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Abstract

Let T be a tree with no vertices of degree 2 and at least
one vertex of degree 3 or more. A Halin graph G is a
plane graph obtained by connecting the leaves of T in
the cyclic order determined by the planar drawing of
T. Let A, XG), and x(G?) denote, respectively, the
maximum degree, the L(2, 1)-labeling number, and the
chromatic number of the square of G. In this paper we
prove the following results for any Halin graph G: (1)
x(G?) < A +3, and moreover x(G?) = A +1if A > 6;
(2) M(G) £ A+7, and moreover A(G) < A+2if A > 9.

Keywords: L(2, 1)-labeling; Chromatic number; Halin
graph

1 Introduction

All graphs considered in this paper are finite and simple graphs. For
a graph G, we denote its vertex set, edge set, and order by V(G),
E(G), and |G|, respectively. For a vertex v € V(G), let Ng(v) denote
the set of neighbors of v and let dg(v) = |[Ng(v)| denote the degree
of v in G. A vertex of degree k is called a k-vertez. We denote the
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maximum degree of G by A(G) or simply A. The distance between
two vertices u and v is the length of a shortest path connecting them
in G. The square G2 of a graph G is the graph defined on the vertex
set V(G) such that two distinct vertices are adjacent in G? if and
only if their distance is at most 2 in G.

A k-coloring of a graph G is a mapping o from V(G) to the set
of colors {1,2,..., k} such that o(z) # o(y) for every edge xy of G.
The chromatic number x(G) of G is the smallest k such that G has
a k-coloring.

Wegner [25] first investigated the chromatic number of the square
of a planar graph. He proved that x(G?) < 8 for every planar graph
G with A = 3 and conjectured that the upper bound could be re-
duced to 7. In [25], he also proposed the following conjecture.

Conjecture 1 For a planar graph G,

n [ A+5,  HA<A<T
x(CG )5{ 13A/2] +1, A >8.

This conjecture remains open. van den Heuvel and McGuinness
[14] proved that x(G?) < 2A + 25 for any planar graph G. The best
known result so far is x(G2?) < [5A/3] + 78 [19]. Lih, Wang and
Zhu [18] established the conjecture for a K4-minor free graph. It
is shown [22, 23] that every outerplanar graph G with A > 3 has
x(G?) < A+2,and x(G) =A+1if A>6.

For positive integers p and g, an L(p, q)-labeling of a graph G is
a function o from V(G) to the set {0,1,---,k} for some positive
integer k such that |o(z) — o(y)| > p if z and y are adjacent; and
lo(z) — o(y)| 2 ¢ if = and y are at distance 2. The L(p, q)-labeling
number Ap ¢(G) of G is the smallest k such that G has an L(p, g)-
labeling with max{o(v) | v € V(G)} = k. In particular, we simply
write A(G) = Ag,1(G). Note that an L(1, 1)-labeling of G is a proper
coloring of the square G2, and A\;,1(G) = x(G?) - 1.

The L(2,1)-labeling of a graph arose from a variation of the fre-
quency channel assignment problem introduced by Hale [11]. It holds
trivially that A(G) > A + 1 for any graph G. Griggs and Yeh [10]
proposed the following conjecture.

Conjecture 2 For any graph G with A > 2, \(G) < A2,
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In 1996, Chang and Kuo [6] proved that A\(G) < A% + A for any
graph G. This bound was improved to A\(G) < A2+ A — 1 by Kril
and Skrekovski [16], and further to A(G) < A%+ A — 2 by Gongalves
[9]. Using powerful probabilistic method, Havet, Reed and Sereni
[13] showed that for any fixed integer p, there is a A, such that
every graph G with A > A, has Ap1(G) < A2. Thus, Conjecture 2
holds for graphs with sufficiently large maximum degree A.

Let G be a planar graph. van den Heuvel and McGuinness [14]
proved that A(G) < 2A+35. Molloy and Salavatipour [19] reduced to
that A(G) < [6A/3] +95. The result of [14] asserts that Conjecture
2 holds for planar graphs with A > 7. Further, Bella et al. [1] settled
the case 4 < A < 6. Wang and Lih [24] proved that if G contains
neither 3-cycles nor 4-cycles, then x(G?) < A+16 and A\(G) < A+21.
Zhu et al. [27] improved this result by showing that if G contains no
4-cycles or no 5-cycles, then x(G?) < A+7 and A(G) < A+12. Other
related results about this subject can be found in [6, 8, 10, 14, 16, 20].
In particular, [4] and [26] are two nice surveys.

Let T be a tree with no vertex of degree 2 and at least one vertex
of degree 3 or more. A vertex of degree 1 of T is called a leaf. A Halin
graph is a plane graph G = T U C, where C is a cycle connecting
the leaves of T in the cyclic order determined by the planar drawing
of T. Vertices of C are called outer vertices of G and vertices in
V(G) \ V(C) are called inner vertices of G. A Halin graph G is
called a wheel if G contains only one inner vertex. An inner vertex
is called special if only one of its neighbors is an inner vertex.

It is easy to see that Halin graphs are 3-connected and planar.
Some properties and parameters on Halin graphs have been investi-
gated in [3, 5, 7, 12, 17, 21].

The purpose of this paper is to study the chromatic number of
the square and the L(2, 1)-labeling number of Halin graphs. Let G
be a Halin graph. Our main results are:

(1) x(G?) < A + 3, and moreover x(G?) = A +1 if A > 6;
(2) MG) < A+7, and moreover A(G) < A+2ifA>9.

In Section 2, we give structural lemmas and some auxiliary col-
orings. In Section 3, we establish the proof of (1). The proof of (2)
is postponed to Section 4.
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2 Preliminaries
The following structural property for Halin graphs appeared in [7].

Lemma 3 (Chen and Wang [7]) Let G = TUC be a Halin graph
that is not a wheel. Then C contains a path P, = 2129 - -z Such
that one of the following holds (see Fig.1):

(Al) k = 3 and there ezist a special inner 3-vertez u and a vertex
v such that Ng(u) = {z1, z2,v} and z3v € E(G).

(A2) k = 4 and there ezist two special inner 3-vertices uy,uz and
a vertez v such that Ng(u1) = {z1,z2,v} and Ng(uz) = {z3, z4,v}.

(A3) k > 3 and there ezist a special inner (k + 1)-vertez u and a
vertez v such that Ng(u) = {z1,z2, -, Tk, v}.

) z2 T ) z3 z2 Tp—1
3
T T4
u
(31 U2
v v
Ay Ay As

Fig.1: Three configurations in Lemma 3.

As a special case of Lemma 3, we have obviously the following.

Corollary 4 Every Halin graph G with |G| > 6 and A = 3 satisfies
either (A1) or (A2).

An L*(2,1)-labeling of a graph G is defined to be a one-to-one
L(2,1)-labeling. A function L is called an assignment for the graph
G if it assigns a list L(v) of possible labels to each vertex v of G. If
G has an L(2, 1)-labeling (or L*(2,1)-labeling, respectively) f such
that f(v) € L(v) for all vertices v, then we say that f is an L-L(2, 1)-
labeling (or L-L*(2, 1)-labeling, respectively) of G. Given a positive
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integer k, we denote the set {k— 1,k,k + 1} by k. Moreover, we use
v = a to express that a vertex v is labeled with the label o in the

given labeling.

Lemma 5 Let P = z1z273 be a path. Let L be a list assignment for
P such that |L(z,)| > 2, |L(z3)| = 3, and |L(z2)| > 5. Then P has
an L-L*(2,1)-labeling.

Proof. Without loss of generality, we may assume that |L(z;)| = 2,
|L(z3)| = 3, and |L(z2)| = 5. Suppose that L(z3) = {a,b,c,d, e}
such that a < b < ¢ < d < e. If there exists k € L(z;) \ L(z9),
we first label z; with k. Then let L'(z3) = L(z) \ {k — 1,k + 1}
and L'(z3) = L(z3) \ {k}. Thus |L'(z9)| > 3 and |L'(z3)| > 2.
It is easy to see that there exist ¢ € L'(z2) and j € L'(z3) such
that |i — j| > 2. It suffices to label zo with 7 and z3 with j. So
suppose L(z1) C L(z2). If there exists p € L(z3) \ L(z2), implying
p ¢ L(z1), we label z3 with p. Afterwards we define L'(z1) = L(z;)
and L'(z9) = L(zs)\{p—1, p+1}. Since |L'(z1)| = 2 and |L'(z2)| = 3,
we can properly label z; and z3. Thus suppose L(z3) C L(z3). If
a € L(z1) or e € L(z;), we first label z; with a or e. Then we
define similarly L'(z2) and L'(z3) to make that |L'(z2)| > 3 and
|L'(z3)| = 2. Hence assume L(z;) C {b,c,d}. By symmetry, we only
need to consider two cases as follows.

Assume L(z;) = {b,c}. First let z; = c. Then let z2 = a and
z3 = e or d if L(z3) # {a,b,c}, and 3 = a and z; = e otherwise.

Assume L(z;) = {b,d}. If e € L(z3), we let z3 = €, z2 = aq,
and z; = d. If a € L(z3), we let z3 = @, 29 => e, and z; = b. If
L(z3) = {b,c,d}, we let 3 = ¢, z2 = e, and z; = b. O

Lemma 6 Let P = z129---2; be a path with k > 5. Let L be
a list assignment for P with L(zp) = L(z3) = -+ = L(zk-1) =
{c1,¢2, *,¢m} such that m > k and ¢ < cg < -+ < cm, |L(z1)|,
|L(zx)| 2 3 with L(z), L(zx) € L(z2). Then P has an L-L*(2,1)-
labeling.

Proof. Without loss of generality, we suppose that m = k and

|L(z1)| = |L(zx)| = 3. First assume k = 5. Since |L(z;)| = 3 and
L(z1) € L(z2), we can label z; with some label s € L(z) \ {c1,¢s5}-
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If s = ¢ (if 3 = ¢4, We can give a similar argument), we label z5
with some label ¢t € L(zs) \ {c1,c2}. For t = c3,c4 and cs5, we label
the vertices (x2o, xz3,x4), respectively, by (cs,c1,c¢s5), (cs,c3,¢1) and
(c4,c1,¢3). If s = c3, we label z5 with some label t € L(zs)\ {c1, ca}.
For ¢ = ¢g,¢4 and c5, we label the vertices (z9, z3,24), respectively,
by (cs, 1, ca), (c1,¢5,c2) and (c1, ¢4, C2).

Next assume k = 6. We label z; with some label s € L(z;) \
{c1,¢6}. If s = cg, we further label zg with ¢t € L(zs) \ {c1,c2}. For
t = c3, ¢4, c5 and cg, we label the vertices (z2, 3, T4, T5), respectively,
by (cs, ca,¢1,¢5), (cs,¢1,¢3,¢6), (c4,¢6,€1,¢3) and (cs,c3,¢1,¢4). If
s = c3, we further label z¢ with ¢t € L(zg) \ {c1,c3}. For t =
¢2,¢4,¢5 and cg, we label the vertices (z2,z3,z4, z5), respectively,
b}' (051 €1, Ce, 64), (65, €1, Cs, 62)7 (067 C2, ¢4, cl) and (clw Cs, C2, 64). If
s = ¢4, Or s = ¢5, We can give a similar labeling.

Finally assume k& > 7. Let X' = {¢; € L(z2)|¢ = O(mod 2), i =
1,2,--+,k} and X" = L(x2) \ X’. Thus |X'| > 3, |X”| > 4, and for
any c;,c; € X', or¢;,c; € X", we have |c;—c;| > 2. First assume X'N
L(z1) # 0. (If X' L(zx) # 0, we have a similar argument.) If | X'N
L(zx)| > 2, we label, successively, 1, Tk, 2,73, -, Z|k/2)—1 With
mutually different labels in X', and zx/a), Tk—1,Tk-2," ", T k/2)41
with mutually different labels in X”. If | X’ N L(zx)| < 1, it follows
that | X" N L(z)| > 2. We label, successively, z1, 3, - - -, T|x/2) With
mutually different labels in X', and T, T{x/9)41; Z|k/2)+2: " ** s Th1
with different labels in X”. Now assume L(z;) U L(zx) C X”. We

label, successively, 23,23, - - -, Z|k/2)+1 With mutually different labels
in X', and 21, Z|x/2)42s Tks Th—1, " * * » T|k/2)+3 With mutually different
labels in X”. O

The following result is an easy observation.
Lemma 7 For a wheel G,
(1) x(G?) = A +1.
(2) M(G)=6if4<|G| <5, and A\(G)=A+1 if |G| > 6.
3 Coloring the square
In what follows, a k-coloring of G2 is called a square-k-coloring of G.

Theorem 8 If G is a Halin graph, then x(G?) < max{7,A + 1}.

336



Proof. Let K = max{7,A+1}. The proof is proceeded by induction
on the vertex number |G|. If |G| < 7, then it holds obviously that
x(G?) £ 7 < K, since we may assign different colors to the vertices
of G. Let G = TUC be a Halin graph with |G| > 8. If G is a wheel,
then the result follows from Lemma 7. Assume that G is not a wheel.
By Lemma 3, there exists a path Py = z1z3 - -z} in C such that one
of (A1) to (A3) holds. In the following argument, we always assume
that y € Ne(z1)\{z2}, z € Ne(zi)\{zk-1}, No(y) = {z1,91,92},
and Ng(z) = {zk,21,22}. Let S = {1,2,---, K} denote a set of K
colors. We handle separately each of these three cases.

(Al) Let H = G — {z1,z2} + {yu, z3u}. By the induction hy-
pothesis, H has a square-K-coloring f with the color set S. Ob-
viously, f(u), f(v), f(y), f(z3) are mutually distinct. Thus, we may
assume that f(u) = 1, f(v) = 2, f(y) = 3 and f(z3) = 4. Since
S| = K > 7, we can let z1 = a € {5,6, 7}\{f(v1), f(y2)} and
222 b e {5,6, TN {a, ()}

(A2) Let H = G — {z;,%9, 23,24} + {yu1,ujus,upz}. By the
induction hypothesis, H has a square-K-coloring f using the color
set S. We define

L(xl) = S\{f('l)), .f(ul),f(y)’ f(y1)1f(y2)}:
L(z9) = S\{f(v), f(y), f(wa), f(u2)},
L(£C3) = S\{f(’l)), f(Z), f(ul)1 f(u'-’)}’
L(SC4) = S\{f(v)a f(u2)a f(z)w f(zl)a f(z2)}

It is easy to inspect that |L(z1)| > |S|-5=K -5>7-5=2, and
similarly |L(z4)| > 2, |L(z2)| = 3, and |L(z3)| > 3. If |L(z1)| = 3,
we let z4 = a € L(z4), z3 = b € L(z3)\{a}, z2 = ¢ € L(z2)\{a, b},
z1 = ¢ € L(z1)\{b,c}. So suppose |L(z;)| = 2. There is a color a €
L(z2)\L(z1). We assign a to z2, then color z4 with b € L(z4)\{a},
z3 with ¢ € L(z3)\{e, b}, and z; with a color in L(z;)\{c}-

(A3) Let H = G — {z9,23, -+, Zk-1} + {z12x}. By the induc-
tion hypothesis, H has a square-K-coloring f using S. Assume that
fw) =1, f(v) =2, f(z1) =3 and f(zr) = 4. _

If k = 3, we can color z2 with a color in {5,6, 7}\{f(y), f(2)}.

If k = 4, there exist a € {5,6, 7}\{f(y)} and b € {5,6, T}\{F(2)}
such that a # b. We color z3 with a and z3 with b.

If k = 5, we first color z with a € {5,6,7}\{f(y)} and z4 with
be {5,6,7}\{f(2)} such that a # b. Afterwards we color z3 with a
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color in {5,6,7}\{a, b}.
If k> 6,then A > dg(u) =k+12> 7, we define

L(x2) = {576a1K}\{f(y)}s
L(z;) = {5,6,--+,K}, i =3,4,---,k-2,

L(.’L‘k—l) = {5a 67 et ,K}\{f(Z)}

Since K = A + 1 > 8 in this case, we get |L(z2)|, |L(zk-1)| >
A—-4>3, and |L(z;)] = A -3 fori =3,4,---,k — 2. Note that
|{z2,z3,+ -+, Tk—1}| = k-2 < A-1-2= A -3. By Lemma 6, there
exists ¢; € L(z:), 1= 2,3, -,k —1, such that all c,¢3, -, ck—1 are
mutually distinct. Color z; with ¢; for 2 <7 < k — 1 to establish a
square-K-coloring of G. ]

Theorem 9 If G is a Halin graph with A = 3, then x(G?) < 6.

Proof. Since G is 3-regular, |G| is even. If |G| < 6, the conclusion
holds trivially. Let G = TUC be a Halin graph with A = 3 and |G| >
8. By Corollary 4, G satisfies (A1) or (A2). Similarly to the proof of
Theorem 8, we suppose that y € N¢(z1)\{z2}, z € Nc(zk)\{zk-1},
Ng(y) = {z1,1,y2}, and Ng(z) = {zk, 21, 22}. Let $ = {1,2,---,6}
denote a set of six colors used in the following.

(A1) Let w denote the neighbor of v different from u and z3.
Let H = G - {z1, 22, z3,u} + {vy,vz}. Then H is a 3-regular Halin
graph with |H| < |G|. By the induction hypothesis, H has a square-
6-coloring f using S such that f(v) = 1, f(w) = 2, f(y) = 3 and
f() = 4. Let Y = {f(3), f(3)} and Z = {f(22), f(2)}.

If2¢Y,letzy=2,23=>a€{3,56}\Z,zo=be {56}\{a},
and u = c € {4,5,6}\ {a,b}. If4 ¢ Y, let z; = 4, 22 = 2,
z3 = a € {3,5,6}\ Z, and u = b € {5,6}\ {a}. IfY = {2,4},
let zo = 2, z3 = a € {3,5,6}\ Z, z; = b € {5,6} \ {a}, and
u=>cé€ {4,5,6}\ {a,b}.

(A2) Let w denote the neighbor of v in G different from wu;
and uy. Let H = G — {z1, 29, z3,24,u1,u2} + {vy,vz}. By the
induction hypothesis, H has a square-6-coloring f using S such that
f@) =1, f(w) = 2, f(y) = 3 and f(z) = 4. Similarly, we set
Y = {f(u2), fy)} and Z = {f(22), f(2)}.

Y # {56}, welet z1,up =>a € {5,6}\Y,zo =>4, u; =>be
{5,6}\{a}, z4 = c € {2,3,5,6}\(ZU{a}), and z3 = d € {2,3}\{c}.
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Y ={5,6},let z; =2, 29 =4, up = 3, 24 = a € {2,5,6} \ Z,
z3 => be {5,6} \ {a}, and u; = c € {5,6} \ {b}. O
The following consequences follow from Theorems 8 and 9:

Corollary 10 For a Halin graph G, we have x(G?) < A + 3.

Corollary 11 IfG is a Halin graph with A > 6, then x(G?) = A+1.

4 L(2,1)-labeling

In this section, we study the L(2,1)-labeling of Halin graphs. We
first give an interesting observation. Bondy showed in [2] that Halin
graphs are Hamiltonian. Kang showed in [15] that every Hamiltonian
graph G with A = 3 satisfies A(G) < 9. Combining these two facts,
we conclude immediately the following Theorem 12:

Theorem 12 If G is a Halin graph with A = 3, then A\(G) < 9.
Theorem 13 If G is a Halin graph, then A(G) < max{11,A + 2}.

Proof. Set M = max{11,A + 2} and let B = {0,1,---, M} denote
a set of M +1 labels. We make use of induction on |G|. The theorem
holds trivially for |G| < 5. Suppose that G = TUC is a Halin graph
with |G| > 6. If G is a wheel, the result follows from Lemma 7.
So assume that G is not a wheel. By Lemma, 3, there exists a path
P, = 2122 - - -z, in C such that one of (A1) to (A3) holds. We reduce
these three configurations separately in the following.

(A1) Let H = G — {z1,z2} + {yu, z3u}. By the induction hy-
pothesis, H has an L(2,1)-labeling f with the label set B. Define
the list of assignments

L(:Z}]_) = B\{f—(_{ijvf_(gj’ f(’U), f(y1)1 f(yZ))f(x3)}s

L(z2) = B\{f(u), f(z3), f(v), f(v), f(2)}
Since M > 11, it follows that |L(z1)| 2 M +1—-3-3 -4 > 2 and
|L(z2)| 2 M +1—3 -3 -3 > 3. Thus there exist ¢; € L(z;) and
c2 € L(z2) such that |e; — ¢cp| > 2. Label z; with ¢; for ¢ = 1,2.
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(A2) Let H = G - {z1,22} + {yu1,z3u1}. By the induction
hypothesis, let f be an L(2,1)-labeling of H with the label set B.
Delete the label of z3 and then define the list of assignments

L(z,) = B\{@) W, f), f(yl)af(yZ)}’
L(x2) = B\{Ma f_(ljh_f(y)? f(u2)1 f($4)}:
L(zs) = B\{F(u2), f(za), f(v), f(2), f(u1)}.

It is easy to see that |L(z;)| > 3, |L(z2)| = 5, and |L(z3)| > 3. By
Lemma 5, z1, z2, 3 can be labeled.

(A3) Let H = G—{z2}+{r123}, and let f be an L(2,1)-labeling
of H with the label set B. If k < 4, we delete the labels of z; and
73, and let P = x12923. If k = 3, we define

L(:E]_) = B\{_flu_)y f(y)’ f(v)$ f(yl)a f(yZ)}s

L(z2) = B\{f(uw), f(v), f(v), f(2)},

L(z3) = B\{f(u), f(2), f(v), f(z1), f(22)}-
Then |L(z1)|, |[L(z3)| > 3 and |L(z2)| > 6. If k = 4, L can be defined
analogously so that |L(z1)| = 2, |L(z3)| = 4, and |L(z2)| > 6. If
5 < k < 6, we take P = z9z314 after deleting the labels of z3
and x4, so that the defined list assignment L satisfies |L(z2)| > 2,
|L(z4)| > 3, and |L(z3)] = 5. If & > 7, we delete the labels of
T3, T4, ,Zk—1, and let P = zox3---2k_;. Thus P is a path of
length at least 4. Define the list of assignments

L(zq) = B\{f(z1), 7 (&), £ (v), £ (v), f(=zx)},
L(zx-1) = B\{f(=x), f(w), f(2), f(v), f(z1)},
L(z3) = L(zq) = -+ = L(zi-2) = B\{F(w), f(v), f(z1), f (zx)}-
Note that |L(z2)|,|L(zk-1)] = 3, and |L(z;))| > M +1-3-3 >
A+2-5>k—-2foralli=3,4,.--,k-2. If3 <k <6, P admits
an L-L(2, 1)-labeling by Lemma. 5. If & > 7, P admits an L-L*(2, 1)-
labeling by Lemma 6. Therefore f can always be extended to an

L(2,1)-labeling of G. The proof of the theorem is complete. ]
The following consequence follows from Theorems 12 and 13:

Corollary 14 Let G be a Halin graph. Then AM(G) < A+ 7; and
moreover A(G) S A+2if A>9.
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5 Concluding remarks

Corollary 11 asserts that the chromatic number of the square of a
Halin graph G with A > 6 is exactly A+ 1. Corollary 10 shows that
if G is a Halin graph with 3 < A < 5, then x(G?) < A +3. The
result for the case 3 < A < 4 is the best possible in the sense that
there exist Halin graphs G such that x(G?) = A +3. Observe graphs
H; and H; depicted in Fig.2. It is easy to see that H; is a Halin
graph with A = 4 and x(H?) = 7= A +3, and H, is a Halin graph
with A = 3 and x(H2) = 6 = A + 3. Moreover, Theorem 8 implies
that a Halin graph G with A = 5 has x(G?) < 7 = A + 2. However,
we like to put forward to the following conjecture:

Conjecture 15 If G is a Halin graph with A = 5, then x(G?) =
6=A+1.

H 1 H. 2
Fig. 2: Two Halin graph examples H; and Hs.

Problem 16 Determine the least constant Ay such that every Halin
graph G with A > Ag has \(G) < A+ 2.

Since K4 is a Halin graph with A = 3 and M(K4) =6 = A + 3,
we derive that 4 < Ay < 9 by Corollary 14.
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