Distance Two Labeling of Halin Graphs

Yiqiao Wang*

School of Management, Beijing University of Chinese Medicine, Beijing 100029, China

Abstract

Let T be a tree with no vertices of degree 2 and at least one vertex of degree 3 or more. A Halin graph G is a plane graph obtained by connecting the leaves of T in the cyclic order determined by the planar drawing of T. Let Δ , $\lambda(G)$, and $\chi(G^2)$ denote, respectively, the maximum degree, the L(2,1)-labeling number, and the chromatic number of the square of G. In this paper we prove the following results for any Halin graph G: (1) $\chi(G^2) \leq \Delta + 3$, and moreover $\chi(G^2) = \Delta + 1$ if $\Delta \geq 6$; (2) $\lambda(G) \leq \Delta + 7$, and moreover $\lambda(G) \leq \Delta + 2$ if $\Delta \geq 9$.

Keywords: L(2,1)-labeling; Chromatic number; Halin graph

1 Introduction

All graphs considered in this paper are finite and simple graphs. For a graph G, we denote its vertex set, edge set, and order by V(G), E(G), and |G|, respectively. For a vertex $v \in V(G)$, let $N_G(v)$ denote the set of neighbors of v and let $d_G(v) = |N_G(v)|$ denote the degree of v in G. A vertex of degree k is called a k-vertex. We denote the

^{*}Supported partially by The Basic Scientific Research Foundation of BUCM; Email: wyq0327@gmail.com

maximum degree of G by $\Delta(G)$ or simply Δ . The distance between two vertices u and v is the length of a shortest path connecting them in G. The square G^2 of a graph G is the graph defined on the vertex set V(G) such that two distinct vertices are adjacent in G^2 if and only if their distance is at most 2 in G.

A k-coloring of a graph G is a mapping σ from V(G) to the set of colors $\{1, 2, ..., k\}$ such that $\sigma(x) \neq \sigma(y)$ for every edge xy of G. The chromatic number $\chi(G)$ of G is the smallest k such that G has a k-coloring.

Wegner [25] first investigated the chromatic number of the square of a planar graph. He proved that $\chi(G^2) \leq 8$ for every planar graph G with $\Delta = 3$ and conjectured that the upper bound could be reduced to 7. In [25], he also proposed the following conjecture.

Conjecture 1 For a planar graph G,

$$\chi(G^2) \le \begin{cases}
\Delta + 5, & \text{if } 4 \le \Delta \le 7; \\
\lfloor 3\Delta/2 \rfloor + 1, & \text{if } \Delta \ge 8.
\end{cases}$$

This conjecture remains open. van den Heuvel and McGuinness [14] proved that $\chi(G^2) \leq 2\Delta + 25$ for any planar graph G. The best known result so far is $\chi(G^2) \leq \lceil 5\Delta/3 \rceil + 78 \rceil$ [19]. Lih, Wang and Zhu [18] established the conjecture for a K_4 -minor free graph. It is shown [22, 23] that every outerplanar graph G with $\Delta \geq 3$ has $\chi(G^2) \leq \Delta + 2$, and $\chi(G^2) = \Delta + 1$ if $\Delta \geq 6$.

For positive integers p and q, an L(p,q)-labeling of a graph G is a function σ from V(G) to the set $\{0,1,\cdots,k\}$ for some positive integer k such that $|\sigma(x)-\sigma(y)|\geq p$ if x and y are adjacent; and $|\sigma(x)-\sigma(y)|\geq q$ if x and y are at distance 2. The L(p,q)-labeling number $\lambda_{p,q}(G)$ of G is the smallest k such that G has an L(p,q)-labeling with $\max\{\sigma(v)\mid v\in V(G)\}=k$. In particular, we simply write $\lambda(G)=\lambda_{2,1}(G)$. Note that an L(1,1)-labeling of G is a proper coloring of the square G^2 , and $\lambda_{1,1}(G)=\chi(G^2)-1$.

The L(2,1)-labeling of a graph arose from a variation of the frequency channel assignment problem introduced by Hale [11]. It holds trivially that $\lambda(G) \geq \Delta + 1$ for any graph G. Griggs and Yeh [10] proposed the following conjecture.

Conjecture 2 For any graph G with $\Delta \geq 2$, $\lambda(G) \leq \Delta^2$.

In 1996, Chang and Kuo [6] proved that $\lambda(G) \leq \Delta^2 + \Delta$ for any graph G. This bound was improved to $\lambda(G) \leq \Delta^2 + \Delta - 1$ by Král and Škrekovski [16], and further to $\lambda(G) \leq \Delta^2 + \Delta - 2$ by Gonçalves [9]. Using powerful probabilistic method, Havet, Reed and Sereni [13] showed that for any fixed integer p, there is a Δ_p such that every graph G with $\Delta \geq \Delta_p$ has $\lambda_{p,1}(G) \leq \Delta^2$. Thus, Conjecture 2 holds for graphs with sufficiently large maximum degree Δ .

Let G be a planar graph. van den Heuvel and McGuinness [14] proved that $\lambda(G) \leq 2\Delta + 35$. Molloy and Salavatipour [19] reduced to that $\lambda(G) \leq \lceil 5\Delta/3 \rceil + 95$. The result of [14] asserts that Conjecture 2 holds for planar graphs with $\Delta \geq 7$. Further, Bella et al. [1] settled the case $4 \leq \Delta \leq 6$. Wang and Lih [24] proved that if G contains neither 3-cycles nor 4-cycles, then $\chi(G^2) \leq \Delta + 16$ and $\lambda(G) \leq \Delta + 21$. Zhu et al. [27] improved this result by showing that if G contains no 4-cycles or no 5-cycles, then $\chi(G^2) \leq \Delta + 7$ and $\lambda(G) \leq \Delta + 12$. Other related results about this subject can be found in [6, 8, 10, 14, 16, 20]. In particular, [4] and [26] are two nice surveys.

Let T be a tree with no vertex of degree 2 and at least one vertex of degree 3 or more. A vertex of degree 1 of T is called a *leaf*. A *Halin graph* is a plane graph $G = T \cup C$, where C is a cycle connecting the leaves of T in the cyclic order determined by the planar drawing of T. Vertices of C are called *outer vertices* of C and vertices in $C(G) \setminus C(C)$ are called *inner vertices* of C. A Halin graph C is called a *wheel* if C contains only one inner vertex. An inner vertex is called *special* if only one of its neighbors is an inner vertex.

It is easy to see that Halin graphs are 3-connected and planar. Some properties and parameters on Halin graphs have been investigated in [3, 5, 7, 12, 17, 21].

The purpose of this paper is to study the chromatic number of the square and the L(2,1)-labeling number of Halin graphs. Let G be a Halin graph. Our main results are:

(1)
$$\chi(G^2) \leq \Delta + 3$$
, and moreover $\chi(G^2) = \Delta + 1$ if $\Delta \geq 6$;

(2)
$$\lambda(G) \leq \Delta + 7$$
, and moreover $\lambda(G) \leq \Delta + 2$ if $\Delta \geq 9$.

In Section 2, we give structural lemmas and some auxiliary colorings. In Section 3, we establish the proof of (1). The proof of (2) is postponed to Section 4.

2 Preliminaries

The following structural property for Halin graphs appeared in [7].

Lemma 3 (Chen and Wang [7]) Let $G = T \cup C$ be a Halin graph that is not a wheel. Then C contains a path $P_k = x_1x_2 \cdots x_k$ such that one of the following holds (see Fig.1):

(A1) k = 3 and there exist a special inner 3-vertex u and a vertex v such that $N_G(u) = \{x_1, x_2, v\}$ and $x_3v \in E(G)$.

(A2) k = 4 and there exist two special inner 3-vertices u_1, u_2 and a vertex v such that $N_G(u_1) = \{x_1, x_2, v\}$ and $N_G(u_2) = \{x_3, x_4, v\}$.

(A3) $k \geq 3$ and there exist a special inner (k+1)-vertex u and a vertex v such that $N_G(u) = \{x_1, x_2, \dots, x_k, v\}$.

Fig. 1: Three configurations in Lemma 3.

As a special case of Lemma 3, we have obviously the following.

Corollary 4 Every Halin graph G with $|G| \ge 6$ and $\Delta = 3$ satisfies either (A1) or (A2).

An $L^*(2,1)$ -labeling of a graph G is defined to be a one-to-one L(2,1)-labeling. A function L is called an assignment for the graph G if it assigns a list L(v) of possible labels to each vertex v of G. If G has an L(2,1)-labeling (or $L^*(2,1)$ -labeling, respectively) f such that $f(v) \in L(v)$ for all vertices v, then we say that f is an L-L(2,1)-labeling (or L- $L^*(2,1)$ -labeling, respectively) of G. Given a positive

integer k, we denote the set $\{k-1,k,k+1\}$ by \overline{k} . Moreover, we use $v\Rightarrow\alpha$ to express that a vertex v is labeled with the label α in the given labeling.

Lemma 5 Let $P = x_1x_2x_3$ be a path. Let L be a list assignment for P such that $|L(x_1)| \ge 2$, $|L(x_3)| \ge 3$, and $|L(x_2)| \ge 5$. Then P has an $L-L^*(2,1)$ -labeling.

Proof. Without loss of generality, we may assume that $|L(x_1)|=2$, $|L(x_3)|=3$, and $|L(x_2)|=5$. Suppose that $L(x_2)=\{a,b,c,d,e\}$ such that a < b < c < d < e. If there exists $k \in L(x_1) \setminus L(x_2)$, we first label x_1 with k. Then let $L'(x_2)=L(x_2)\setminus\{k-1,k+1\}$ and $L'(x_3)=L(x_3)\setminus\{k\}$. Thus $|L'(x_2)|\geq 3$ and $|L'(x_3)|\geq 2$. It is easy to see that there exist $i\in L'(x_2)$ and $j\in L'(x_3)$ such that $|i-j|\geq 2$. It suffices to label x_2 with i and x_3 with j. So suppose $L(x_1)\subseteq L(x_2)$. If there exists $p\in L(x_3)\setminus L(x_2)$, implying $p\notin L(x_1)$, we label x_3 with p. Afterwards we define $L'(x_1)=L(x_1)$ and $L'(x_2)=L(x_3)\setminus\{p-1,p+1\}$. Since $|L'(x_1)|=2$ and $|L'(x_2)|\geq 3$, we can properly label x_1 and x_2 . Thus suppose $L(x_3)\subseteq L(x_2)$. If $a\in L(x_1)$ or $e\in L(x_1)$, we first label x_1 with a or e. Then we define similarly $L'(x_2)$ and $L'(x_3)$ to make that $|L'(x_2)|\geq 3$ and $|L'(x_3)|\geq 2$. Hence assume $L(x_1)\subseteq\{b,c,d\}$. By symmetry, we only need to consider two cases as follows.

Assume $L(x_1) = \{b, c\}$. First let $x_1 \Rightarrow c$. Then let $x_2 \Rightarrow a$ and $x_3 \Rightarrow e$ or d if $L(x_3) \neq \{a, b, c\}$, and $x_3 \Rightarrow a$ and $x_2 \Rightarrow e$ otherwise.

Assume $L(x_1) = \{b, d\}$. If $e \in L(x_3)$, we let $x_3 \Rightarrow e$, $x_2 \Rightarrow a$, and $x_1 \Rightarrow d$. If $a \in L(x_3)$, we let $x_3 \Rightarrow a$, $x_2 \Rightarrow e$, and $x_1 \Rightarrow b$. If $L(x_3) = \{b, c, d\}$, we let $x_3 \Rightarrow c$, $x_2 \Rightarrow e$, and $x_1 \Rightarrow b$.

Lemma 6 Let $P = x_1x_2 \cdots x_k$ be a path with $k \geq 5$. Let L be a list assignment for P with $L(x_2) = L(x_3) = \cdots = L(x_{k-1}) = \{c_1, c_2, \cdots, c_m\}$ such that $m \geq k$ and $c_1 < c_2 < \cdots < c_m, |L(x_1)|, |L(x_k)| \geq 3$ with $L(x_1), L(x_k) \subseteq L(x_2)$. Then P has an L- $L^*(2, 1)$ -labeling.

Proof. Without loss of generality, we suppose that m = k and $|L(x_1)| = |L(x_k)| = 3$. First assume k = 5. Since $|L(x_1)| = 3$ and $L(x_1) \subseteq L(x_2)$, we can label x_1 with some label $s \in L(x_1) \setminus \{c_1, c_5\}$.

If $s=c_2$ (if $s=c_4$, we can give a similar argument), we label x_5 with some label $t\in L(x_5)\setminus\{c_1,c_2\}$. For $t=c_3,c_4$ and c_5 , we label the vertices (x_2,x_3,x_4) , respectively, by (c_4,c_1,c_5) , (c_5,c_3,c_1) and (c_4,c_1,c_3) . If $s=c_3$, we label x_5 with some label $t\in L(x_5)\setminus\{c_1,c_3\}$. For $t=c_2,c_4$ and c_5 , we label the vertices (x_2,x_3,x_4) , respectively, by (c_5,c_1,c_4) , (c_1,c_5,c_2) and (c_1,c_4,c_2) .

Next assume k=6. We label x_1 with some label $s\in L(x_1)\setminus\{c_1,c_6\}$. If $s=c_2$, we further label x_6 with $t\in L(x_6)\setminus\{c_1,c_2\}$. For $t=c_3,c_4,c_5$ and c_6 , we label the vertices (x_2,x_3,x_4,x_5) , respectively, by (c_6,c_4,c_1,c_5) , (c_5,c_1,c_3,c_6) , (c_4,c_6,c_1,c_3) and (c_5,c_3,c_1,c_4) . If $s=c_3$, we further label x_6 with $t\in L(x_6)\setminus\{c_1,c_3\}$. For $t=c_2,c_4,c_5$ and c_6 , we label the vertices (x_2,x_3,x_4,x_5) , respectively, by (c_5,c_1,c_6,c_4) , (c_5,c_1,c_6,c_2) , (c_6,c_2,c_4,c_1) and (c_1,c_5,c_2,c_4) . If $s=c_4$, or $s=c_5$, we can give a similar labeling.

Finally assume $k \geq 7$. Let $X' = \{c_i \in L(x_2) | i \equiv 0 \pmod 2\}, i = 1, 2, \cdots, k\}$ and $X'' = L(x_2) \setminus X'$. Thus $|X'| \geq 3$, $|X''| \geq 4$, and for any $c_i, c_j \in X'$, or $c_i, c_j \in X''$, we have $|c_i - c_j| \geq 2$. First assume $X' \cap L(x_1) \neq \emptyset$. (If $X' \cap L(x_k) \neq \emptyset$, we have a similar argument.) If $|X' \cap L(x_k)| \geq 2$, we label, successively, $x_1, x_k, x_2, x_3, \cdots, x_{\lfloor k/2 \rfloor - 1}$ with mutually different labels in X', and $x_{\lfloor k/2 \rfloor}, x_{k-1}, x_{k-2}, \cdots, x_{\lfloor k/2 \rfloor + 1}$ with mutually different labels in X''. If $|X' \cap L(x_k)| \leq 1$, it follows that $|X'' \cap L(x_k)| \geq 2$. We label, successively, $x_1, x_2, \cdots, x_{\lfloor k/2 \rfloor}$ with mutually different labels in X', and $x_k, x_{\lfloor k/2 \rfloor + 1}, x_{\lfloor k/2 \rfloor + 2}, \cdots, x_{k-1}$ with different labels in X''. Now assume $L(x_1) \cup L(x_k) \subseteq X''$. We label, successively, $x_2, x_3, \cdots, x_{\lfloor k/2 \rfloor + 1}$ with mutually different labels in X', and $x_1, x_{\lfloor k/2 \rfloor + 2}, x_k, x_{k-1}, \cdots, x_{\lfloor k/2 \rfloor + 3}$ with mutually different labels in X''.

The following result is an easy observation.

Lemma 7 For a wheel G,

- $(1) \chi(G^2) = \Delta + 1.$
- (2) $\lambda(G) = 6 \text{ if } 4 \le |G| \le 5, \text{ and } \lambda(G) = \Delta + 1 \text{ if } |G| \ge 6.$

3 Coloring the square

In what follows, a k-coloring of G^2 is called a square-k-coloring of G.

Theorem 8 If G is a Halin graph, then $\chi(G^2) \leq \max\{7, \Delta+1\}$.

Proof. Let $K = \max\{7, \Delta+1\}$. The proof is proceeded by induction on the vertex number |G|. If $|G| \leq 7$, then it holds obviously that $\chi(G^2) \leq 7 \leq K$, since we may assign different colors to the vertices of G. Let $G = T \cup C$ be a Halin graph with $|G| \geq 8$. If G is a wheel, then the result follows from Lemma 7. Assume that G is not a wheel. By Lemma 3, there exists a path $P_k = x_1x_2 \cdots x_k$ in G such that one of (A1) to (A3) holds. In the following argument, we always assume that $g \in N_G(x_1) \setminus \{x_2\}$, $g \in N_G(x_k) \setminus \{x_{k-1}\}$, $N_G(y) = \{x_1, y_1, y_2\}$, and $N_G(z) = \{x_k, z_1, z_2\}$. Let $S = \{1, 2, \dots, K\}$ denote a set of K colors. We handle separately each of these three cases.

(A1) Let $H = G - \{x_1, x_2\} + \{yu, x_3u\}$. By the induction hypothesis, H has a square-K-coloring f with the color set S. Obviously, $f(u), f(v), f(y), f(x_3)$ are mutually distinct. Thus, we may assume that f(u) = 1, f(v) = 2, f(y) = 3 and $f(x_3) = 4$. Since $|S| = K \geq 7$, we can let $x_1 \Rightarrow a \in \{5, 6, 7\} \setminus \{f(y_1), f(y_2)\}$ and $x_2 \Rightarrow b \in \{5, 6, 7\} \setminus \{a, f(z)\}$.

(A2) Let $H = G - \{x_1, x_2, x_3, x_4\} + \{yu_1, u_1u_2, u_2z\}$. By the induction hypothesis, H has a square-K-coloring f using the color set S. We define

$$L(x_1) = S \setminus \{f(v), f(u_1), f(y), f(y_1), f(y_2)\},$$

$$L(x_2) = S \setminus \{f(v), f(y), f(u_1), f(u_2)\},$$

$$L(x_3) = S \setminus \{f(v), f(z), f(u_1), f(u_2)\},$$

$$L(x_4) = S \setminus \{f(v), f(u_2), f(z), f(z_1), f(z_2)\}.$$

It is easy to inspect that $|L(x_1)| \ge |S| - 5 = K - 5 \ge 7 - 5 = 2$, and similarly $|L(x_4)| \ge 2$, $|L(x_2)| \ge 3$, and $|L(x_3)| \ge 3$. If $|L(x_1)| \ge 3$, we let $x_4 \Rightarrow a \in L(x_4)$, $x_3 \Rightarrow b \in L(x_3) \setminus \{a\}$, $x_2 \Rightarrow c \in L(x_2) \setminus \{a, b\}$, $x_1 \Rightarrow c \in L(x_1) \setminus \{b, c\}$. So suppose $|L(x_1)| = 2$. There is a color $a \in L(x_2) \setminus L(x_1)$. We assign a to x_2 , then color x_4 with $b \in L(x_4) \setminus \{a\}$, x_3 with $c \in L(x_3) \setminus \{a, b\}$, and x_1 with a color in $L(x_1) \setminus \{c\}$.

(A3) Let $H = G - \{x_2, x_3, \dots, x_{k-1}\} + \{x_1x_k\}$. By the induction hypothesis, H has a square-K-coloring f using S. Assume that f(u) = 1, f(v) = 2, $f(x_1) = 3$ and $f(x_k) = 4$.

If k = 3, we can color x_2 with a color in $\{5, 6, 7\} \setminus \{f(y), f(z)\}$.

If k = 4, there exist $a \in \{5, 6, 7\} \setminus \{f(y)\}$ and $b \in \{5, 6, 7\} \setminus \{f(z)\}$ such that $a \neq b$. We color x_2 with a and x_3 with b.

If k = 5, we first color x_2 with $a \in \{5, 6, 7\} \setminus \{f(y)\}$ and x_4 with $b \in \{5, 6, 7\} \setminus \{f(z)\}$ such that $a \neq b$. Afterwards we color x_3 with a

color in $\{5,6,7\}\setminus\{a,b\}$.

If $k \geq 6$, then $\Delta \geq d_G(u) = k + 1 \geq 7$, we define

$$L(x_2) = \{5, 6, \dots, K\} \setminus \{f(y)\},$$

$$L(x_i) = \{5, 6, \dots, K\}, i = 3, 4, \dots, k - 2,$$

$$L(x_{k-1}) = \{5, 6, \dots, K\} \setminus \{f(z)\}.$$

Since $K=\Delta+1\geq 8$ in this case, we get $|L(x_2)|, |L(x_{k-1})|\geq \Delta-4\geq 3$, and $|L(x_i)|=\Delta-3$ for $i=3,4,\cdots,k-2$. Note that $|\{x_2,x_3,\cdots,x_{k-1}\}|=k-2\leq \Delta-1-2=\Delta-3$. By Lemma 6, there exists $c_i\in L(x_i),\ i=2,3,\cdots,k-1$, such that all c_2,c_3,\cdots,c_{k-1} are mutually distinct. Color x_i with c_i for $2\leq i\leq k-1$ to establish a square-K-coloring of G.

Theorem 9 If G is a Halin graph with $\Delta = 3$, then $\chi(G^2) \leq 6$.

Proof. Since G is 3-regular, |G| is even. If $|G| \leq 6$, the conclusion holds trivially. Let $G = T \cup C$ be a Halin graph with $\Delta = 3$ and $|G| \geq 8$. By Corollary 4, G satisfies (A1) or (A2). Similarly to the proof of Theorem 8, we suppose that $y \in N_C(x_1) \setminus \{x_2\}$, $z \in N_C(x_k) \setminus \{x_{k-1}\}$, $N_G(y) = \{x_1, y_1, y_2\}$, and $N_G(z) = \{x_k, z_1, z_2\}$. Let $S = \{1, 2, \dots, 6\}$ denote a set of six colors used in the following.

(A1) Let w denote the neighbor of v different from u and x_3 . Let $H = G - \{x_1, x_2, x_3, u\} + \{vy, vz\}$. Then H is a 3-regular Halin graph with |H| < |G|. By the induction hypothesis, H has a square-6-coloring f using S such that f(v) = 1, f(w) = 2, f(y) = 3 and f(z) = 4. Let $Y = \{f(y_1), f(y_2)\}$ and $Z = \{f(z_1), f(z_2)\}$.

If $2 \notin Y$, let $x_1 \Rightarrow 2$, $x_3 \Rightarrow a \in \{3, 5, 6\} \setminus Z$, $x_2 \Rightarrow b \in \{5, 6\} \setminus \{a\}$, and $u \Rightarrow c \in \{4, 5, 6\} \setminus \{a, b\}$. If $4 \notin Y$, let $x_1 \Rightarrow 4$, $x_2 \Rightarrow 2$, $x_3 \Rightarrow a \in \{3, 5, 6\} \setminus Z$, and $u \Rightarrow b \in \{5, 6\} \setminus \{a\}$. If $Y = \{2, 4\}$, let $x_2 \Rightarrow 2$, $x_3 \Rightarrow a \in \{3, 5, 6\} \setminus Z$, $x_1 \Rightarrow b \in \{5, 6\} \setminus \{a\}$, and $u \Rightarrow c \in \{4, 5, 6\} \setminus \{a, b\}$.

(A2) Let w denote the neighbor of v in G different from u_1 and u_2 . Let $H = G - \{x_1, x_2, x_3, x_4, u_1, u_2\} + \{vy, vz\}$. By the induction hypothesis, H has a square-6-coloring f using S such that f(v) = 1, f(w) = 2, f(y) = 3 and f(z) = 4. Similarly, we set $Y = \{f(y_1), f(y_2)\}$ and $Z = \{f(z_1), f(z_2)\}$.

If $Y \neq \{5,6\}$, we let $x_1, u_2 \Rightarrow a \in \{5,6\} \setminus Y$, $x_2 \Rightarrow 4$, $u_1 \Rightarrow b \in \{5,6\} \setminus \{a\}$, $x_4 \Rightarrow c \in \{2,3,5,6\} \setminus (Z \cup \{a\})$, and $x_3 \Rightarrow d \in \{2,3\} \setminus \{c\}$.

If
$$Y = \{5, 6\}$$
, let $x_1 \Rightarrow 2$, $x_2 \Rightarrow 4$, $u_2 \Rightarrow 3$, $x_4 \Rightarrow a \in \{2, 5, 6\} \setminus Z$, $x_3 \Rightarrow b \in \{5, 6\} \setminus \{a\}$, and $u_1 \Rightarrow c \in \{5, 6\} \setminus \{b\}$.

The following consequences follow from Theorems 8 and 9:

Corollary 10 For a Halin graph G, we have $\chi(G^2) \leq \Delta + 3$.

Corollary 11 If G is a Halin graph with $\Delta \geq 6$, then $\chi(G^2) = \Delta + 1$.

4 L(2,1)-labeling

In this section, we study the L(2,1)-labeling of Halin graphs. We first give an interesting observation. Bondy showed in [2] that Halin graphs are Hamiltonian. Kang showed in [15] that every Hamiltonian graph G with $\Delta=3$ satisfies $\lambda(G)\leq 9$. Combining these two facts, we conclude immediately the following Theorem 12:

Theorem 12 If G is a Halin graph with $\Delta = 3$, then $\lambda(G) \leq 9$.

Theorem 13 If G is a Halin graph, then $\lambda(G) \leq \max\{11, \Delta + 2\}$.

Proof. Set $M = \max\{11, \Delta + 2\}$ and let $B = \{0, 1, \dots, M\}$ denote a set of M+1 labels. We make use of induction on |G|. The theorem holds trivially for $|G| \leq 5$. Suppose that $G = T \cup C$ is a Halin graph with $|G| \geq 6$. If G is a wheel, the result follows from Lemma 7. So assume that G is not a wheel. By Lemma 3, there exists a path $P_k = x_1x_2 \cdots x_k$ in C such that one of (A1) to (A3) holds. We reduce these three configurations separately in the following.

(A1) Let $H = G - \{x_1, x_2\} + \{yu, x_3u\}$. By the induction hypothesis, H has an L(2, 1)-labeling f with the label set B. Define the list of assignments

$$L(x_1) = B \setminus \{ \overline{f(u)}, \overline{f(y)}, f(v), f(y_1), f(y_2), f(x_3) \}, L(x_2) = B \setminus \{ \overline{f(u)}, \overline{f(x_3)}, f(v), f(y), f(z) \}.$$

Since $M \ge 11$, it follows that $|L(x_1)| \ge M + 1 - 3 - 3 - 4 \ge 2$ and $|L(x_2)| \ge M + 1 - 3 - 3 - 3 \ge 3$. Thus there exist $c_1 \in L(x_1)$ and $c_2 \in L(x_2)$ such that $|c_1 - c_2| \ge 2$. Label x_i with c_i for i = 1, 2.

(A2) Let $H = G - \{x_1, x_2\} + \{yu_1, x_3u_1\}$. By the induction hypothesis, let f be an L(2, 1)-labeling of H with the label set B. Delete the label of x_3 and then define the list of assignments

$$L(x_1) = B \setminus \{ \overline{f(u_1)}, \overline{f(y)}, f(v), f(y_1), f(y_2) \},$$

$$L(x_2) = B \setminus \{ \overline{f(u_1)}, \underline{f(v)}, f(y), f(u_2), f(x_4) \},$$

$$L(x_3) = B \setminus \{ \overline{f(u_2)}, \overline{f(x_4)}, f(v), f(z), f(u_1) \}.$$

It is easy to see that $|L(x_1)| \ge 3$, $|L(x_2)| \ge 5$, and $|L(x_3)| \ge 3$. By Lemma 5, x_1, x_2, x_3 can be labeled.

(A3) Let $H = G - \{x_2\} + \{x_1x_3\}$, and let f be an L(2,1)-labeling of H with the label set B. If $k \leq 4$, we delete the labels of x_1 and x_3 , and let $P = x_1x_2x_3$. If k = 3, we define

$$\begin{split} L(x_1) &= B \setminus \{ \overline{f(u)}, \overline{f(y)}, f(v), f(y_1), f(y_2) \}, \\ L(x_2) &= B \setminus \{ \overline{f(u)}, \underline{f(v)}, f(y), f(z) \}, \\ L(x_3) &= B \setminus \{ f(u), \overline{f(z)}, f(v), f(z_1), f(z_2) \}. \end{split}$$

Then $|L(x_1)|, |L(x_3)| \geq 3$ and $|L(x_2)| \geq 6$. If k=4, L can be defined analogously so that $|L(x_1)| \geq 2$, $|L(x_3)| \geq 4$, and $|L(x_2)| \geq 6$. If $5 \leq k \leq 6$, we take $P = x_2x_3x_4$ after deleting the labels of x_3 and x_4 , so that the defined list assignment L satisfies $|L(x_2)| \geq 2$, $|L(x_4)| \geq 3$, and $|L(x_3)| \geq 5$. If $k \geq 7$, we delete the labels of x_3, x_4, \dots, x_{k-1} , and let $P = x_2x_3 \dots x_{k-1}$. Thus P is a path of length at least 4. Define the list of assignments

$$L(x_2) = B \setminus \{ \overline{f(x_1)}, \overline{f(u)}, f(v), f(v), f(x_k) \},$$

$$L(x_{k-1}) = B \setminus \{ \overline{f(x_k)}, f(u), f(z), f(v), f(x_1) \},$$

$$L(x_3) = L(x_4) = \dots = L(x_{k-2}) = B \setminus \{ \overline{f(u)}, f(v), f(x_1), f(x_k) \}.$$

Note that $|L(x_2)|, |L(x_{k-1})| \geq 3$, and $|L(x_i)| \geq M+1-3-3 \geq \Delta+2-5 \geq k-2$ for all $i=3,4,\cdots,k-2$. If $3\leq k\leq 6$, P admits an L-L(2,1)-labeling by Lemma 5. If $k\geq 7$, P admits an L- $L^*(2,1)$ -labeling by Lemma 6. Therefore f can always be extended to an L(2,1)-labeling of G. The proof of the theorem is complete. \square

The following consequence follows from Theorems 12 and 13:

Corollary 14 Let G be a Halin graph. Then $\lambda(G) \leq \Delta + 7$; and moreover $\lambda(G) \leq \Delta + 2$ if $\Delta \geq 9$.

5 Concluding remarks

Corollary 11 asserts that the chromatic number of the square of a Halin graph G with $\Delta \geq 6$ is exactly $\Delta + 1$. Corollary 10 shows that if G is a Halin graph with $3 \leq \Delta \leq 5$, then $\chi(G^2) \leq \Delta + 3$. The result for the case $3 \leq \Delta \leq 4$ is the best possible in the sense that there exist Halin graphs G such that $\chi(G^2) = \Delta + 3$. Observe graphs H_1 and H_2 depicted in Fig. 2. It is easy to see that H_1 is a Halin graph with $\Delta = 4$ and $\chi(H_1^2) = 7 = \Delta + 3$, and H_2 is a Halin graph with $\Delta = 3$ and $\chi(H_2^2) = 6 = \Delta + 3$. Moreover, Theorem 8 implies that a Halin graph G with $\Delta = 5$ has $\chi(G^2) \leq 7 = \Delta + 2$. However, we like to put forward to the following conjecture:

Conjecture 15 If G is a Halin graph with $\Delta = 5$, then $\chi(G^2) = 6 = \Delta + 1$.

Fig. 2: Two Halin graph examples H_1 and H_2 .

Problem 16 Determine the least constant Δ_0 such that every Halin graph G with $\Delta \geq \Delta_0$ has $\lambda(G) \leq \Delta + 2$.

Since K_4 is a Halin graph with $\Delta = 3$ and $\lambda(K_4) = 6 = \Delta + 3$, we derive that $4 \le \Delta_0 \le 9$ by Corollary 14.

References

 P. Bella, D. Král, B. Mohar, K. Quittnerová, Labeling planar graphs with a condition at distance two, European J. Combin. 28 (2007) 2201-2239.

- [2] J. A. Bondy, Pancyclic graphs: recent results, Infinite and Finite Sets, Colloq. Math. Soc. Janos Bolyai 10, North-Holland, Amsterdam, 1975, pp. 181-187.
- [3] J. A. Bondy, L. Lovász, Length of cycles in Halin graphs, J. Graph Theory 8 (1985) 397-410.
- [4] T. Calamoneri, The L(h, k)-labelling problem: an updated survey and annotated bibliography, Comput. J. 54 (2011) 1344-1371.
- [5] T. Calamoneri, B. Sinaimeri, L(2, 1)-labeling of oriented planar graphs, Discrete Appl. Math. 161 (2013) 1719-1725.
- [6] G. J. Chang, D. Kuo, The L(2, 1)-labelling problem on graphs, SIAM J. Discrete Math. 9 (1996) 309-316.
- [7] M. Chen, W. Wang, The 2-dipath chromatic number of Halin graphs, Inform. Process. Lett. 99 (2006) 47-53.
- [8] J. P. Georges, D. W. Mauro, M. I. Stein, Labeling products of complete graphs with a condition at distance two, SIAM J. Discrete Math. 14 (2000) 28-35.
- [9] D. Gonçalves, On the L(p, 1)-labelling of graphs, Discrete Math. 308 (2008) 1405-1414.
- [10] J. R. Griggs, R. K. Yeh, Labelling graphs with a condition at distance 2, SIAM J. Discrete Math. 5 (1992) 586-595.
- [11] W. K. Hale, Frequency assignment: theory and applications, Proc. IEEE 68 (1980) 1497-1514.
- [12] R. Halin, Studies on minimally n-connected graphs, in Combinatorial Mathematics and its Applications (Proc. Conf. Oxford, 1969), (Academic Press, London, 1971), 129-136.
- [13] F. Havet, B. Reed, J. S. Sereni, Griggs and Yeh's conjecture and L(p, 1)-labellings, SIAM J. Discrete Math. 26 (2012) 145-168.
- [14] J. van den Heuvel, S. McGuinness, Coloring the square of a planar graph, J. Graph Theory 42 (2003) 110-124.
- [15] J. H. Kang, L(2,1)-labeling of Hamiltonian graphs with maximum degree 3, SIAM J. Discrete Math. 22 (2008) 213-230.

- [16] D. Král, R. Škrekovski, A theorem about the channel assignment problem, SIAM J. Discrete Math. 16 (2003) 426-437.
- [17] P. C. B. Lam, Z. Zhang, The vertex-face total chromatic number of Halin graphs, Networks 30 (1997) 167-170.
- [18] K. W. Lih, W. Wang, X. Zhu, Coloring the square of a K_4 -minor free graph, Discrete Math. 269 (2003) 303-309.
- [19] M. Molloy, M. R. Salavatipour, A bound on the chromatic number of the square of a planar graph, J. Combin. Theory Ser. B 94 (2005) 189-213.
- [20] D. Sakai, Labelling chordal graphs: distance two condition, SIAM J. Discrete Math. 7 (1994) 133-140.
- [21] P. F. Stadler, Minimum cycle bases of Halin graphs, J. Graph Theory 43 (2003) 150-155.
- [22] W. Wang, K. W. Lih, Note on coloring the square of an outerplanar graph, Ars Combin. 86 (2008) 89-95.
- [23] W. Wang, X. Luo, Some results on distance two labelling of outerplanar graphs, Acta Math. Appl. Sin. Engl. Ser. 25 (2009) 21-32.
- [24] W. Wang, K.-W. Lih, Labelling planar graphs with conditions on girth and distance two, SIAM J. Discrete Math. 17 (2004) 264-275.
- [25] G. Wegner, Graphs with given diameter and a coloring problem, preprint, University of Dortmund, 1977.
- [26] R. K. Yeh, A survey on labeling graphs with a condition at distance two, Discrete Math. 306 (2006) 1217-1231.
- [27] H. Zhu, X. Lu, C. Wang, M. Chen, Labeling planar graphs without 4,5-cycles with a condition on distance two, SIAM J. Discrete Math. 26 (2012) 52-64.