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Abstract A graph G is super-connected, super-x, for short if every
minimum vertex-cut isolates a vertex of G. Call G super restricted edge-
connected, in short, super-X, if every minimum restricted edge-cut isolates
an edge. We view the total graph T(G) of G as the disjoint of G and the
line graph L(G), together with the lines of the subdivision graph S(G); for
each line [ = (u,v) in G there are two lines in $(G), namely ({,) and ({, v).
In this paper, we prove that T(G) is super-« if G is a super-« graph with
§(G) > 4. We also show that T(G) is super-X if G is a k-regular graph
with «(G) = 3. Furthermore, we give examples which illustrate that the
results are best possible.
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1 Introduction

A network can be conveniently modeled as a graph G = (V, E), with ver-
tices representing nodes and edges representing links. A classic measure
of network reliability is the connectivity x(G) and the edge-connectivity
A(G). In general, the larger x(G) (or A(G)) is, the more reliable the net-
work is. For k(G) < A(G) < §(G), where §(G) is the minimum degree
of G, a graph G with x(G) = §(G) (A(G) = 6(G)) is naturally said to
be mazimally connected (mazimally edge-connected), or k-optimal ()-
optimal) for simplicity. As more refined indices of reliability than maximal
connectivity and maximal edge-connectivity, super connectivity and super
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edge-connectivity were proposed in (1, 3]. A graph G is super-connected,
super-k, for short (resp. super edge-connected, super-\, for short) if every
minimum vertex-cut (resp. edge-cut) isolates a vertex of G.

For further study, Esfahanian and Hakimi introduce the concept of re-
stricted edge-connectivity [8]. The concept of restricted edge-connectivity
is one kind of conditional edge-connectivity proposed by Harary in (9], and
has been successfully applied in the further study of tolerance and relia-
bility of networks, see (7, 12, 13]. Let F be a set of edges in G. Call F
a restricted edge-cut if G — F' is disconnected and contains no isolated
vertices. The minimum cardinality over all restricted edge-cuts is called
restricted edge-connectivity of G, and denoted by X'(G). It was shown by
Wang and Li that the larger A’'(G) is, the more reliable the network is [13].
In [8], the authors proved that if a connected graph G of order n > 4 is
not a star Ky n-1, then X (G) is well-defined and A(G) < X(G) < &(G),
where £(G) = min{dg(u) + dg(v) — 2 : uv € E(G)} is the minimum edge
degree of G. A graph G with A(G) = &(G) is called a X-optimal graph.
Call G super restricted edge-connected, in short, super-X', if every mini-
mum restricted edge-cut isolates an edge, that is, every minimum restricted
edge-cut is a set of edges adjacent to a certain edge with minimum edge
degree in G. By the definitions, a super-A’ graph must be a A\-optimal
graph. However, the converse is not true since there are many A’-optimal
graphs not to be super-\’. For example, C, (n > 6), the cycle of length n
is a trivial counterexample.

It should be pointed out that if §(G) > 3, then a X'-optimal graph must
be super-A. In fact, a graph G is super-A if and only if A(G) < X'(G) [12].
Thus, the concepts of A-optimal graph, super-A graph, A’-optimal graph
and super-\’ graph describe reliable interconnection structure for graphs
at different levels.

The line graph L(G) of G is that graph whose point set can be put in
one-to-one correspondence with the line set of G, such that two points of
L(G) are adjacent if and only if the corresponding lines of G are adjacent.
We view the total graph T(G) of G as the disjoint of G and L(G), together
with the lines of the subdivision graph S(G); for each line [ = (u,v) in G
there are two lines in S(G), namely ({,u) and ({,v). For convenience, the
points of T'(G) belonging to L(G) will be called linear points of T(G). We
simplify notation by setting £ = k(G), k1 = k(L(G)), kr = &(T(G)), and
similarly for A and §. Except where noted we follow the definitions and
notations of Bondy [4].

In 1969, Chartrand and Stewart [5] proved that (i) x(L(G)) = A(G), if
MG) 2 2; (ii) ML(G)) = 2A(G) — 2. Furthermore, Hellwig et. [10] showed
that
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Theorem 1.1. Let G be a graph with |V(G)| > 4 and G is not a star.
Then k(L(G)) = N(G).

By Theorem 1.1, we easily have
Corollary 1.2. Let G be a graph with |V(G)| > 4 and G is not a star. If
G is a super-\ graph, then k(L(G)) = X(G) > A(G).

In [2], the authors showed the following two theorems.

Theorem 1.3. If \(G) > 2, then T(G) is mazimally edge-connected.
Theorem 1.4. x(G) + A(G) < k7(G) < 2X(G).

By Theorem 1.4, we obtain the following two corollaries.
Corollary 1.5. If £(G) = A(G), then k1(G) = 2\(G).
Corollary 1.6. If G is mazimally connected, then T(G) is mazimally con-

nected.

Chen and Meng [6] proved that for all but a few exceptions, the total
graph T(G) of G is super-A.

Theorem 1.7. For a given connected graph G, T(G) is super-) if and only
if one of the following two conditions applies:

(i) If M(G) =2 2 and G has a cut vertez u with dg(u) = 6(G), then there
are at least three edges between u and any component of G \ u.

(ii) If M(G) =1 and e = uv is a bridge, then min{dg(u),dg(v)} > 26(G).

In this paper, we prove that T(G) is super-x if G is a super-x graph
with §(G) > 4 in section 2. We also show that T(G) is super-\’ if G is a
k-regular graph with £(G) > 3 in section 3. Furthermore, we give examples
which illustrate that the results are best possible.

2 Super connected total graphs

In [14], Xu et. proved the following theorem.
Theorem 2.1. Let G be a super-x graph with §(G) > 4. Then G is super-\.

Now, we prove the following result.

Theorem 2.2. Let G be a super-« graph with 6(G) > 4. Then T(G) is
super-k, and thus T(G) is super-A.

311



Proof. Suppose to the contrary that T(G) is not super-«. Then there exists
a minimum vertex-cut S of T(G) such that |S| < §(T(G)) = 26(G) and
every component of T(G) — S has at least two vertices. Let X3, Xo,--- , X
(t= 2) be the components of T(G) — S. Then we have |V(X;)| > 2 for
i=1,2,---,t. We consider three cases.

Case 1. There is one component X; (1 <7 <t) such that V(X;) C V(G).

If [V(X;)| = 2, then |S| 2 26 — 1 + min{k(G),n—2} > 2§ = §(T(G)), a
contradiction. If [V (X;)| = 3, then |S| 2 36 —3+min{x(G),n—{V(X;)|} >
26 = §(T(G)), also a contradiction.

Case 2. There is one component X; (1 < i < t) such that V(X;) C E(G).

By Case 1, we can assume that V(X;) NE(G) # @ for j =1,2,--- ,t.
Let Y = V(G[X;]). Then |Y| > 3 by |V(X;)| > 2. Since G is super-« and
6(G) > 4, we have that G is super-A by Theorem 2.1, thus x(L(G)) > A(G)
by Corollary 1.2. If [Y| > §(G), then |S| > |Y|+£(L(G)) 2 |Y|+6(G)+1 >
26(G), a contradiction. Thus, we assume that 3 < |Y| < 6(G) — 1. Then
15| 2 [Y|6(G) =Y |[(IY|-1)+[Y]| = [Y](6(G)+2—-Y]) 2 3(6(G)-1) > 26(G)
by 6(G) > 4, also a contradiction.

Case 3. V(X))NE(G) #@ and V(X)) NV(G) £ @ fori=1,2,-- ,t.

Since SN V(G) is a vertex cut of G and SN E(G) is a vertex cut of
L(G), we obtain that |S| > &(G) + &(L(G)) = 6 + (6 + 1) > 26 (The
inequality K(L(G)) > A(G) +1 = §(G) + 1 is obtained by the proof of Case
2), contradicting to |S| < 24. O

We present a class of graphs, which show that Theorem 2.2 is best
possible, in the sense that £(G) = §(G) does not guarantee that T'(G) is
super-£.

Example 2.3. Let n and § be arbitrary integers with n > 2§ > 8. Fur-
thermore, let Hy = K; with vertez set V(H,) = {z1,23, -+ ,z5} and
let Hy =2 K, ;5 with vertez set V(H2) = {y1,¥2," " ,¥n—s}. We de-
fine the graph G as the union of H, and Ha together with the & edges
1Y1, T2Y2, " - » TsYs. Then n(G) = n,6(G) =4, and &(G) = 6(G). But we
have that T(G) is not super-, since V(Hy) U {z1y1,T2y2, - ,ZsYs} is @
vertez-cut of T(G) with cardinality 6(T(G)).

The following example shows that the condition §(G) > 4 is necessary
in Theorem 2.2.

Example 2.4. The graphs defined in Fig.2.1 are super-x, and 6(G;) = i
fori=1,2,3. But we verify that T(G;) is not super-s fori=1,2,3, since
{vr+1} U {vr41vr42} is a vertez-cut of T(G1) with cardinality 2, {vs,v4} U
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{vivs, vaus} is a vertez-cut of T(G2) with cardinality 4, and {vs,vs,ve} U
{v1v4,voUs, v3vs} is a vertez-cut of T(G3) with cardinality 6.

A2 Va v5
@ q
L]
[ ]
[
(g g
v, Ve A\
Gz
Fig.2.1.

3 Super restricted-edge-connected total graph-
s

For a vertex z € V(G) and two vertex sets X,Y C V(G) with X NY =@,
let Eq(z) = {e € E(G) : e is incident with z}, [X,Y] = {e = zy € E(G) :
z€ X,yeY}and Eg(X) = [X,X].

In the proof of Theorem 3.2, we will use the following theorem, which
was given by Kénig [11] in 1931.
Theorem 3.1. If G is a bipartite graph, then the mazimum size of a
matching in G equals the minimum size of a verter cover of G.

Now, we are ready to prove the following main result.

Theorem 3.2. Let G be a k-regular graph with k(G) > 3. Then T(G) is
super-X'.

Proof. Suppose to the contrary that T(G) is not super-\’. Then there
exists a minimum restricted edge-cut F such that |F| < £(T(G)) = 4k — 2
and each component of the two components of T(G) — F has at least three
vertices. Let X and Y be the two vertex sets of the two components of
T(G) — F. We consider three cases.

Case 1. One of X and Y belongs to V(G).

Assume, without loss of generality, that X C V(G). If |X| = 3, then
|F| > 3k + (3k — 6) = 6(k — 1) > 4k — 2, a contradiction. If | X| > 4, then
|F| > 4k > 4k — 2, also a contradiction.

Case 2. One of X and Y belongs to E(G).
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Assume, without loss of generality, that X C E(G). Let Z = V(G[X]).
Since | X| > 3, we have |Z| > 3 and equality holds if and only if G[X] & K.

If |Z| > 4, then there are at least four vertices uy,uz,us,uq € V(G) C
Y, such that Eg(u;)NX # O for i=1,2,3,4. Let |Eg(u;)NX|=n; > 1 and
|Eg(u;) NY| = dg(ui) —n;. For any e; € Eg(u;)NX and e; € Eg(u;)NY,
e; and e; are adjacent in T(G), they contribute one edge to F. Thus,

4 4 4
IF] > [+ ni(do(w) —n)) =) _mi(k+1-n) 2> k>4k-2,

i=1 i=1 i=1
a contradiction.

If |Z| = 3, then G[X] = K3, and let Z = {v;,v2,v3} CV(G) C Y. It is
easy to see that |[Eg(v;)NX|=n; =2and |Eg(vi)NY|=k-n; =k -2
3

Thus |F| > 3 ni(k —n; + 1) = 6(k — 1) > 4k — 2, also a contradiction.
i=1

Case 3. XNV(G) # 0, XNE(G) #0,YNV(G) # @ and Y NE(G) # D.
Let Vi = V(G)nX, V2 =V(G)NY, E, = E(G)NX and E; = E(G)NY.
Subcase 3.1. {Vj|=1or |V| = 1.

Assume, without loss of generality, that |[V}| = 1. Let V} = {u}, N(u) =

{u11u21"’ )
ur}, € = uy; (2 = 1,2,--- ,k) and t = |{e1,e3, - ,ex} N Ey|. Then
|[Ec(u)NEy]=ny, =k —tand |[Eg(u)NEy|=k—n, =t.

If t = 1, assume that {e;,e2,--- ,ex} N Ey = {e;}. Since |X| > 3 and
T(G)[X] is connected, there exists a vertex ug4+1 € N(u1) \ {u} such that
er+1 = uiuks1 € By, Let |[Eg(ui) NEy| =ny 2 1, |Eg(ur) N Es| = k—ny,
|Ec(uk+1) n Ell = Ngyl > 1 and |Ea(uk+1) n Ezl =k- Nk4-1- Then

|F| 2 n1 +na(k —n1) + i1 +nes1 (b — k1) + 7+ nu (b — nu) + [ No(u)|
Sk+k+2k—1)+k=5k—2>4k—2,

a contradiction.

If2 < t < k—1, assume, without loss of generality, that {e;, ez, - ,ex}N
E, = {61,62, cee ,et}. Let |Ec(u1')ﬂE1| =n; > 1and |Eg(u,-)ﬂE2| = k—n;
fori=1,2,---,t. Then

t
|F| > Z[n;+n,-(k—n;)]+nu +nu(k—nu)+|NG(u)| >th+k+k>4k—2,
i=1

a contradiction.
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Ift =k, then Eg(u;)NEy #@fori=1,2,--- k. Let |Eg(u;) N Ey| =
n; 2 1and |[Eg(u;)NE2|=k—n;fori=1,2,--. k. Then

k
IFI 2 3 lns + na(k —no)] + ING ()| > k x k+k > 4k —2,

i=1
also a contradiction.
Subcase 3.2. |Vj| =2 and |V2| 2 2, or |V1] 2 2 and |V5] = 2.
Suppose that |Vj| = 2 and |V2| > 2. Denote V) = {u,v}.
Subcase 3.2.1. uwv ¢ E(G).

Let N(u) = {uy,uz, -~ ,ux} and e; = uu; for i = 1,2,--- ,k. Since
|X| = 3 and T(G)[X] is connected, assume, without loss of generality, that
e € E;.

If e5 is also in E, then Eg(u;) N E; # @ for i = 1,2, and let |Eg(u;) N
Ey| = n; 2 1 and |Eg(w;)) N Es] = k=mn; for ¢ = 1,2. Thus |F| >

2
> [ni + ni(k — n:)] + |Ec({u,v})| 2 2k + 2k > 4k — 2, a contradiction.
i=1

If e5 is not in E), then Eg(u) N E2 # @, and let |[Eg(u)NEz| =n, 21
and |Eg(u) N Ei| = k — ny. Since Eg(u1) N Ey # @, let |Eg(ui) N Ey| =
ny; 2 1 and |Eg(u1) N Eg| = k - ny. Thus |F| 2 ny, + nu(k —ny) +n1 +
ni(k — n1) + |Ec({u,v})| > 2k + 2k > 4k — 2, also a contradiction.

Subcase 3.2.2. uv € E(G).

Let N(u) = {v,u1, - ,uk—1} and N(v) = {u,v1, - ,vk-1}. If e =
uv € F,, assume, without loss of generality, that e; = uu; € E; by | X| > 3
and T(G)[X] is connected. Let |Eg(u) N Ez| = n, > 1, |Eg(v) N Eg| =
ny > 1 and |Eg(u1) N Ei| = ny 2 1. Then |F| = ny + nu(k — ny) + 1y +
ny(k — ny) + ny +ny(k = ny) + |[Eg({u,v})] 2 3k+2k—-2 >4k -2, a
contradiction. Therefore, we assume that e = uv € E; in the following.

If | X| = 3, then |[Eg(u)NE3| = ny, = k-1 and |Eg(v)NEs| = n, = k—1.
Thus |F| 2 ny + ny(k — ny) + 1y + n0(k — 1) + [Eg({u,v})| = 2(k - 1) +
2(k— 1) +2(k — 1) > 4k — 2, also a contradiction.

If | X| > 4, then we can assume, without loss of generality, that e¢; =
uuy € Fy by T(G)[X] is connected. Let [Eg(u1) N Ei] = ny > 1 and
|Eg(u1) N Ea| = k —n;.

We claim that Eg(v) N E; = @. Suppose that Eg(v) N B2 # O, let
|EG('U) ﬂEzl =n, 2 1and [Eg(v) N E1| =k—n,. If Eg(u)N E; # O, let
|Ee(uw)NEy| =ny > 1and |Eg(u)NE,| = k—n,. Thus |F| > n, +n,(k—

Ny )+ 1y +1y (k—ny )+ +ny(k—n1)+|Eg({u, v})| = 3k+2(k-1) > 4k—2,
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a contradiction. If Eg(u)NE; = @, then e; = uug € E) and Eg(ug)NE); #
@, let |Ea(u2) n Ell =ny > 1 and IEG(’u.z) ﬁEz[ = k — ny. Thus |F| >
Ny +ny (k—ny) +n1 +n1(k—n1) +n2+n2(k—n2)+|Ec({u,v})| = 3k+2(k—
1) > 4k — 2, also a contradiction. Thus, we assume that Eg(v) N E; = @.

If N(w) \ {u,u1,u2} # 9, let v; € {u,uy,u2}. Thus Eg(v;) N E; #
@, and let |Eg(v1) N Ey| = ny, 2 1 and |Eg(v1) N Eg| = k — ny,. If
Ec(u)NEy # @, let |Eg(u) N Ey] =ny 2 1 and |Eg(u) N Ey| =k — n,,.
Thus |[F| = ny + ny(k — ny) + 1y, + g (k= ny,) + 11 + 01k = 1) +
|Ec({z,v})| = 3k +2(k — 1) > 4k — 2, a contradiction. If Eg(u)N E; = @,
then eq = uuy € Ej and EG(’U,Q) NE, # @, let |Eg(ug) NE)|=n2>1and
|Eg(uz) N E2| = k —ng. Thus [F| 2 ny, +ny,(k—ny, ) + 11 +n1(k—n1) +
ny+ng(k—ng)+|Ec({u,v})| = 3k+2(k—1) > 4k—2, also a contradiction.
Thus, we assume that N(v) = {u,u1,u2}. Since £(G) > 3, we obtain that
G = K,. 1t is easy to verify that |F| > 10, a contradiction.

Subcase 3.3. |Vj| > 3 and |V3| > 3.

We consider the graph H = G|V}, V3]¢], which is induced by the edge
set [Vi, Vo] in G. If H has a matching M which contains at least four
edges, assume that vi,v91, V12022, - ,
vy (t > 4) are t edges in M. Then either Eg(vy) N E; # O, or
Eg(vi)NE; # @ for i = 1,2,.-.,t. Assume, without loss of generali-
ty, that EG(‘Uu) NE; #@ fori=1,---,r, and EG('UQ]') NE; # O for
j=r+1,.--,t Let |[Eg(vi;) N Eaf = ny; > 1 and |Eg(vi;) N Ey| = k—ny;
fori=1,.--,r, |EG(‘02_7') N El] =ng; 2 1 and IEG(‘Uzj) n Ezl =k— na;j

T t
for j =r+1,---,t. Then |F| > > [ni +nii(k — nu)] + Y [noj +
i=1 j=rdl

ngj(k — ngj)] = rk + (t — r)k > 4k — 2, a contradiction. If the maxi-
mum size of matching o/ (H) < 2, then the minimum size of vertex cover
B(H) = o/(H) < 2 by Theorem 3.1. Since a vertex cover of H with cardi-
nality at least two is a vertex-cut of G, thus «(G) < 2, which contradicts to
k(G) > 3. Therefore, we assume that S(H) = a'(H) = 3 in the following.

Since G is k-regular, [[Vi, V2]¢| is an even number. Thus |E(H)] is an
even number and |E(H)| = 4. If the number of vertices in V; which are
adjacent to E2 in T(G) and vertices in V, which are adjacent to E; in T(G)
is at least 4, then we have that |F| > 4k > 4k — 2 by a similar argument as
above, a contradiction. Since the vertices in V; which are adjacent to E;
in T(G) and the vertices in V2 which are adjacent to E; in T'(G) constitute
a vertex cover of H, B(H) = o/(H) = 3 and x(G) > 3, we can assume
that there are exactly three vertices v, vs,vs such that if v; € Vi, then
Eg(v;)NE; # @, and if v; € V3, then Eg(v;) N Ey # D. 1t is easy to verify
that {v1,vg,v3} is a minimum vertex cover of H. Assume, without loss of
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generality, that vy, vs,v3 € V), or vy,v2 € V; and v3 € V5.
Subcase 3.3.1. v1,vp,v3 € W],
Let |Eg(vi)NE;| = n; 2 1and |Eg(v;)NE,| = k—n; fori = 1,2, 3. Since

 w1,v2,v3 € V1, we have that the linear point set [{vy,v;,v3}, V2] of T(G)
is contained in E,. If there exists a n; such that 2 < n; < k — 1, assume,

without loss of genera.lity that 2 < n; < k—1, then ny +ny(k—ny) >
2(k—1). Thus |F| > Z[n,+n.(k—'n.)]+|E(H)| > 2(k—1)+2k+4 > 4k-2,

a contradiction. Othermse, there is a n; such that n; = k. Assume,
without loss of generality that ny = k, then |N(v2) N V2| > k — 2 since
N(v)NV; C {v1,v3}. We also have [N(v1)NV,| > 1 and [N(vs)NV5| > 1.

3
Therefore, |F| > Y [ni + ni(k —ni)] + |E(H)| 23k +k—-2+2> 4k -2,
]
also a contradicti;n.
Subcase 3.3.2. v;,v; € V; and v3 € V5.

Let [Eg(v;) N E3| = n; 2 1 and |Eg(v;) N Ey| = k—n; for i = 1,2,
|Eg(vs) N E1| = ng > 1 and |Eg(vs) N Ez| = k — n3. If there exists a n;
such that 2 < n; < k — 1, then we can obtain a contradiction by a similar
argument as the proof of the subcase 3.3.1. Otherwise, there exists a n;
such that n; = k. Since T(G)[Y] is connected and there exists exactly one
vertex vz in V5 such that Eg(vs) N Ey # @, we have that n3 # k. Thus
ny = k or ng = k. Assume, without loss of generality that n; = k, then
[N(v1)NVe| > k—1since N(v;)NV; C {va}. We also have |N(v2)NV3| > 1.

3

Therefore, |F| > Y [ni + ni(k —ni)] + |E(H)| 23k +k—1+1> 4k -2,
i=1
also a contradiction. O

If G is a connected 1-regular graph, then G = K and T(G) = K;. If G
is a connected 2-regular graph, then T'(G) is not super-)’ since Er(g)({u, v, €})
is a restricted edge-cut with cardinality 6 for every edge e = uv € E(G).
If G is a k(> 3)-regular with K(G) = 1, then k is even. The following
examples show that the condition x(G) > 3 is necessary in the Theorem
3.2.

Example 3.3. Let k be an even integer with k = 2t > 4. Further-
more, let G1,Ga, -+ ,G; be t connected k-regular graphs, and e; = ujv; €
E(G1),e2 = uguz € E(G3), -+ ,er = wvy € E(G;). We define the graph
G as the union of G1 — e;,Gy — €3, -+ , Gy — e; together with the k edges
wu, WY1, WU, W2, -+ , Wiy, WV, where w i3 an other vertez not in V(G1)U
V(G2)U---UV(G:). Then G is a k-regular graph with kK(G) = 1. But T(G)
is not super-\’ since Exg)(V1 U E(G1)\ {e1}) is a restricted edge-cut with
cardinality 2k + 2.
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Example 3.4. Let G, and Gy be two k(> 3)-regular graphs with £(G,) > 2
and K(Gz) 2 2, e1 = uyvy € E(G1) and ez = ugvg € E(G2). We define the
graph G as the union of G1 — ey and Ga — eg together with the two edges
uiug and vyvy.- Then G is a k-regulor graph with kK(G) = 2. But T(G)
is not super-)' since Epqy(V(G1) U E(G1) \ {e1}) is a restricted edge-cut
with cardinality 2k + 2.
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