On super connectedness and super restricted edge-connectedness of total graphs *

Yingzhi Tian † Jixiang Meng
College of Mathematics and System Sciences, Xinjiang University,
Urumqi, Xinjiang, 830046, Peoples Republic of China.

Abstract A graph G is super-connected, super- κ , for short if every minimum vertex-cut isolates a vertex of G. Call G super restricted edge-connected, in short, super- λ' , if every minimum restricted edge-cut isolates an edge. We view the total graph T(G) of G as the disjoint of G and the line graph L(G), together with the lines of the subdivision graph S(G); for each line I=(u,v) in G there are two lines in S(G), namely (\hat{l},u) and (\hat{l},v) . In this paper, we prove that T(G) is super- κ if G is a super- κ graph with $\delta(G) \geq 4$. We also show that T(G) is super- λ' if G is a k-regular graph with $\kappa(G) \geq 3$. Furthermore, we give examples which illustrate that the results are best possible.

Keywords: Super connected; Super edge-connected; Total graph

1 Introduction

A network can be conveniently modeled as a graph G=(V,E), with vertices representing nodes and edges representing links. A classic measure of network reliability is the connectivity $\kappa(G)$ and the edge-connectivity $\lambda(G)$. In general, the larger $\kappa(G)$ (or $\lambda(G)$) is, the more reliable the network is. For $\kappa(G) \leq \lambda(G) \leq \delta(G)$, where $\delta(G)$ is the minimum degree of G, a graph G with $\kappa(G) = \delta(G)$ ($\lambda(G) = \delta(G)$) is naturally said to be maximally connected (maximally edge-connected), or κ -optimal (λ -optimal) for simplicity. As more refined indices of reliability than maximal connectivity and maximal edge-connectivity, super connectivity and super

^{*}The research is supported by XJEDU (2013S03, 2010S01), NSFC (11326219, 11171283, 11301452, 11301440), NSFXJ (2013211B02), Fund of Xinjiang University (XY110104), Doctoral Fund of Xinjiang University (BS120103).

[†]Corresponding author. E-mail: tianyzhxj@163.com (Y.Tian), mjx@xju.edu.cn (J.Meng).

edge-connectivity were proposed in [1, 3]. A graph G is super-connected, super- κ , for short (resp. super edge-connected, super- λ , for short) if every minimum vertex-cut (resp. edge-cut) isolates a vertex of G.

For further study, Esfahanian and Hakimi introduce the concept of restricted edge-connectivity [8]. The concept of restricted edge-connectivity is one kind of conditional edge-connectivity proposed by Harary in [9], and has been successfully applied in the further study of tolerance and reliability of networks, see [7, 12, 13]. Let F be a set of edges in G. Call Fa restricted edge-cut if G - F is disconnected and contains no isolated vertices. The minimum cardinality over all restricted edge-cuts is called restricted edge-connectivity of G, and denoted by $\lambda'(G)$. It was shown by Wang and Li that the larger $\lambda'(G)$ is, the more reliable the network is [13]. In [8], the authors proved that if a connected graph G of order $n \geq 4$ is not a star $K_{1,n-1}$, then $\lambda'(G)$ is well-defined and $\lambda(G) \leq \lambda'(G) \leq \xi(G)$, where $\xi(G) = min\{d_G(u) + d_G(v) - 2 : uv \in E(G)\}$ is the minimum edge degree of G. A graph G with $\lambda'(G) = \xi(G)$ is called a λ' -optimal graph. Call G super restricted edge-connected, in short, super- λ' , if every minimum restricted edge-cut isolates an edge, that is, every minimum restricted edge-cut is a set of edges adjacent to a certain edge with minimum edge degree in G. By the definitions, a super- λ' graph must be a λ' -optimal graph. However, the converse is not true since there are many λ' -optimal graphs not to be super- λ' . For example, C_n $(n \ge 6)$, the cycle of length nis a trivial counterexample.

It should be pointed out that if $\delta(G) \geq 3$, then a λ' -optimal graph must be super- λ . In fact, a graph G is super- λ if and only if $\lambda(G) < \lambda'(G)$ [12]. Thus, the concepts of λ -optimal graph, super- λ graph, λ' -optimal graph and super- λ' graph describe reliable interconnection structure for graphs at different levels.

The line graph L(G) of G is that graph whose point set can be put in one-to-one correspondence with the line set of G, such that two points of L(G) are adjacent if and only if the corresponding lines of G are adjacent. We view the total graph T(G) of G as the disjoint of G and L(G), together with the lines of the subdivision graph S(G); for each line l=(u,v) in G there are two lines in S(G), namely (\hat{l},u) and (\hat{l},v) . For convenience, the points of T(G) belonging to L(G) will be called linear points of T(G). We simplify notation by setting $\kappa = \kappa(G)$, $\kappa_L = \kappa(L(G))$, $\kappa_T = \kappa(T(G))$, and similarly for λ and δ . Except where noted we follow the definitions and notations of Bondy [4].

In 1969, Chartrand and Stewart [5] proved that (i) $\kappa(L(G)) \geq \lambda(G)$, if $\lambda(G) \geq 2$; (ii) $\lambda(L(G)) \geq 2\lambda(G) - 2$. Furthermore, Hellwig et. [10] showed that

Theorem 1.1. Let G be a graph with $|V(G)| \ge 4$ and G is not a star. Then $\kappa(L(G)) = \lambda'(G)$.

By Theorem 1.1, we easily have

Corollary 1.2. Let G be a graph with $|V(G)| \ge 4$ and G is not a star. If G is a super- λ graph, then $\kappa(L(G)) = \lambda'(G) > \lambda(G)$.

In [2], the authors showed the following two theorems.

Theorem 1.3. If $\lambda(G) \geq 2$, then T(G) is maximally edge-connected.

Theorem 1.4. $\kappa(G) + \lambda(G) \leq \kappa_T(G) \leq 2\lambda(G)$.

By Theorem 1.4, we obtain the following two corollaries.

Corollary 1.5. If $\kappa(G) = \lambda(G)$, then $\kappa_T(G) = 2\lambda(G)$.

Corollary 1.6. If G is maximally connected, then T(G) is maximally connected.

Chen and Meng [6] proved that for all but a few exceptions, the total graph T(G) of G is super- λ .

Theorem 1.7. For a given connected graph G, T(G) is super- λ if and only if one of the following two conditions applies:

(i) If $\lambda(G) \geq 2$ and G has a cut vertex u with $d_G(u) = \delta(G)$, then there are at least three edges between u and any component of $G \setminus u$.

(ii) If $\lambda(G) = 1$ and e = uv is a bridge, then $\min\{d_G(u), d_G(v)\} \ge 2\delta(G)$.

In this paper, we prove that T(G) is super- κ if G is a super- κ graph with $\delta(G) \geq 4$ in section 2. We also show that T(G) is super- λ' if G is a k-regular graph with $\kappa(G) \geq 3$ in section 3. Furthermore, we give examples which illustrate that the results are best possible.

2 Super connected total graphs

In [14], Xu et. proved the following theorem.

Theorem 2.1. Let G be a super- κ graph with $\delta(G) \geq 4$. Then G is super- λ .

Now, we prove the following result.

Theorem 2.2. Let G be a super- κ graph with $\delta(G) \geq 4$. Then T(G) is super- κ , and thus T(G) is super- λ .

Proof. Suppose to the contrary that T(G) is not super- κ . Then there exists a minimum vertex-cut S of T(G) such that $|S| \leq \delta(T(G)) = 2\delta(G)$ and every component of T(G) - S has at least two vertices. Let X_1, X_2, \dots, X_t $(t \geq 2)$ be the components of T(G) - S. Then we have $|V(X_i)| \geq 2$ for $i = 1, 2, \dots, t$. We consider three cases.

Case 1. There is one component X_i $(1 \le i \le t)$ such that $V(X_i) \subseteq V(G)$.

If $|V(X_i)| = 2$, then $|S| \ge 2\delta - 1 + \min\{\kappa(G), n-2\} > 2\delta = \delta(T(G))$, a contradiction. If $|V(X_i)| \ge 3$, then $|S| \ge 3\delta - 3 + \min\{\kappa(G), n - |V(X_i)|\} > 2\delta = \delta(T(G))$, also a contradiction.

Case 2. There is one component X_i $(1 \le i \le t)$ such that $V(X_i) \subseteq E(G)$.

By Case 1, we can assume that $V(X_j)\cap E(G)\neq\emptyset$ for $j=1,2,\cdots,t$. Let $Y=V(G[X_i])$. Then $|Y|\geq 3$ by $|V(X_i)|\geq 2$. Since G is super- κ and $\delta(G)\geq 4$, we have that G is super- λ by Theorem 2.1, thus $\kappa(L(G))>\lambda(G)$ by Corollary 1.2. If $|Y|\geq \delta(G)$, then $|S|\geq |Y|+\kappa(L(G))\geq |Y|+\delta(G)+1>2\delta(G)$, a contradiction. Thus, we assume that $3\leq |Y|\leq \delta(G)-1$. Then $|S|\geq |Y|\delta(G)-|Y|(|Y|-1)+|Y|=|Y|(\delta(G)+2-|Y|)\geq 3(\delta(G)-1)>2\delta(G)$ by $\delta(G)\geq 4$, also a contradiction.

Case 3. $V(X_i) \cap E(G) \neq \emptyset$ and $V(X_i) \cap V(G) \neq \emptyset$ for $i = 1, 2, \dots, t$.

Since $S \cap V(G)$ is a vertex cut of G and $S \cap E(G)$ is a vertex cut of L(G), we obtain that $|S| \geq \kappa(G) + \kappa(L(G)) \geq \delta + (\delta + 1) > 2\delta$ (The inequality $\kappa(L(G)) \geq \lambda(G) + 1 = \delta(G) + 1$ is obtained by the proof of Case 2), contradicting to $|S| \leq 2\delta$. \square

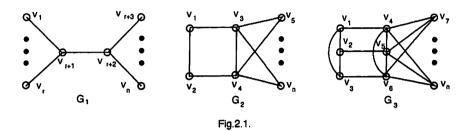
We present a class of graphs, which show that Theorem 2.2 is best possible, in the sense that $\kappa(G) = \delta(G)$ does not guarantee that T(G) is super- κ .

Example 2.3. Let n and δ be arbitrary integers with $n \geq 2\delta \geq 8$. Furthermore, let $H_1 \cong K_{\delta}$ with vertex set $V(H_1) = \{x_1, x_2, \cdots, x_{\delta}\}$ and let $H_2 \cong K_{n-\delta}$ with vertex set $V(H_2) = \{y_1, y_2, \cdots, y_{n-\delta}\}$. We define the graph G as the union of H_1 and H_2 together with the δ edges $x_1y_1, x_2y_2, \cdots, x_{\delta}y_{\delta}$. Then $n(G) = n, \delta(G) = \delta$, and $\kappa(G) = \delta(G)$. But we have that T(G) is not super- κ , since $V(H_1) \cup \{x_1y_1, x_2y_2, \cdots, x_{\delta}y_{\delta}\}$ is a vertex-cut of T(G) with cardinality $\delta(T(G))$.

The following example shows that the condition $\delta(G) \ge 4$ is necessary in Theorem 2.2.

Example 2.4. The graphs defined in Fig.2.1 are super- κ , and $\delta(G_i) = i$ for i = 1, 2, 3. But we verify that $T(G_i)$ is not super- κ for i = 1, 2, 3, since $\{v_{r+1}\} \cup \{v_{r+1}v_{r+2}\}$ is a vertex-cut of $T(G_1)$ with cardinality 2, $\{v_3, v_4\} \cup \{v_{r+1}v_{r+2}\}$

 $\{v_1v_3, v_2v_4\}$ is a vertex-cut of $T(G_2)$ with cardinality 4, and $\{v_4, v_5, v_6\} \cup \{v_1v_4, v_2v_5, v_3v_6\}$ is a vertex-cut of $T(G_3)$ with cardinality 6.



3 Super restricted-edge-connected total graphs

For a vertex $x \in V(G)$ and two vertex sets $X, Y \subseteq V(G)$ with $X \cap Y = \emptyset$, let $E_G(x) = \{e \in E(G) : e \text{ is incident with } x\}$, $[X, Y] = \{e = xy \in E(G) : x \in X, y \in Y\}$ and $E_G(X) = [X, \overline{X}]$.

In the proof of Theorem 3.2, we will use the following theorem, which was given by König [11] in 1931.

Theorem 3.1. If G is a bipartite graph, then the maximum size of a matching in G equals the minimum size of a vertex cover of G.

Now, we are ready to prove the following main result.

Theorem 3.2. Let G be a k-regular graph with $\kappa(G) \geq 3$. Then T(G) is $super-\lambda'$.

Proof. Suppose to the contrary that T(G) is not super- λ' . Then there exists a minimum restricted edge-cut F such that $|F| \leq \xi(T(G)) = 4k - 2$ and each component of the two components of T(G) - F has at least three vertices. Let X and Y be the two vertex sets of the two components of T(G) - F. We consider three cases.

Case 1. One of X and Y belongs to V(G).

Assume, without loss of generality, that $X \subseteq V(G)$. If |X| = 3, then $|F| \ge 3k + (3k - 6) = 6(k - 1) > 4k - 2$, a contradiction. If $|X| \ge 4$, then $|F| \ge 4k > 4k - 2$, also a contradiction.

Case 2. One of X and Y belongs to E(G).

Assume, without loss of generality, that $X \subseteq E(G)$. Let Z = V(G[X]). Since $|X| \ge 3$, we have $|Z| \ge 3$ and equality holds if and only if $G[X] \cong K_3$.

If $|Z| \geq 4$, then there are at least four vertices $u_1, u_2, u_3, u_4 \in V(G) \subseteq Y$, such that $E_G(u_i) \cap X \neq \emptyset$ for i=1,2,3,4. Let $|E_G(u_i) \cap X| = n_i \geq 1$ and $|E_G(u_i) \cap Y| = d_G(u_i) - n_i$. For any $e_i \in E_G(u_i) \cap X$ and $e_j \in E_G(u_i) \cap Y$, e_i and e_j are adjacent in T(G), they contribute one edge to F. Thus,

$$|F| \ge \sum_{i=1}^{4} [n_i + n_i(d_G(u_i) - n_i)] = \sum_{i=1}^{4} n_i(k+1-n_i) \ge \sum_{i=1}^{4} k > 4k-2,$$

a contradiction.

If |Z|=3, then $G[X]\cong K_3$, and let $Z=\{v_1,v_2,v_3\}\subseteq V(G)\subseteq Y$. It is easy to see that $|E_G(v_i)\cap X|=n_i=2$ and $|E_G(v_i)\cap Y|=k-n_i=k-2$. Thus $|F|\geq \sum_{i=1}^3 n_i(k-n_i+1)=6(k-1)>4k-2$, also a contradiction.

Case 3. $X \cap V(G) \neq \emptyset$, $X \cap E(G) \neq \emptyset$, $Y \cap V(G) \neq \emptyset$ and $Y \cap E(G) \neq \emptyset$. Let $V_1 = V(G) \cap X$, $V_2 = V(G) \cap Y$, $E_1 = E(G) \cap X$ and $E_2 = E(G) \cap Y$.

Subcase 3.1. $|V_1| = 1$ or $|V_2| = 1$.

Assume, without loss of generality, that $|V_1| = 1$. Let $V_1 = \{u\}$, $N(u) = \{u_1, u_2, \cdots, u_k\}$, $e_i = uu_i$ $(i = 1, 2, \cdots, k)$ and $t = |\{e_1, e_2, \cdots, e_k\} \cap E_1|$. Then $|E_G(u) \cap E_2| = n_u = k - t$ and $|E_G(u) \cap E_1| = k - n_u = t$.

If t=1, assume that $\{e_1,e_2,\cdots,e_k\}\cap E_1=\{e_1\}$. Since $|X|\geq 3$ and T(G)[X] is connected, there exists a vertex $u_{k+1}\in N(u_1)\setminus \{u\}$ such that $e_{k+1}=u_1u_{k+1}\in E_1$. Let $|E_G(u_1)\cap E_1|=n_1\geq 1$, $|E_G(u_1)\cap E_2|=k-n_1$, $|E_G(u_{k+1})\cap E_1|=n_{k+1}\geq 1$ and $|E_G(u_{k+1})\cap E_2|=k-n_{k+1}$. Then

$$|F| \ge n_1 + n_1(k - n_1) + n_{k+1} + n_{k+1}(k - n_{k+1}) + n_u + n_u(k - n_u) + |N_G(u)|$$

> $k + k + 2(k - 1) + k = 5k - 2 > 4k - 2$,

a contradiction.

If $2 \le t \le k-1$, assume, without loss of generality, that $\{e_1, e_2, \cdots, e_k\} \cap E_1 = \{e_1, e_2, \cdots, e_t\}$. Let $|E_G(u_i) \cap E_1| = n_i \ge 1$ and $|E_G(u_i) \cap E_2| = k-n_i$ for $i = 1, 2, \cdots, t$. Then

$$|F| \ge \sum_{i=1}^{t} [n_i + n_i(k - n_i)] + n_u + n_u(k - n_u) + |N_G(u)| \ge tk + k + k > 4k - 2,$$

a contradiction.

If t=k, then $E_G(u_i)\cap E_1\neq\emptyset$ for $i=1,2,\cdots,k$. Let $|E_G(u_i)\cap E_1|=n_i\geq 1$ and $|E_G(u_i)\cap E_2|=k-n_i$ for $i=1,2,\cdots,k$. Then

$$|F| \ge \sum_{i=1}^{k} [n_i + n_i(k - n_i)] + |N_G(u)| \ge k \times k + k > 4k - 2,$$

also a contradiction.

Subcase 3.2. $|V_1| = 2$ and $|V_2| \ge 2$, or $|V_1| \ge 2$ and $|V_2| = 2$.

Suppose that $|V_1| = 2$ and $|V_2| \ge 2$. Denote $V_1 = \{u, v\}$.

Subcase 3.2.1. $uv \notin E(G)$.

Let $N(u) = \{u_1, u_2, \dots, u_k\}$ and $e_i = uu_i$ for $i = 1, 2, \dots, k$. Since $|X| \ge 3$ and T(G)[X] is connected, assume, without loss of generality, that $e_1 \in E_1$.

If e_2 is also in E_1 , then $E_G(u_i) \cap E_1 \neq \emptyset$ for i = 1, 2, and let $|E_G(u_i) \cap E_1| = n_i \geq 1$ and $|E_G(u_i) \cap E_2| = k - n_i$ for i = 1, 2. Thus $|F| \geq \sum_{i=1}^{2} [n_i + n_i(k - n_i)] + |E_G(\{u, v\})| \geq 2k + 2k > 4k - 2$, a contradiction.

If e_2 is not in E_1 , then $E_G(u) \cap E_2 \neq \emptyset$, and let $|E_G(u) \cap E_2| = n_u \geq 1$ and $|E_G(u) \cap E_1| = k - n_u$. Since $E_G(u_1) \cap E_1 \neq \emptyset$, let $|E_G(u_1) \cap E_1| = n_1 \geq 1$ and $|E_G(u_1) \cap E_2| = k - n_1$. Thus $|F| \geq n_u + n_u(k - n_u) + n_1 + n_1(k - n_1) + |E_G(\{u, v\})| \geq 2k + 2k > 4k - 2$, also a contradiction.

Subcase 3.2.2. $uv \in E(G)$.

Let $N(u)=\{v,u_1,\cdots,u_{k-1}\}$ and $N(v)=\{u,v_1,\cdots,v_{k-1}\}$. If $e=uv\in E_2$, assume, without loss of generality, that $e_1=uu_1\in E_1$ by $|X|\geq 3$ and T(G)[X] is connected. Let $|E_G(u)\cap E_2|=n_u\geq 1$, $|E_G(v)\cap E_2|=n_v\geq 1$ and $|E_G(u_1)\cap E_1|=n_1\geq 1$. Then $|F|\geq n_u+n_u(k-n_u)+n_v+n_v(k-n_u)+n_1+n_1(k-n_1)+|E_G(\{u,v\})|\geq 3k+2k-2>4k-2$, a contradiction. Therefore, we assume that $e=uv\in E_1$ in the following.

If |X| = 3, then $|E_G(u) \cap E_2| = n_u = k-1$ and $|E_G(v) \cap E_2| = n_v = k-1$. Thus $|F| \ge n_u + n_u(k - n_u) + n_v + n_v(k - n_v) + |E_G(\{u, v\})| = 2(k-1) + 2(k-1) + 2(k-1) > 4k - 2$, also a contradiction.

If $|X| \ge 4$, then we can assume, without loss of generality, that $e_1 = uu_1 \in E_1$ by T(G)[X] is connected. Let $|E_G(u_1) \cap E_1| = n_1 \ge 1$ and $|E_G(u_1) \cap E_2| = k - n_1$.

We claim that $E_G(v) \cap E_2 = \emptyset$. Suppose that $E_G(v) \cap E_2 \neq \emptyset$, let $|E_G(v) \cap E_2| = n_v \ge 1$ and $|E_G(v) \cap E_1| = k - n_v$. If $E_G(u) \cap E_2 \ne \emptyset$, let $|E_G(u) \cap E_2| = n_u \ge 1$ and $|E_G(u) \cap E_1| = k - n_u$. Thus $|F| \ge n_u + n_u(k - n_u) + n_v + n_v(k - n_v) + n_1 + n_1(k - n_1) + |E_G(\{u, v\})| \ge 3k + 2(k - 1) > 4k - 2$,

a contradiction. If $E_G(u) \cap E_2 = \emptyset$, then $e_2 = uu_2 \in E_1$ and $E_G(u_2) \cap E_1 \neq \emptyset$, let $|E_G(u_2) \cap E_1| = n_2 \geq 1$ and $|E_G(u_2) \cap E_2| = k - n_2$. Thus $|F| \geq n_v + n_v(k - n_v) + n_1 + n_1(k - n_1) + n_2 + n_2(k - n_2) + |E_G(\{u, v\})| \geq 3k + 2(k - 1) > 4k - 2$, also a contradiction. Thus, we assume that $E_G(v) \cap E_2 = \emptyset$.

If $N(v)\setminus\{u,u_1,u_2\}\neq\emptyset$, let $v_1\in\{u,u_1,u_2\}$. Thus $E_G(v_1)\cap E_1\neq\emptyset$, and let $|E_G(v_1)\cap E_1|=n_{v_1}\geq 1$ and $|E_G(v_1)\cap E_2|=k-n_{v_1}$. If $E_G(u)\cap E_2\neq\emptyset$, let $|E_G(u)\cap E_2|=n_u\geq 1$ and $|E_G(u)\cap E_1|=k-n_u$. Thus $|F|\geq n_u+n_u(k-n_u)+n_{v_1}+n_{v_1}(k-n_{v_1})+n_1+n_1(k-n_1)+|E_G(\{u,v\})|\geq 3k+2(k-1)>4k-2$, a contradiction. If $E_G(u)\cap E_2=\emptyset$, then $e_2=uu_2\in E_1$ and $E_G(u_2)\cap E_1\neq\emptyset$, let $|E_G(u_2)\cap E_1|=n_2\geq 1$ and $|E_G(u_2)\cap E_2|=k-n_2$. Thus $|F|\geq n_{v_1}+n_{v_1}(k-n_{v_1})+n_1+n_1(k-n_1)+n_2+n_2(k-n_2)+|E_G(\{u,v\})|\geq 3k+2(k-1)>4k-2$, also a contradiction. Thus, we assume that $N(v)=\{u,u_1,u_2\}$. Since $\kappa(G)\geq 3$, we obtain that $G\cong K_4$. It is easy to verify that |F|>10, a contradiction.

Subcase 3.3. $|V_1| \ge 3$ and $|V_2| \ge 3$.

We consider the graph $H = G[[V_1, V_2]_G]$, which is induced by the edge set $[V_1, V_2]_G$ in G. If H has a matching M which contains at least four edges, assume that $v_{11}v_{21}, v_{12}v_{22}, \cdots$,

edges, assume that $\sigma_{11}\sigma_{21}, \sigma_{12}\sigma_{22}, \cdots$, $v_{1t}v_{2t}$ $(t \geq 4)$ are t edges in M. Then either $E_G(v_{1i}) \cap E_2 \neq \emptyset$, or $E_G(v_{2i}) \cap E_1 \neq \emptyset$ for $i=1,2,\cdots,t$. Assume, without loss of generality, that $E_G(v_{1i}) \cap E_2 \neq \emptyset$ for $i=1,\cdots,r$, and $E_G(v_{2j}) \cap E_1 \neq \emptyset$ for $j=r+1,\cdots,t$. Let $|E_G(v_{1i}) \cap E_2| = n_{1i} \geq 1$ and $|E_G(v_{1i}) \cap E_1| = k-n_{1i}$ for $i=1,\cdots,r$, $|E_G(v_{2j}) \cap E_1| = n_{2j} \geq 1$ and $|E_G(v_{2j}) \cap E_2| = k-n_{2j}$ for $j=r+1,\cdots,t$. Then $|F| \geq \sum_{i=1}^r [n_{1i}+n_{1i}(k-n_{1i})] + \sum_{j=r+1}^t [n_{2j}+n_{2j}(k-n_{2j})] \geq rk+(t-r)k > 4k-2$, a contradiction. If the maximum size of matching $\alpha'(H) \leq 2$, then the minimum size of vertex cover $\beta(H) = \alpha'(H) \leq 2$ by Theorem 3.1. Since a vertex cover of H with cardinality at least two is a vertex-cut of G, thus $\kappa(G) \leq 2$, which contradicts to $\kappa(G) \geq 3$. Therefore, we assume that $\beta(H) = \alpha'(H) = 3$ in the following.

Since G is k-regular, $|[V_1,V_2]_G|$ is an even number. Thus |E(H)| is an even number and $|E(H)| \geq 4$. If the number of vertices in V_1 which are adjacent to E_2 in T(G) and vertices in V_2 which are adjacent to E_1 in T(G) is at least 4, then we have that $|F| \geq 4k > 4k - 2$ by a similar argument as above, a contradiction. Since the vertices in V_1 which are adjacent to E_2 in T(G) and the vertices in V_2 which are adjacent to E_1 in T(G) constitute a vertex cover of H, $\beta(H) = \alpha'(H) = 3$ and $\kappa(G) \geq 3$, we can assume that there are exactly three vertices v_1, v_2, v_3 such that if $v_i \in V_1$, then $E_G(v_i) \cap E_2 \neq \emptyset$, and if $v_j \in V_2$, then $E_G(v_j) \cap E_1 \neq \emptyset$. It is easy to verify that $\{v_1, v_2, v_3\}$ is a minimum vertex cover of H. Assume, without loss of

generality, that $v_1, v_2, v_3 \in V_1$, or $v_1, v_2 \in V_1$ and $v_3 \in V_2$.

Subcase 3.3.1. $v_1, v_2, v_3 \in V_1$.

Let $|E_G(v_i)\cap E_2|=n_i\geq 1$ and $|E_G(v_i)\cap E_1|=k-n_i$ for i=1,2,3. Since $v_1,v_2,v_3\in V_1$, we have that the linear point set $[\{v_1,v_2,v_3\},V_2]_G$ of T(G) is contained in E_2 . If there exists a n_i such that $2\leq n_i\leq k-1$, assume, without loss of generality that $2\leq n_1\leq k-1$, then $n_1+n_1(k-n_1)\geq 2(k-1)$. Thus $|F|\geq \sum\limits_{i=1}^3 [n_i+n_i(k-n_i)]+|E(H)|\geq 2(k-1)+2k+4>4k-2$, a contradiction. Otherwise, there is a n_j such that $n_j=k$. Assume, without loss of generality that $n_2=k$, then $|N(v_2)\cap V_2|\geq k-2$ since $N(v_2)\cap V_1\subseteq \{v_1,v_3\}$. We also have $|N(v_1)\cap V_2|\geq 1$ and $|N(v_3)\cap V_2|\geq 1$. Therefore, $|F|\geq \sum\limits_{i=1}^3 [n_i+n_i(k-n_i)]+|E(H)|\geq 3k+k-2+2>4k-2$, also a contradiction.

Subcase 3.3.2. $v_1, v_2 \in V_1$ and $v_3 \in V_2$.

Let $|E_G(v_i)\cap E_2|=n_i\geq 1$ and $|E_G(v_i)\cap E_1|=k-n_i$ for i=1,2, $|E_G(v_3)\cap E_1|=n_3\geq 1$ and $|E_G(v_3)\cap E_2|=k-n_3$. If there exists a n_i such that $2\leq n_i\leq k-1$, then we can obtain a contradiction by a similar argument as the proof of the subcase 3.3.1. Otherwise, there exists a n_j such that $n_j=k$. Since T(G)[Y] is connected and there exists exactly one vertex v_3 in V_2 such that $E_G(v_3)\cap E_1\neq\emptyset$, we have that $n_3\neq k$. Thus $n_1=k$ or $n_2=k$. Assume, without loss of generality that $n_1=k$, then $|N(v_1)\cap V_2|\geq k-1$ since $N(v_1)\cap V_1\subseteq \{v_2\}$. We also have $|N(v_2)\cap V_2|\geq 1$. Therefore, $|F|\geq \sum_{i=1}^3 [n_i+n_i(k-n_i)]+|E(H)|\geq 3k+k-1+1>4k-2$, also a contradiction. \square

If G is a connected 1-regular graph, then $G\cong K_2$ and $T(G)\cong K_3$. If G is a connected 2-regular graph, then T(G) is not super- λ' since $E_{T(G)}(\{u,v,e\})$ is a restricted edge-cut with cardinality 6 for every edge $e=uv\in E(G)$. If G is a $k(\geq 3)$ -regular with $\kappa(G)=1$, then k is even. The following examples show that the condition $\kappa(G)\geq 3$ is necessary in the Theorem 3.2.

Example 3.3. Let k be an even integer with $k=2t\geq 4$. Furthermore, let G_1,G_2,\cdots,G_t be t connected k-regular graphs, and $e_1=u_1v_1\in E(G_1),e_2=u_2v_2\in E(G_2),\cdots,e_t=u_tv_t\in E(G_t)$. We define the graph G as the union of $G_1-e_1,G_2-e_2,\cdots,G_t-e_t$ together with the k edges $wu_1,wv_1,wu_2,wv_2,\cdots,wu_t,wv_t$, where w is an other vertex not in $V(G_1)\cup V(G_2)\cup\cdots\cup V(G_t)$. Then G is a k-regular graph with $\kappa(G)=1$. But T(G) is not super- λ' since $E_{T(G)}(V_1\cup E(G_1)\setminus \{e_1\})$ is a restricted edge-cut with cardinality 2k+2.

Example 3.4. Let G_1 and G_2 be two $k(\geq 3)$ -regular graphs with $\kappa(G_1) \geq 2$ and $\kappa(G_2) \geq 2$, $e_1 = u_1v_1 \in E(G_1)$ and $e_2 = u_2v_2 \in E(G_2)$. We define the graph G as the union of $G_1 - e_1$ and $G_2 - e_2$ together with the two edges u_1u_2 and v_1v_2 . Then G is a k-regular graph with $\kappa(G) = 2$. But T(G) is not super- λ' since $E_{T(G)}(V(G_1) \cup E(G_1) \setminus \{e_1\})$ is a restricted edge-cut with cardinality 2k + 2.

References

- [1] D. Bauer, F. Boesch, C. Suffel, R. Tindell, Connectivity extremal problems and the design of reliable probabilistic networks, in: The Theory and Application of Graphs, Wiley, New York, 1981, pp. 45-54.
- [2] D. Bauer, R. Tindell, The connectivities of line and total graphs, J. Graph Theory, 6 (1982), 197-203.
- [3] F. T. Boesch, Synthesis of relaible networks: A survey, IEEE Trans. Reliability, 35 (1986), 204-246.
- [4] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, Macimlan, London, 1976.
- [5] G. Chartrand, M. J. Stewart, The connectivty of line graphs, Math. Ann. 182 (1969), 170-174.
- [6] J. Y. Chen, J. X. Meng, Super edge-connectivity of total graphs, Graph Theory Notes of New York, XLIX (2005), 14-16.
- [7] A. H. Esfahanian, Generalized measures of fault tolerance with application to n-cube Networks, IEEE Trans. Comput. 38 (11) (1989), 1586-1591.
- [8] A. H. Esfahanian, S. L. Hakimi, On computing a conditional edgeconnectivity of a graph, Infor. Process. Lett. 27 (1988), 195-199.
- [9] F. Harary, Conditional connectivity, Networks, 13 (1983), 347-357.
- [10] A. Hellwig, D. Rautenbach, L. Volkmann, Note on the connectivity of line grahs, Inform. Process. Lett. 91 (1) (2004), 7-10.
- [11] D. König, Graphen und Matrizen, Math. Lapok, 38 (1931), 116-119.
- [12] Q. L. Li, Q. Li, Reliability analysis of circulants, Networks, 31 (1998), 61-65.

- [13] M. Wang, Q. Li, Conditional edge connectivity properties, reliability comparison and transitivity of graphs, Discrete Math. 258 (2002), 205-214.
- [14] J. M. Xu, M. Lü, M. Ma, A. Hellwig, Super connectivity of line graphs, Infor. Process. Lett. 94 (2005), 191-195.