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Abstract: In this paper, we investigate the zero divisor graph
G(P) of a poset P with respect to a semi-ideal . We show that
the girth of G;(P) is 3, 4 or oo. In addition, it is shown that
the diameter of such a graph is either 1, 2 or 3. Moreover, we
investigate the properties of a cut vertex in G;(P) and study the
relation between semi-ideal I and the graph G;(P) (Theorem
3.9).
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1 Introduction

Algebraic combinatorics is an area of mathematics that employs methods
of abstract algebra in various combinatorial contexts and vice versa. In
this area, many works on associating a graph to an algebraic structure
have been published. In 1988, Beck [5] introduced the concept of zero
divisor graph to study the interplay between ring theory and graph theory.
He defined I'o(R) to be the graph as follows: The vertices of I'g(R) are
the elements of R and two distinct vertices z,y are adjacent if and only if
zy = 0. Since then, the concept of the zero divisor graph is studied in many
algebraic structures such as rings, semigroups, semirings (see [2], [3],[4], [5],
6], (7], (8], (9], [14], [13] etc.). In [10], Halas and Jukl introduced the zero
divisor graph of a poset. The study of the zero-divisor graphs of posets
was then continued by many authors, see [1], [14] and [15]. Recently, Joshi
[12] introduced the zero divisor graph of a poset with respect to an ideal.
It is shown that the graph is connected with its diameter < 3. Also, the
complete bipartite zero divisor graphs are characterized in [12].
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Motivated by the paper [12], we give the definition of the zero divisor
graph with respect to a semi-ideal of a poset and study the properties of
these graphs. The definition may be viewed as a generalization of the defi-
nition in [12]. Also, Theorem 2.4 and Theorem 3.3 in this paper generalize
Theorem 2.4 in [12]. The paper is constructed as follows. We investigate
the girth of G;(P) and characterize the bipartite graph of these graphs in
Section 2. In Section 3, we study the diameter and a cut vertex of the
graph Gr(P) and prove that if I and J are two semi-ideals of a poset P,
then G;(P) = G4(P) and p(I) = p(J) if and only if I = J.

Given a partially ordered set (P, <) (a poset, in brief) and X C P, the
set L(X) = {y € Ply < z for all z € X} is called the lower cone of X.
Dually, the set U(X) = {y € Ply > z for all z € X} is called the upper
cone of X.

We shall write L(z,,---,z,) or U(zy,: -, z,) instead of L(X) or U(X)
whenever X = {z1,---,Za}.

Given a poset (P, <) and a nonempty subset I of P, [ is called a semi-
ideal of P if

forallz,ye Pzxel,y<z=ye€l.

A proper semi-ideal I of P is called prime if
for all z,y € P,L(z,y) CI=>z€loryel.

A proper semi-ideal I of P is called n-prime(n > 2) if for all
Ty,%Tg, +,Zn € P,L(z1,29, -+ ,2,) C I yields z; € I for some 1 <i < n.
A proper semi-ideal @ of a poset P is called a prime semi-ideal belonging
to a semi-ideal I, if Q is a prime semi-ideal and T C Q.
A nonempty subset I of P is called an ideal of P if

forall z,y € P = LU(z,y) C I

Obviously, every ideal is a semi-ideal.

All posets in the paper have the smallest element 0.

Now, we give the definition of zero divisor graph of a poset with respect
to a semi-ideal, which generalize the definition in {12].

Definition 1.1[12] Let I be a semi-ideal of a poset P. We define a
graph G (P) with vertices V(Gr(P)) = {z € P\I|L(z,y) C I, for somey €
P\I}, where distinct vertices x and y are adjacent if and only if L(z,y) C I.
We call G1(P) the zero divisor graph of P with respect to I.

By Definition 1.1, G{o)(P) is the zero divisor graph of P defined in [1].

For a graph G, the girth of G is the length of a shortest cycle in G and
is denoted by girth(G). If G has no cycles, we define girth(G) = oo. A
bipartite graph is one whose vertices can be partitioned into two disjoint
subsets such that the two end vertices of each edge lie in distinct subsets.
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A complete bipartite graph is a bipartite graph such that every vertex is
adjacent to every vertex that is not in the same subset. Let K, be the
complete bipartite graph with exactly two subsets of size m and n. The
graph K is usually called star graph. It is well known that a graph is
bipartite if and only if it contains no cycle of odd length.

Throughout the paper, all graphs are simple graphs and not null graphs.

2 Basic properties of the graph G;(P)

In this section, we get a result characterizing the girth of G;(P). Also, we
study the bipartite graph of Gy(P). Firstly, we give the following lemma
which is useful to prove Theorem 2.4.

Lemma 2.1 Let I be a semi-ideal of a poset P. If Ps is a subgraph of
G1(P), then it contains a cycle of length < 4, i.e. girth(G;(P)) < 4.

Proof Denote by a; — az — a3 — a4 — as the path P in G;(P).

Case I: If a) — a4 is an edge in G(P), then we have a cycle a; — ag —
ag — a4 — a3, whose length is 4.

Case II: If there is no edge joining a; and a4, then L(ai,a4) is not
contained in I. Hence, there exists 0 # = € L(a;,a4) and = ¢ I. We
claim that = # ag,as3,as. If z = a3, then we have ay € L(a;,a2). This is
a contradiction to L(aj,as) C I, since a; — ay is an edge in G;(P) and
ay ¢ I. Similarly, we can prove that z # a3, as.

1) Suppose z # a),a4. Since L(z,a2) C L(ay,a2) C I and L(z,a3) C
L(a4,a3) C I, we get that  — a; and = — a3 are edges in G;(P). Thus, we
obtain a cycle as — a3 — = — ay, whose length is 3.

2) Suppose = = a;. Since L(ay,a3) C L(aq,a3) C I, we get that a; — a3
is an edge in Gy(P). So, we obtain a cycle a; — az — a3 — a;, whose length
is 3.

3) Suppose z = a4. The discussion is similar to part 2), and we can
obtain a cycle as — az — a4 — az, whose length is 3.

In any case, if there is a subgraph Ps in G;(P), we can obtain a cycle
of length < 4. O

By Lemma 2.1, we can get the following,

Corollary 2.2 The cycle onn (n 2 5) vertices cannot be realized as a
zero divisor graph of a poset.

The symbol || used to denote non-comparability. Denote by GA; =
{a € P\I|if y < a,then y € I}. If a € GAy, denote by U(a) = {y € Ply >
a and y||b for all b € GAr\{a}}.

Lemma 2.3 Let P be a poset and I is a semi-ideal of P. We have the
followings.
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1) if |GAy| £ 1, then G((P) is the null graph;
2) if |GA;| = 2, then G;(P) is a complete bipartite graph;
3) if |GA;| = 3, then G(P) contains a cycle.

Proof 1) is obviously.

2) Assume |GA;| =2 and GA; = {e1,a2}. If 2 > a; and = > a3, then
z is not a vertex of G1(P). If u,v € U(a;), where i = 1,2, then there is no
edge between u and v. For all z € U(a;) and y € U(az), by Definition 1.1,
z — y is an edge in G7(P). Therefore, G;(P) is a complete bipartite graph

3) If |GA;| > 3 and a;,az,a3 € GAj, then a; — a2 — a3 — a, is a cycle
in Gy(P). This proves the result. O

Theorem 2.4 Let P be a poset and I is a semi-ideal of P. We have the
followings.

1) If G{(P) contains a cycle, then girth(G1(P)) < 4.
2) G1(P) contains no cycle, i.e. girth(G;(P)) = oo if and only if G;(P) is
a star graph.

Proof 1) If G;(P) contains a cycle of length < 4, we have nothing to
prove. If G;(P) contains a cycle of length > 5, then it also contains Ps. By
Lemma 2.1, we get that girth(G;(P)) < 4.

2) =: By Lemma 2.3, we have that Gy(P) is a complete bipartite graph.
Suppose that G;(P) has two parts U(a;) and U(ay). Since G;(P) contains
no cycle, then we have [U(a;)| = 1 or [U(az)| = 1. Hence, G(P) is a star
graph.

<«: Obviously. O

Theorem 2.5 girth(G;(P)) = 4 if and only if Gi(P) is a complete
bipartite graph but not a star graph.

Proof =: If girth(G;(P)) = 4, then G;(P) contains no triangle and
|GA;| = 2. Similarly to part 2) of the preceeding theorem, we get that
G;(P) must be a complete bipartite graph. Since it also contains a cycle,
it is not a star graph.

<«: Obviously. O

Let I = {0} and using Theorem 2.4 and 3.4, we can rediscover Theorem

4.2 of paper (1.
Theorem 2.6 [1] Let P be a poset. We have the following statements.
(1) girth(G(P)) = 3,4, 0r o0;
(2) girth(G(P)) = 3 & G(P) has a cycle of odd length;
(3) girth(G(P)) = 4 & G(P) is a bipartite but not a star graph;
(4) girth(G(P)) = oo & G(P) is a star graph.
Now, we give the following theorem characterizing the bipartite graph.
Theorem 2.7 Let I be a semi-ideal of a poset P. Then the graph G(P)
is bipartite if and only if it contains no triangles.
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Proof =: Since any bipartite graph contains no cycle of odd length, we
can obviously get the desired result.

<: Suppose that Gy(P) is not bipartite. Then Gf(P) contains a cycle
of odd length. Let ap—aj1 —- - - —aap —ap be a cycle in Gy(P), where n > 1.

1) If n =1, then G[(P) contains a triangle, which is a contradiction.

2) If n > 2, we will prove that G(P) also contains a triangle.

Case I: If there exists an edge joining a; and a;, which is not in the cycle.
Without loss of generality, assume ag is adjacent to ax, where k # 1,2n.

Then we can get two cyclesap —a; —-+-—ax —ap and ax —ag4y — -+ —
agzn — ap — ax. Obviously, one of the two cycles is of length 2n; 4 1, where
np <n.

Case II: If any edge joining a; and a; is in the cycle, then there is
no edge joining ap and a; and so L(ao,a2) is not contained in I. Hence,
there exists an element 0 # = € L(ap,a2) and = ¢ I. Since z < a3, we
have L(z,a3) C L(az,a3) C I, i.e. there exists an edge joining z and as.
Similarly, we can prove that = — as, and z — a; are edges in Gy(P). This
conclude that = ¢ {ag,a1,---,a2,}. So, we get a cycle ag, —z—a3—- - - —aan,
whose length is 2(n — 1) + 1.

By induction on n, we get that G;(P) contains a triangle, a contradic-
tion. O

In the following, we shall characterize, when G;(P) is bipartite. The
following proposition is useful to prove Theorem 2.9.

Proposition 2.8 Let G be a complete r-partite graph, then G can be
realized as a zero divisor graph of a poset.

Proof Let G =J]_, A be a complete r-partite graph with parties A;.
Well order the elements in A;, forall1 <i<r Forallie I and = € A;,
let 0 <z <1.Ifz € A,y € Aj, where i # j, then z||y. Let P be a poset
consisting of the vertices in A; with 0 and 1. Then G can be realized as
the graph G0y (P). O

Theorem 2.9 1) If G;(P) is a bipartite graph, then G[(P) is a complete
bipartite graph or a star graph.

2) Complete bipartite graph and star graph can be realized as a zero divisor
graph of a poset.

Proof 1) If G;(P) is a bipartite graph, then G;(P) contains no triangles
by Theorem 2.7. Hence, the girth of G;(P) is 4 or oo and G;(P) must be
a complete bipartite graph or a star graph by Theorem 2.6.

2) By Proposition 2.8, complete bipartite graph can be realized as a zero
divisor graph of a poset. Suppose G is a star graph and a is the center. Let
P =V(G)J{0,1}. Well order the vertices in V(G)\{a}. If z € V(G)\{a},
let z||la. For all z € V(G), let 1 > = > 0. Then G can be realized as the
graph G(o(P). O
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3 Diameter, cut vertex and semi-ideal

Let I be a semi-ideal of a poset P. It is easy to see that (P\I)|J{0} is also
a poset, denoted by Pr. We have G1(P) = G0 (Pr) ([12]).

Let I be a semi-ideal of a poset P. For § # A C P, the relative annihila-
tor of I with respect to A is the set (I : A) = {p € P|L(a,p) C I,Va € A}.
It is easy to see that (I : A) is a semi-ideal. If A = {a}, we usually write
({:a).

For = € P, the annihilator of z, denoted by Ann(z), is defined to be
{y € P|L(z,y) = {0}}.

Lemma 3.1 If J = (0 : z) is an annihilator semi-ideal in Py, then
IuJ =(I:z) is also an annihilator semi-ideal in P, i.e. the annihilator
semi-ideals in P; correspond to the relative annihilator semi-ideals of I in

P.

Proof We obviously have JUJ C (I : z). Let y € (I : ) in P and
y¢ 1. Sincezy € I, weget zy =01in P, ie. y € (0:z) =J in P;. So, we
obtain that JUJ = (I:z). O

Let Z(P) be the set of zero-divisors of P. While, let Min(P) be the set
of minimal elements of P. We obviously have the following lemma.

Lemma 3.2 Let I be a semi-ideal of a poset P. Then the following
assertions hold:
1) a € GA; if and only if a € Min(Py).
2) a € Z(Pr)\{0} if and only if there exists b € P\I such that L(a,b) C I.
Theorem 3.3 in [1] states that for a poset P, the following assertions
hold:
(1) T(P) is a connected graph and diam(I'(P)) < 3;
(2) diam(T'(P)) =1 & Min(P\{0}) = Z(P)\{0}.
(8) diam(I'(P)) =2 & Z(P)\Min(P) # § and for all z,y € Z(P)\Min(P)
such that L(z,y) # {0}, we have Ann(z) N Ann(y) # {0};
(4) diam(T'(P)) = 3 & Z(P)\Min(P) # 0 and for some z,y € Z(P)\ Min(P)
such that L(z,y) # {0}, we have Ann(z) N Ann(y) = {0}.
By Lemma 3.1, 3.2 and Theorem 3.3 in [1], we get the following theorem.
Theorem 3.3 Let I be a semi-ideal of a poset P. Then the following
assertions hold:
(1) G1(P) is a connected graph with diam(G[(P)) < 3.
(2) diam(G1(P)) =1 if and only if V((G1(P)) = GA;.
(3) diam(G(P)) =2 if and only if V((Gr(P))\GA; # 0 and (I: z)N (I :
y) # I for every z,y € V((G1(P))\GA; such that L(z,y) is not contained
inI.
(4) diam(G[(P)) = 3 if and only if V((Gr(P))\GA;y =0 and (I : z)N (I :
y) = I for some z,y € V((G1(P))\GA; such that L(z,y) is not contained
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in 1.
A vertex a of a graph G is called a cut vertez if there exist vertices b
and c distinct from a such that a is in every path from b to c.

Proposition 3.4 Let I be a semi-ideal of a poset P. If a is a cut vertex
in G(P), then I U {a} is also an semi-ideal, i.e. a € GA;.

Proof For any y < a, we have to show that y € I. On the contrary,
suppose y € I. Since a is a cut vertex, there exist vertices b and ¢ distinct
from a such that a is in every path from b to ¢. By Theorem 3.3, the shortest
path from b to ¢ is of length 2 or 3.

I: Suppose the shortest path from b to ¢ is of length 2 and b—a ~cis
a path from b to c. As y < a, we have L(b,y) C L(b,a) C I and L{c,y) C
L(c,a) € I. Consequently, we have a path b—y—c, which is a contradiction.

II: Suppose the shortest path from b to ¢ is of length 3. Without loss
of generality, let b ~ d — a — ¢ is a path from b to ¢. Similar to part 1), we
have a path b —d — y — ¢, a contradiction. O

By Proposition 3.4, we know that a cut vertex of G;(P) must be con-
tained in GA;. Denote by U(GA;\{e}) = {y € P|for all z € GA;\{a}, y >
z and y||a}. The following theorem gives a characterization of a cut vertex
of G;(P).

Theorem 3.5 Let I be a semi-ideal of a poset P. Then a € GA; is a
cut vertez in G(P) if and only if U(GA[\{a}) # 0.

Proof =: Without loss of generality, Suppose that z —a —y is a path of
shortest length from z to y. Then z||a and y||a. If U(GA\{a}) = 0, then
there exist b,c € GAj such that z||b and y||c. If b # ¢, we obtain a path
z—b—c—y. If b=c, we obtain a path z — b — y. In both cases, we get a
contradiction.

«: If = € U(GAs\{a}), then a is the only vertex connected with z.
Therefore, a is a cut vertex. O

Let = be a vertex of a graph G. Denote by N(z) the set of vertices which
are adjacent to x. The degree of z is equal to |[N(z)|.

Theorem 3.6 Let I be a semi-ideal of a poset P and J. be the set of
vertices in G1(P) whose degree are more than or equal to k together with
0. Then {Jx} is a descending chain semi-ideals in G(P).

Proof Let z € J; and y < z. Assume a — z is an edge in G;(P). Since
L(a,y) € L(a,z) C I, we obtain that a — y is also an edge in G(P).
Consequently, we get N(z) C N(y). Therefore, the degree of y is greater
than or equal to k¥ and so y € Ji. This conclude that J;, is an semi-ideal of
P and we easily get the result. O

Let I be a proper semi-ideal of P. Denote by

g(I)={ae Plforallr € P,L(r,a) CI=rel}.
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Let p(I) = P\g(I). Then we have

p(I) = {a € P|there exists an element r € P\I such that L(r,a) C I}.

Proposition 3.7 Let I be a proper semi-ideal of a poset P, where P
has the largest element 1. Then
1) p(I) is a semi-ideal of P and I C p(I).
2) If |P| < o0 and I is prime, then p(I) is prime.

Proof 1) Let a € p(I) and y < a. Assume that r ¢ I such that L(r,a) C
I. Then we have L(r,y) C L(r,a) C I and so y € p(I).

Let 7 € I. Since L(1,7) C J and 1 ¢ I, then i € p(/) and we have
1< p(d).

2) Assume that L(z,y) € p(I). Since |P| < oo, L(z,y) has finite el-
ements. Suppose L(z,y) = {z1,22,--+,2n}. For all z; € L(z,y), where
i=1,2,--+,n, we have r; ¢ I such that L(r;,z;) C I, wherei =1,2,.--,7n.
We claim that L(ry,7g,---,7,) is not contained in I. In fact, since 7 is
prime, I is also n-prime by Lemma 2.5 in [10]. If L(ry,72,-+-,75) C I, we
have some 7; € I for some i € {1,-+,n}, which is a contradiction. Take
r € L(ry,79,+,7n) and 7 ¢ I. We have L(r,z;) C L(r;,2z;) C I, foralli €
{1,---,n}. Therefore, we have L(z, L(r,y)) = L(r,z,y) = L(r, L(z,y)) C I.
Without loss of generality, suppose = ¢ p(I). We get L(r,y) C I by the
definition of p(I). Since r ¢ I, we must have y € p(I). So we get that p(I)
is prime. O

Lemma 3.8 Let I be a proper semi-ideal of a poset P, where P has the
largest element 1. Then V(G(P)) = p(I)\I.

Proof Let a € G;(P). Then a ¢ I and L(a,b) C I for some b ¢ I.
So a € p(I) and V(G;(P)) € p(I)\I. For the reverse inclusion, suppose
a € p(I)\I. Then there exists an element b € P\I such that L(a,b) C I.
Consequently, a € V(G((P)) and V(G1(P)) =p(I)\I. D

In the following, we give an example of poset P and semi-ideals I and
J, such that G;(P) = G(P) but I # J and an example of poset P and
semi-ideals I and J, such that p(I) = p(J) but I # J.

b4

Fig.1 Fig.2 Fig.3 Fig.4
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In Fig.1, let I = {0,a} and J = {0,b} be two semi-ideals of P. Then
p(I) = {0,a,b,¢,d} and p(J) = {0,a,b,c,e}. Hence p(I)\I = {b,c,d} and
p(J)\J = {a,c,e}. We easily get that G;(P) and G;(P) are Fig.3 and
Fig.4, respectively. Hence, G;(P) = G(P).

In Fig.2, let I = {0,a} and J = {0,b} be two semi-ideals of P. Then
p(I) = {0,a,b,¢c} = p(J).

Using Lemma 3.8 and part 1) of Proposition 3.7 we can easily get the
following.

Theorem 3.9 Let I and J be two semi-ideals of a poset P, where P
has the largest element 1. Then G(P) = G j(P) and p(I) = p(J) if and
onlyif I =J.
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