sum of distances between all pairs of vertices, that is, W(G) =
Ei<j dG(”ﬁ U.‘i)'

In 1993, Klein and Randié [7] introduced a new distance function named
resistance distance based on electrical network theory. They viewed G as
an electrical network N by replacing each edge of G with a unit resistor, the
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resistance distance between v; and v;, denoted by rg(v;,v;), is defined to be
the effective resistance between them in N. Similar to the long recognized
shortest path distance, the resistance distance is also intrinsic to the graph,
not only with some nice purely mathematical and physical interpretations
[7, 8], but with a substantial potential for chemical applications.

In fact, the shortest-path might be imagined to be more relevant when
there is corpuscular communication (along edges) between two vertices,
whereas the resistance distance might be imagined to be more relevant
when the communication is wave- or fluid-like. Then the chemical commu-
nication in molecules is rather wavelike suggests the utility of this concept
in chemistry. So in recent years, the resistance distance was well studied in
mathematical and chemical literatures [1, 2, 3, 4, 21].

Analogue to Wiener index, the Kirchhoff index (or resistance index) (3]

is defined as
Kf(G) =) rc(vivy).
i<j

As a useful structure-descriptor, the computation of Kirchhoff index is a
hard problem (1], but one may compute the specific classes of graphs. Since
for trees, the Kirchhoff index and the Wiener index coincide. It is possible
to study the Kirchhoff index of topological structures containing cycles. Let
P, (resp. Cy) denote the path (resp. cycle) on n vertices. For a general
graph G, Lukovits et al. [10] showed that K f(G) > n — 1 with equality if
and only if G is complete graph K,,; and P, has maximal Kirchhoff index.
Palacios [11) proved that K f(G) < %(n® —n) with equality if and only if G
is a path. For a circulant graph G, it is showed in [20] that n—1 < K f(G) <
$5(n® — n), the first equality holds if and only if G is K, and the second
does if and only if G is C,. In [17], Yang et al studied the Kirchhoff index of
unicyclic graphs with given girth and determined the extremal graphs. In
{15}, the authors studied the Kirchhoff index of linear hexagonal chains. In
(18], Deng et al obtained the second maximal and minimal Kirchhoff index
of unicyclic graphs. Deng also studied the Kirchhoff index of full loaded
unicyclic graphs [6] and graphs with many cut edges [5]. Zhou [22] obtained
the extremal graphs with given matching number, connectivity and minimal
Kirchhoff index. Wang et al [13] obtained the first three minimal Kirchhoff
indices among cacti.

In [19), the authors studied the Kirchhoff index of bicyclic graphs with
exactly two cycles. Motivated by this result, in this paper, we further study
the Kirchhoff index of general bicyclic graphs and determine the extremal
graphs of order n > 8 with maximal Kirchhoff index. This improves and
extends the result obtained by Zhang et al. [19].
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2 Preliminaries

Lemma 2.1 [7] Let = be a cut vertex of a graph G, and let a and b be
vertices occurring in different components which arise upon deletion of x.
Then rg(a,b) = ra(a,z) + re(z, b).

It is well known that (7] dg(vi,v;) 2 7¢(vi, v;) with equality if and only
if there is one unique path linking v; and v;. Therefore,

Lemma 2.2 [7] Let G be a connected graph. Then we have W(G) >
K f(G), with equality if and only if G is a tree.

For a vertex v in G, we define Dg(v) = 3, do(u,v), Kfo(G) =
Zu# re(u,v). Obviously, Dg(v) > K fu(G).

Lemma 2.3 Let G be a connected graph with a pendent vertex v with its
unique neighbor w. Then K f,(G) = Kfy(G—v)+n—1.

Proof. From the definition and Lemma 2.1, we have

KfG) = Y rema)=rev,w)+ Y  ro(v,z)

z€G-v r€GC~v—w
= dg(v,w)+ E (dG'(va w) +re(w, z))
z€G-v—w
= 1l4+n-2+ Z re(w,z) = Kfy(G—v)+n—1.
z€G—v—w

The result follows. B

Lemma 2.4 Let G be a connected bicyclic graph of order n and v € V(G).
Then Kf,(G) < & — & — 1&,

Proof. If n = 4, then G is obtained from K, by deleting one edge, so the
result holds. We assume n > 5 in the sequel.

Case 1. v is a pendent vertex. Let w be its neighbor. We shall prove
the conclusion by induction on n. Clearly G — v satisfies the induction
hypothesis, and therefore together with Lemma 2.3, we have

- (n—-1?% n-1 15
Kf(G) = Kfu(G-v)+n-15( R R
_ n_n_15
2 2 4’

Case 2. v is not a pendent vertex. Then, the degree of v, degg(v),
is at least 2. It follows that there are at least 2 vertices at resistance
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distance 1 from v, and the remaining vertices have resistance distance at
most 2, 3,. ..n—4,n—4+§,n—4+§ from v, with equality if and only if G
is the graph obtained from a triangle by attaching a path (at this moment,
G is not bicyclic, but we just need one bound here). Note that for a graph,
if we add one edge, the Kirchhoff index decreases [22]. Hence

Kf(G) S 14142434, +(n—a)+(n—d+2)+(n—4+32)

_9_2_.3..n+1<n2 n E
-2 2 32 2 4

This yields the result. B

Lemma 2.5 Let G be a connected graph, v a pendent vertex of G and w
its neighbor. Then Kf(G) = Kf(G—v)+ Kfu(G—-v)+n—1.

Proof. From the definition, we have
Kf(G) =¥ yec—vT(@Y) + Lreg-u T(T:V) = 2z yec—0 7@ V)
+ Y geqy(r(@w) +1) = Kf(G v) + Kfu(G—v)+n-1,
and the result follows. B

Lemma 2.6 [18] Let G be a connected graph with a cut-vertez v such that

G, and G are two connected subgraphs of G having v as the only common

vertex and G1 U G2 = G. Let ny = |V(G1)| and ny = |V(G3)|. Then
Kf(G) = Kf(G1) + Kf(G2) + (n1 — 1)K fo(G2) + (n2 — 1)K f,(G1).

For the cycle Ci, Kf(Ck) (see [17]), K f,(Cx) where v € V(Cy) (see
[17]) are computed as follows.
Kf,(Ck) = }(K* - 1), Kf(Ci) = F(k* = k).

Lemma 2.7 Let H be connected graph of order h > 2 and Cy, be a cycle of
order k > 4. Let F be the graph of order k obtained from Cs by attaching
one pendent path of order k — 3 to one vertex of Cs. Further suppose G, is
the graph obtained from H and Ci by identifying one vertex in H and one
vertex in Ci; G2 is the graph obtained from H and F by identifying one
vertez in H and the pendent vertez in F. Then we have K f(G1) < K f(G?).

Proof. Suppose V(H)NV(Ci) = V(H)NV(F) = {v}. From Lemma 2.6,
we have
Kf(G1) = Kf(Cx)+ K f(H) + (k- 1)K fo(H) + (h — 1)K f,(C),
Kf(G2) = Kf(F) + Kf(H) + (k- 1)Kf,(H) + (h - 1)K f,(F).
Therefore, it follows that
Kf(G1) — Kf(G2) = Kf(Ck) — Kf(F) + (h—1)(K f,(Ck) — K fu(F)).
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A straightforward calculation [17] shows that
Kfy(F)=1+42+...4+(k=3)+(k—3+2)+(k—3+3) = }(3k*—3k-10).
Kf(F) = §(k® - 11k +18).
Therefore,
Kf(Cy)— Kf(F)=&(k®—k) - 3(k®— 11k +18) = —&(k — 3)(k* +
3k —12) <0,
Kf,(Ck)-Kf,(F) = 3(k*—1)—}(3k®-3k—10) = }(—2k%+3k+9) < 0.
We get finally that K f(G1) < Kf(G2)mR

3 Main results

In this section, we characterize bicyclic graphs of order at least 8 with max-
imal Kirchhoff index and determine bounds for Kirchhoff index of bicyclic
graphs.

Let G be a bicyclic graph. The base of G, denoted by G, is the (unique)
minimal bicyclic subgraph of G. It is easy to see that G is the unique
bicyclic subgraph of G containing no pendent vertices, while G can be
obtained from G by attaching trees to some vertices of G.

It is well known that there are the following three types of bicyclic

graphs containing no pendent vertices:
Let B(p, g) be the bicyclic graph obtained from two vertex-disjoint cy-

cles Cp and C, by identifying vertices u of C, and v of Cy

Let B(p,l,q) be the bicyclic graph obtained from two vertex-disjoint
cycles C, and C; by joining vertices u of C, and v of C, by a new path
uU Ug ... u—1v with length I ({ > 1).

Let B(Py, P, Py), 1 < m < min{k,!} be the bicyclic graph obtained
from three pairwise internal disjoint paths from a vertex = to a vertex y.
These three paths are zvyvy...vk—1y With length k, zujuy ... w1y with
length I, and zw,w; ... wym_1y with length m.

Let B, be the graph of order n obtained from two triangles linked
by a path (for example, Bjo is shown in Fig. 1). It is known that [19]

S

Figure 1: The bicyclic graph Biy.

K f(Bn) = §(n®—21n+36). It is well known that W(P;) = 1k(k—1)(k+1).
For a pendent vertex u of P, we have Dp, (u) = -(k—'zm
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Let D, be the graph obtained from B(P;, P,, P1) (which is just Ky —e)
by attaching one path of order n—4 to a vertex of degree 2 in B(P,, P,, P,).
Let v be the vertex with degree 3 in Dy, at which the pendent path P,_3
is attached. From [16], one has Kf(K; —e) = 4 and Kfy,(K4—¢€) = 3.
From Lemma 2.6 and Lemma 2.2, it follows that

Kf(Dn) = Kf(Ka—e)+Kf(Pucs)+3Kfu(Pas) + (n— K, (Ke—e)
= - -8)(n-D+3 La- -3 + 1)

_ nd 47n+9
T 6 12 )

A straight forward calculation shows that K f(Bn) — K f(D,) = 52538,
which is positive if n > 8.

Theorem 3.1 Let G be a bicyclic graph of order n > 8. Then Kf(G) <
Kf(Bg). The equality holds if and only if G = B,.

Proof. We now distinguish the following cases.

Case 1. G has a pendent vertex. We prove this case by induction. Let
v be a pendent vertex of G and let w be its neighbor. Clearly G — v satisfies
the induction hypothesis, and so by Lemma 2.4, Lemma 2.5, we have

Kf(G) = Kf(G-v)+Kfu(G—v)+n—1
n® n? d4ln 51 (n-12 n-1 15
< (F-7-wr) (- -7
nd  47n
= & -5 t9=Kf(Dn).

Case 2. G has no pendent vertex. From the description at the begin-
ning of this section, there are three types of bicyclic graphs with no pendent
vertices, and we consider the following cases.

Subcase 2.1. G is of the form B(p,l,q). By Lemma 2.7, we can get
that K f(G) < K f(B,) holds, we get the result.

Subcase 2.2. G is of the form B(P, P, Py), i.e., G is 2-connected.
Let v be an arbitrary vertex. It is well known that [12] Dg(v) < §n?
with equality holding if and only if G is an even cycle, then it follows that
Kf,(G) £ Dg(v) and

L2
1"

l\')l'—'

Kf(G) = —Zfo e)<5 ZDa(z <

z€C :tEG
< E(n —21n + 36) = K f(Bn).
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Subcase 2.3. G is of the form B(p,q). By Lemma 2.7, we can get
Kf(G) < Kf(By).
Combining the above cases, the result follows. B

Remark. In [19], the authors obtained that among bicyclic graphs with
exactly two cycles, the graph B,, has the maximal Kirchhoff index. Based
on Theorem 3.1, we find that the result also holds for all bicyclic graphs of

order at least 8.
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