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ABSTRACT. The paper construct infinite classes of non-isomorphic 3-
connected simple graphs with the same total genus polynomial, using
overlap matrix, symmetry and Gustin representation. This answers a
problem (Problem 3 of Page 38) of L.A. McGeoch in his PHD thesis.
The result is helpful for firms to make marketing decisions by calcu-
lating the graphs of user demand relationships of different complex
ecosystems of platform products and comparing genus polynomials.

1. INTRODUCTION

1.1. Background. In graph theory, an isomorphism of graphs G and H
is a bijection between the vertex sets of G and H

f:V(G) — V(H)

such that any two vertices u and v of G are adjacent in G if and only
if f(u) and f(v) are adjacent in H. If an isomorphism exists between two
graphs, then the graphs are called isomorphic and we write G = H. Intu-
itively, two graphs are isomorphic if we can re-draw one of them so that
it looks exactly like the other. Genus distributions problems have been
attracted a lot of attention in the past quarter century, since the topic
was inaugurated by Gross and Furst [18]. A natural problem is: whether
two non-isomorphic graphs have the same genus distribution? The pioneer
work in using genus distributions of graphs to test non-isomorphic graphs
due to Gross and his coauthors, see [1, 2, 14] etc.

In [23], McGeoch found a way to construct many 2-edge connected multi-
graphs with the same genus distributions, and he also posed the following
problem in his PHD thesis.
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FIGURE 1. Two non-isomorphic necklaces with genus polynomial
64+512x

Problem 1.1. Are there two non-isomorphic, simple, 3-edge-connected
graphs with the same genus distribution?

Gross, Klein and Rieper [17] constructed many non-isomorphic 2-edge
connected pseudographs (see Figure 2) and 3-edge connected multigraphs
with the same genus distributions. In the same paper, the authors claimed
that Rieper has constructed many simple graphs with the same distribu-
tions by using method of Jackson [12]. However, he did not publish his
work in the same paper. There are two reasons that we write the current
paper. One is that Rieper did not publish his work and most published pa-
pers that using Jackson’s method to calculate genus distributions are small
diameter graphs which must contain multiple edges or loops, (In
(10, 11), Jackson and Sloss called them central enumerative problems)
see also [16], [20], [27], [28] etc. The other is the method used here is the
overlap matrix, which was introduced by Mohar [24]. For other papers
concerning graphs with the same genus distributions, see [22, 25] etc.

1.2. Total genus polynomial. It is assumed that the reader is somewhat
familiar with the basics of topological graph theory, as found in Gross and
Tucker [19]. All graphs considered in this paper are connected. A graph
is often denoted by G = (V, E), it is simple if it contains neither multiple
edges nor self-loops. If a graph does not contain self-loops but contains
multiple edges, we call it a multigraph, otherwise if it contains self-loops,
we call it a pseudograph. The graph with only one vertex and no edges
is called the trivial graph. The vertez-connectivity x(G) of a graph
G is the minimum number of vertices whose removal from G results in a
disconnected or trivial graph. The edge-connectivity x1(G) of G is the
minimum number of edges whose removal from G results in a disconnected
or trivial graph. A surface is a compact closed 2-dimensional manifold
without boundary. In topology, surfaces are classified into the orientable
surfaces Sy, with g handles (g > 0), and the nonorientable surfaces, Ny
with k crosscaps (k > 0). A graph embedding into a surface means a
cellular embedding. For any spanning tree of G, the number of co-tree
edges is called the Betti number of G, and is denoted by B(G).

A rotation at a vertex v of a graph G is a cyclic order of all edge-ends
(or equivalently, half-edges) incident with v. A pure rotation system p
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of a graph G is the collection of rotations at all vertices of G. An embedding
of G into an oriented surface .S induces a pure rotation system as follows:
the rotation at v is the cyclic permutation corresponding to the order in
which the edge-ends are traversed in an orientation-preserving tour around
v. Conversely, by the Heffter-Edmonds principle, every rotation system
induces a unique embedding (up to homeomorphism) of G into some ori-
entable surface S. The bijection of this correspondence implies that the
total number of orientable embeddings is

H (du - 1)!a

veV(G)

where d,, is the degree of vertex v.

A general rotetion system is a pair (p, \), where p is a pure rotation
system and ) is a mapping E(G) — {0,1}. The edge e is said to be twisted
(respectively, untwisted) if A(e) = 1 (respectively, A(e) = 0). It is well-
known that every oriented embedding of a graph G can be described by a
general rotation system (p, A) with A(e) = 0 for all e € E(G). By allowing
A to take non-zero values, we can describe the nonorientable embeddings of
G. For any spaning tree T, a T-rotation system (p,\) of G is a general
rotation system (p, A) such that A(e) =0, for all e € E(T).

By the total genus polynomial of G, we shall mean the polynomial

x . kil .
Io(z,y) =Y _gix* + _ firf,

i=0 i=1

where g; is the number of embeddings (up to equivalence) of G into the ori-
entable surface O; and f; is the number of embeddings (up to equivalence)
of G into the nonorientable surface N;. We call the first (respectively,
second) part of Ig(z,y) the genus polynomial (respectively, crosscap
number polynomial) of G and denoted by go(z) = Yoo, giz* (respec-
tively, fo(y) = 352, fiv?). Clearly, Ie(z,y) = go(z) + fo(y).

1.3. Overlap matrices. Mohar [24] introduced an invariant that has sub-
sequently been used numerous times in the calculation of distributions of
graph embeddings, including non-orientable embeddings. The contribu-
tions include (3, 5, 7, 8] etc. We use Mohar’s invariant here in our con-
struction of graphs with the same genus distributions.

Let T be a spanning tree of a graph G and let (p,\) be a T-rotation
system. Let ej,ez,...,eg() be the cotree edges of T, where B(G) is the
cycle rank of G. The overlap matriz of (p, A) is the 8(G) x B(G) matrix
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M = [my;] over Z; such that

1, ifi=j and e; is twisted;

1, if ¢ # j and the restriction of the underlying pure
rotation system to the subgraph T + e; + ¢; is nonplanar;

0, otherwise.

mi; =

When the restriction of the underlying pure rotation system to the sub-
graph T + e; + e; is nonplanar, we say that edges e; and e; overlap. The
importance of overlap matrix is indicated by this theorem of Mohar [24]:

Theorem 1.2. Let (p,A) be a general rotation system for a graph, and let
M be the overlap matriz. Then the rank of M equals twice the genus of
the corresponding embedding surface, if that surface is orientable, and it
equals the crosscap number otherwise. It is independent of the choice of a
spanning tree.

2. 3-EDGE-CONNECTED SIMPLE GRAPHS WITH THE SAME GENUS
DISTRIBUTION

For drawing a planar representation of a rotation system on a cubic
graph, we adopt the graphic convention introduced by Gustin [21], and
used extensively by Ringel and Youngs (see [26]) in their solution to the
Heawood map-coloring problem. There are two possible cyclic orderings of
each trivalent vertex. Under this convention, we color a vertex black, if the
rotation of the edge-ends incident on it is clockwise, and we color it white if
the rotation is counterclockwise. We call any drawing of a graph that uses
this convention to indicate a rotation system a Gustin representation
of that rotation system.

In a Gustin nomogram, an edge is called matched if it has the same
color at both endpoints; otherwise, it is called unmatched. In Figure 2, we
have indicated our choice of a spanning tree for graphs H;, Hs by thicker
lines, so that the cotree edges are e, a1, as, . .., as, and our partial choice of
rotations at the vertices. It easy to see that they are non-isomorphic. We
will show that H;, H, have the same genus distributions.

In the Gustin nomogram of Figure 2, we observe the following properties:

Property 2.1. Two cotree edges e and a; overlap if and only if the edge
d; is unmatched, fori=1,2,3,4.

Property 2.2. Two cotree edges e and as overlap if and only if the edge
dy is unmatched.

Property 2.3. Two cotree edges e and ag overlap if and only if the edge
d4 is unmatched.
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Property 2.4. The cotree edges a1 and ap overlap if and only if the vertices
vy and vy are colored differently.

Property 2.5. The cotree edges a; and as overlap if and only if the edge
as is unmatched.

Property 2.6. The cotree edges az and a3 overlap if and only if the edge
¢ is unmatched.

Property 2.7. The cotree edges aa and ag overlap if and only if the vertices
vy and vi2 are colored differently.

Property 2.8. The cotree edges ag and a4 overlap if and only if the vertices
vs and vg are colored differently.

Property 2.9. The cotree edges a3 and ag overlap if and only if the vertices
vq and v13 are colored differently.

Property 2.10. The cotree edges a4 and ag overlap if and only if the edge
ag 18 unmatched.

Ug vr s dy 24 dy Vs

H;

FIGURE 2. Two non-isomorphic graphs H; and Hp

Let X = (ze, z1,22,...,%6), Y = (Y1,¥2,...,¥7), and Z = (21,23, ...,24).
It follows that the overlap matrix MX:¥»Z of H; and H,, respectively, have
the following form:

Te 21 22 23 24 21 24

21 1 N Yq

22 Y1 T2 Y2 Ys
MXYZ = | 4 Y2 Tz Y3 yr

24 Ys T4 Ye

21 Y4 Y5 s

24 Yr Ye Ze

Note that z. = 1 if and only if the edge e is twisted.

Also note that L )
e z; = 1 if and only if the edge a; is twisted, for all i = 1,2,...,6;
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e 2; =1 if and only if d; is unmatched, for all j =1,2,...,4;
Moreover, we have y; = 1 if and only if the colors of vertices v and vy
are different, yo = 1 if and only if the edge ¢ is unmatched, y3 = 1 if and
only if colors of vertices v4 and vy are different, y4 = 1 if and only if the
edge as is unmatched, ys = 1 if and only if the colors of vertices v and v;2
are different, y¢ = 1 if and only if the edge ag is unmatched, and we have
yr = 1 if and only if the colors of vertices v and v;3 are different.

Property 2.11. For each fixed matriz of the form M*YZ | there are ez-
actly two different T-rotation systems of the graph H; (i = 1,2 )for which
MXY:Z s the overlap matriz.
Proof. Given a matrix MX:Y'Z the values of e, 1, Z2, ..., Ze; Y1, Y2, - - - , Y7}
21, 22,-..,24 are determined. We know that there is one-to-one correspon-
dence between the values of z.,z1,T2,...,Z¢ and the cotree edges of the
T-rotations system (p,A) of H;. Now we will show that every values of
Y1,¥2, -+, Y5} 21, 22, - - . , 24 correspond two pure rotation system p.

Note that when the values of Ze, 1, T2,...,Z6; Y1, Y2y -+ Y7} 215 225+ - - 24
are given, by Property 2.1-2.10, all the colors of vertices of V (H;)—{ve, v10}
are determined by the coloring of v;. Since there are two colorings of v,

(black and white), this means the values of ¥1,¥2,...,ys; 21, 22,...,24 cor-
respond two vertex coloring of H;. That is, all the rotations at vertices of
H; are determined (¢ = 1,2). 0

Theorem 2.12. The two graphs H, and Hy have the same total genus
polynomial.

Proof. Note that the graphs Hy and H; have the same overlap matrB
MXY.Z by Property 2.11, the theorem follows.

Actually, we have Iy, (z,y) = Iy, (z,y) = 2 + 134z + 159222 + 2368z +
46y + 578y? + 6216y + 33672y* + 117504y° + 20960096 + 152576y".

Note that if we smooth all 2-degree vertices of H; and Hj, the result-
ed graphs are also simple and 3-edge connected, furthermore they have
the same genus distributions. Thus McGeoch’s open problem is answered.
Since a 3-regular simple graph is 3-connected if only if it is 3-edge con-
nected. This answers McGeoch’s Question affirmatively for 3—connected
simple graphs.

Remark 2.13. Actually, we can add edges that are parallel to as or ag of
H; (i = 1,2), the resulted graphs also have the same total genus polynomial.
See Figure 3.

Remark 2.14. We call the graphs H, and H, H type graphs. Also we

can add more "H” to graph H;, the resulted graphs also have the same total
genus polynomial. See Figure 4.
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FIGURE 3

HHIE HHH

FIGURE 4. Two non-isomorphic graphs H type graphs

By the same consideration, we can also construct many other type of
classes of graphs with same embedding distributions, for example X type
et al.

Remark 2.15. The anonymous referee tell us that Poshni’s paper [25]
produced a general method for constructing 2-connected graphs (simple or
nonsimple) with the same genus distributions. Furthermore Poshni’s the-
orem may construct 3-connected simple graphs with the same genus distri-
butions, if Poshni’s Theorems 3.2, 3.3, and 8.4 for edge-amalgamation is
generalized to self-edge-amalgamation.

3. K-EDGE-CONNECTED MULTIGRAPHS WITH THE SAME GENUS
DISTRIBUTION

A fan graph F\y ) is defined as the graph K; + P, where K is the empty
graph on one vertex and P, is the path graph on n vertices. A Fan-type
graph F}, ¢,,... +, is defined as the graph K connect ¢; edges to the vertex v;
of P,,t; 21,5=1,2,...,n. Adipole graph D, is a multigraph consisting
of two vertices connected with n edges. Let the sequence sy, s3,...,s, be
the permutation of the set {t1,t2,...,t,}. In [6], proved that the genus
polynomial of Fan-type graphs F}, ;... . equals to a constant times the
genus polynomial of the diple graph D,, where n = Z’::l t;. This means
Fi by, and Fy, 5, o have the same genus distribution. Also, let C,, be
the cycle graph on n vertices. A Wheel-type graph W;, ...+, is defined as
the graph K connect t; edges to the vertex v; of Cp,t; > 1,7 =1,2,...,n.
Actually, Wy, +,.... ¢, and Wy, 5, .. s, also have the same genus distributions.
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For example

W1 221 (T) = gy 4,,(T) =8+ 1312z + 1119222 + 476823,
IWa22.1.1(Z) = GWy30.15(T) =16 + 13680z + 550032z>
+ 2834480z + 956352z;
IWi3.0.(T) = gWy a1 (T) =72 + 39024z + 149335222
+ 75533762° + 2526336z*.

4. SOME DISCUSSIONS

It remains an interested problem to find other k- connected (k-edge-
connected) simple graphs with the same genus distributions for k£ > 4.
Another problem is to find which type of graphs are unique determined
by their genus distributions. Actually in [9], the authors study the em-
bedding distributions of cubic outerplanar graphs, they proved that two
non-isomorphic cubic graphs have the same embedding distribution if their
characteristic tree (or weak dual) are isomorphic, However it is still an open
problem to prove that whether the embedding distribution of a cubic outer
planar graph is unique determined by its characteristic tree.

The result in the article also indicates that the two non-isomorphic
graphs can have the same genus polynomial. However, each graph has
the unique genus polynomial and two different graphs have the same genus
polynomial are "look alike”. It would be an interesting problem to inves-
tigate this property. Firms are curious about the demand situations of
analogous products existing in market when implementing the market en-
try strategies of new products. Many kinds of demand relationships exist
among users, such as group-buying, direct network externalities, indirec-
t network externalities, users are defined as nodes of a graph, and the
demand relationships are edges, the complex graphs of user demand rela-
tionships would be calculated by mass data in markets. On account of the
same genus polynomials between the graphs of analogous products existing
in market and the new product, there are some similarities or universal-
ities between the complex demand relationships of these products, which
provides objective evidences for new product to make pricing or promo-
tion decisions by imitating the successful marketing strategies of analogous
products existing in market. A complex system of platform products is a
coexistence and co-evolution product ecosystem which is comprised of so
many components and parts, optional products, complementary products.
All the products in a platform system belong to the same technological
paradigm and are complementary in use, the interdependent relationships
in technology and the complementary relationships in use can be trans-
lated into a complex graph by calculating mass data in patent databases
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and market demand data. Some similarities or universalities will be discov-
ered when genus polynomials are identical between the graphs of different
platform systems. Thus, a decision-making basis can be provided for new
platform system to imitate the technology licensing strategies and product
pricing tactics of platform systems existing in market, which is helpful for
new platform system to offer some cooperative partners or users technical
assistance or price subsidies, and offer others monopolistic prices.
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