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Abstract

A pebbling move is taking two pebbles off one vertex and then
placing one on an adjacent vertex. The optimal pebbling number
of G, denoted by fop:(G), is the least positive integer n such that
n pebbles are placed suitably on vertices of G and for any specified
vertex v of G, we can move one pebble to v by a sequence of pebbling
moves. In this paper, we determine the optimal pebbling number of
the square of paths and cycles.
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1 Introduction

Pebbling in graphs was first introduced by Chung [1]. Consider a
connected graph with a fixed number of pebbles distributed on its vertices.
A pebbling move consists of the removal of two pebbles from a vertex and
the placement of one pebble on an adjacent vertex.

A distribution of pebbles to the vertices of a graph is said to be solvable
when a pebble may be moved to any specified vertex using a sequence of
admissible pebbling moves. (This includes sequences of length 0, i.e., when
the initial distribution places at least one pebble on the vertex in question).
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The pebbling number of a graph G, denoted by f(G), is the least number
such that any distribution of f(G) pebbles to the vertices of G is solvable.
And the optimal pebbling number of a graph G, denoted by fo,t(G), is
the least number such that there exists a solvable distribution of fop:(G)
pebbles on G. Clearly, fo5:(G) < f(G) for any graph G. There are some
known results about f,,:(G) for some specific graphs(see{2-5]).

Let G be a connected graph. For u,v € V(G), we denote by dg(u,v)
the distance between u and v in G. The kth power of G, denoted by
Gk, is the graph obtained from G by adding an edge uv to G whenever
2<de(u,v) < kinG.

Throughout this paper, unless stated otherwise, G will denote a simple
connected graph on n vertices. Given a distribution D of pebbles on G, we
use | D] to indicate the size of D, i.e. the number of pebbles in D. Denote by
{v1,v2,...,vn)(respectively, [v1,va,...,v,]) the path (respectively, cycle)
with vertices v1,v2,...,vn in order. For a path (v, vi41, -, viy;), we write
D((vi,vig1,- - Vi) = [Pi, Pit1,- -y Pis;] to indicate that D places pi
pebbles on vertex vy for each k = 4,i + 1, --,% 4+ j. Similarly, D(v) = p
means that D places p pebbles on the vertex v. We then say that a vertex v
is occupied if D(v) > 1 and unoccupied when D(v) = 0. Moreover, denote
by ﬁ(v) the number of pebbles on v after some sequence of pebbling moves.
Denote Z* the set of positive integers.

The optimal pebbling number was first considered by Pachter, Snevily,
and Voxman. They obtained the optimal number of paths and the pebbling
number of P? ( see [3]). In [4], T. Friedman and C. Wyels gave the optimal
pebbling number of cycles. Y. Ye et al. gave that the pebbling number of
C? [6, 7). Motivated by this, we obtain the optimal pebbling numbers of
squares of paths and cycles in this paper.

2 Optimal pebbling number of P2

This section studies the optimal pebbling number of P2. Let P, =
(v1,v2,...,V,). First, we give some useful lemmas.

Lemma 2.1 ([4]) fopt (Pat+r) = fopt(Catyr) = 2t + 7, where t € Z+ and
r=0,1,2.

Lemma 2.2 Let s and g be two positive integers with s < q. If P2 admits
a solvable distribution D of size q such that D(v,) = s, then P2 also admits
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a solvable distribution D* of size q such that D*(v,) = 0 for s = 1 and
D*(vy) =5—2 fors > 2.

Proof. Fors=1, there exist a sequence of pebbling moves from (v, v, - -,
Un—2) to vp_1 With D(v,_;) > 1. Now we can define D*(vp_1) = D(vn—1)+
1, D*(vn) = 0 and D*(v;) = D(v;) for each of the left vertices v;. Clearly,
D* is also a solvable distribution.

Next let s > 2. We can define D*(vn-1) = D(vp—1)+2, D*(vn) =52
and D*(v;) = D(v;) for each of the left vertices v;. Clearly, D* is also a
solvable distribution. O

Lemma 2.3 Let s and q be two positive integers with s < q. If P2 admits
a solvable distribution D of size ¢ such that D((vn—1,v,)) = [s,0], then P2
also admits a solvable distribution D* of size g such that D*({vn-1,vn)) =
[0,0] for s =1 and D*((vp—1,vn)) = [s — 2,0] for s > 2.

Proof. For s = 1, it is clear that there exist a sequence of pebbling
moves such that D(v,—2) = 2 or D(vn-3) = 2. Suppose that D*(v,—3) =
D(vp—2)+1, D*(vp—1) = 0 and D*(v;) = D(v;) for each of the left vertices
v;. Then D* is a solvable distribution.

Next let s > 2. Similarly, suppose that D*(vp2) = D(vn—2) + 2,

D*(vn-1) = s — 2 and D*(v;) = D(v;) for each of the left vertices v,.
Hence D* is also a solvable distribution. 0O

By Lemma 2.2 and Lemma 2.3, we easily give the following result.

Corollary 2.4 For P2, if D is a solvable distribution of size q, then there
is some solvable distribution D* of size g such that D*(v,) = D*(v,—1) = 0.

_ A solvable distribution of P2 is said to be good, if D(va—1) > 2 or
D(v,) > 2 after appropriate pebbling moves.

Lemma 2.5 Forn > 3, let P2 have a good distribution of size q. Then P2
admits a good distribution D of size q such that D(vy,) # 0 or D(vn—1) # 0.

Proof. Let k be the maximum positive integer, obtain D(vx) # 0, such
that P2 admits a good distribution of size g. Using proof by contradiction,
we can assume that k < n—2, i.e.,, D(vg41) = D(vgs2) = ... = D(v,) = 0.
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First, we consider the case that D(vg) is odd or £k = 1,2. We can
define two new distributions D} (5 = 1,2) such that Dj(vx) = D(vz) — 1,
Di(vk+j) = D(vks;) +1 and Dj(v;) = D(v;) for else i. Note that any
pebble can go through one of vgy; and vk4+2 to reach vn,—; and v,. So at
least one of D] and D) is a good distribution. Hence it is a contradiction
in the maximal of k.

Second, it remains the case that D(v) is even and k > 3. Next, we
consider two cases according to the parity of D(vg—1). If D(vk—1) is odd,
then we can define two new distributions D} (j = 1,2) such that D} (vx) =
D(vk)—2, D}(vk-1) = D(vk-1)+1, D} (vk+;) = D(vi+;)+1 and D} (vi) =
D(v;) for else i. Clearly, either DY or Dj is a good distribution. Otherwise,
D(vk—1) is even. We can define two new distributions DY (j = 1,2) such
that D}’ (vg) = D(vk)—2, D' (vk-2) = D(vk-2)+1, D}"(vk+;) = D(vis;)+
1 and Dj’(v;) = D(v;) for else i. Then one of D" and D3’ is a good
distribution. A contradiction. O

The result of fop:(P2) depends on the value of n mod 5. Thus we write
P, as P, = Pstyr = (V1,V2,...,Vst4r), Where r € {—2,-1,0,1,2} and t is
a positive integer.

Theorem 2.6 Let n =5t +1r. Then

2t 1 r=-2,-1,0;
fopt(Pz) = fopt(PSZt+r) = { 9% +1 ‘i; r=1,2.

-~ Proof. Mark the right of the equation with A,. We give a distribution D of
P2, ., which places 2 pebbles at v3, vs43,..., Us5(¢—1)+3 When 7 = -2, -1,0,
places an additional pebble at vs; when r = 1 or 2. Clearly, D is solvable.
Then fop:(P2) < A,. Next, we use mathematical induction on n to prove

fopt(Pz) = Ar-
First, let n = 3. Note that P? = C;. By Lemma 2.1, f,p:(P2) = 2.

Second, assume that the theorem is true for each n > 3. We need
show that the theorem is true for n + 1. If n = 5t — 2, then by induction
hypothesis, fopt(P%_,) = 2t. Since P2 _, is a subgraph of P2_,, we have

fOPt(Pr?+1) = fopt('Pszt—l) 2 fop:(Psz,_g) =2t =A_;.
Similarly, if n = 5t — 1, then
fopt(Prgﬂ) = fOPt(Pszt) 2 fopt(Pszt—l) = 2t = Ao;
if n =5¢t+1, then
Fort(P2y1) = fopt(Pyo) = fopt(Poyy) =2t +1= A,
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Next, it remains the cases n = 5¢ and n = 5¢ + 2.

For n = 5t, we have to show fone(P2,,) = f0pt(P5t+1) >2t+1= A,
By induction hypothesis, fopt(P%11) = fopt(PZ) = 2t = Ao. Now, assume
that D is a solvable distribution of PZ,, of size 2t. If D(vss41) = 1 or

D({vss, vse+1)) = [0,2], then after any pebbling moves,

5t—1

Z D(v;)<2t—1 or ZD(’U,) <2t-1.

i=1 i=1

Note that by induction hypothesis, fopt(P%_;) = fopt(P2) = 2t. It is a
contradiction in the solvability of D. If D(vgs41) = 2 and D(vs;) is odd,
then we can define a distribution D’ such that D'(vsi41) = 1, D'(vs:) =
D(vs¢)+1 and D'(v;) = D(v;) for else i. If D(vse41) = 2 and D(vse) is even
and nonzero, then we can define a distribution D’ such that D'(vs;41) = 1,
D'(vsi—1) = D(vse—1) + 1 and D'(v;) = D(v;) for else i. Clearly, in both
cases, D’ is also solvable for P2 ; with D’(vs;41) = 1. A contradiction to
the above. If D(vsi41) > 3, then by Lemma 2.2, P52, +1 admits a solvable
distribution D" with D" (vge+1) = 1 or 2. Similarly, a contradiction. Hence
D(vge41) = 0, that is, 15;1 D(v;) = 2t. We give the following

Claim D is not a good distribution for P2.
The proof of the claim will be given in the last section.

Since D is not a good distribution for P2, the vertex vs;+1 can not get
a pebble after any pebbling moves, it is a contradiction in the solvability
of D. So D is not solvable for PZ ;. Then fo,,(P%,,) = 2t + 1. Now, we
give the proof of the claim.

By the induction hypothesis that fope(PZ) = 2t, let D be a solvable
distribution of size 2t in P2. Similar to the preceding proof, we have
D(vs;) = 0. Next we prove that D(vs;—1) = 0. If D(vsi—1) = 1, then

St'z D(v;) = 2t — 1. By the induction hypothesis that f,,:(P3_;) = 2t,
it 1s a contradiction. If D({vs¢—3,Vst—2,v5e—1)) = [0,0,2], then after any
pebbling moves, E& 4D(v,) 2t — 2. Since fopt(P%_4) = 2t — 1 by
induction hypothesis, it is a contradiction in the solvability of D. Suppose
that at least one of the values of D(vs;—3) and D(vsi—2) is nonzero, say
D(vs¢—3) # 0. If D(vse—3) is odd, then we can define a distribution D* such
that D*(vs;—1) = 1, D*(vse—3) = D(vse—3) +1 and D*(v;) = D(v;) for else
i. Otherwise, D(vs;—3) is even. We can define a distribution D* such that
D*(vse—1) = 1, D*(vst—4) = D(vse—4) + 1 and D*(v;) = D(v;) for else i.
Therefore, in both cases, D* is also solvable for P2 with D*(vs;—1) = 1. A
contradiction to the above. If D(vs;—1) > 3, then, by Lemma 2.3, we can
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conclude that P2 admits a solvable distribution D** with D**(vss—;) = 1
or 2. A contradiction. Then D(vs;—;) = 0. By Lemma 2.5, the solvable
distribution D of P2 is not a good distribution.

For n = 5t + 2, we can similarly prove that fon(P2,;)=2t+2. 0O

3 Optimal pebbling number of C?

We write C,, as Csiqr = [V1V2 « - * Useqr] Where 7 € {-2,-1,0,1,2}
and ¢ is positive integer. For the convenience of our proofs, if we remove a
vertex v; of C2, then it is understood that the edge incident to v; is also
removed, after adding an edge between v;_; and v;y2, v;_o and v;4q, We
obtain the graph C2_,. If we remove two vertices v; and v;4; then adding
an edge between v;~1 and v;t2, vi—1 and vi+3, v;—2 and v;,2, respectively.
We create the graph C?_,. Since the graph C2 may obtain by adding an
edge between v; and vy, v; and v, -1, v2 and v, in the graph P2, we have
a corollary as follows:

Corollary 3.1 fope(P2) > fopt(C2).

Theorem 3.2 Letn =5t +r, wheret€ Z%* and r = —2,-1,0,1,2.

2 3 = -2,-1,0;
Fopt(CR) = fopt(Clryr) = { 2+ 1 :; : =1,2.

Proof. Mark the right of the equation with A,. By Corollary 3.1,
fopt(Cooar) < Ar.
Now we show f,5t(C%.,,) = Ar. Thus fope(CE.,) = Ar.

First, we note that C3 = K3, C? & K, and C2 & K. Obviously,

fopt(csz) = fopt(cz) = fopt(Csz) =2.

Second, assume that the theorem is true for n > 5. We need show that
the theorem is true for n 4+ 1. If n = 5t — 2,5¢ — 1, 5¢ + 1, then Theorem
3.2 holds for n + 1, which the proof is similar to the proof of Theorem 2.6.
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Next, it remains the cases n = 5t and n = 5¢ 4+ 2. We' only need prove
that if fop:(CZ,) = 2t then fop(C2,;) > 2t + 1. The proof of the case
n = 5t + 2 is similar.

Using proof by contradiction, suppose that fop:(CZ,,;) < 2t + 1, and
5t 4+ 1 is the smallest index such that the theorem does not hold. That is
fopt(C3i41) < 2t. Since CZ, is a subgraph of CZ,, ;, we have fope(CZ,,,) >
fopt(C%) = 2t. Thus fop(C%,,) = 2t. Suppose that D is a solvable
distribution of size 2t in CZ,,,. We will modify D to create D*, a solvable
distribution on a smaller square of cycles with fewer than the number of
pebbles, thus producing our desired contradiction.

Case 1: D places exactly 2 pebbles on each occupied vertex of C%, ;.

We consider the corresponding sequence of the number of pebbles on the
vertices of C%,,,. Since D was assumed to be solvable, we may assume that
there are at most four consecutive unoccupied vertices in D. Also, there is a
sequence of vertices vi, Vi1, Vi42, Vit3, Vi+4 With D([v;, vi41, vig2, ¥ig3, Viga))
=(2,0,0,0,2] or [2,0,0,2,0] or [2,0,2,0,0] or [2,2,0,0,0]. Otherwise, there
would be exactly four unoccupied vertices between every pair of occupied
vertices. Thus we have r = 0. This is a contradiction.

Suppose that D([vi,vi+1,vi+g,v,~+3,vi+4]) = [2,0,0,0, 2] or [2,0,0, 2, 0]
or 2,0,2,0,0] , we can modify D and C2, ., by removing vertices viy1, vi+2,
Ui+3,Vi4q and their associated pebbles. Since v;4g and v;4e are either
occupied or can be pebbled by v;, and other vertices are unaffected, D*
is a solvable distribution. Note that D* is a distribution on C%_, with
|D*| = 2t—2. We have reached a contradiction since fop:(CZ,_3) = 2t—1. In
addition, if D([vi, Vit1, Vit2, Vies, Visea)) = [2,2,0,0,0], then we can modify
D and C§t+1 by removing vertices v;41,Vi+2 and two pebbles on v;4, and
put one pebble to v;—;. Observe that D* is a solvable distribution. Then
D* is a distribution on C2,_, with |D*| = 2¢t — 1. By the hypothesis
fopt(C2,_,) = 2t, it is a contradiction.

Next, we consider that C%,,, contains the vertex v; (after relabeling if
necessary) with D(v;) = 1 or D(v;) > 3. Without loss of generality, we
may assume that v; (j > 1) need to obtain pebbles from {vs;, vs¢4+1,v1} by
a sequence of pebbling moves. Thus the pebbling moves must be involved
with vy and vz. We assume that the number of pebbles which can be moved
from vg; to others is at most m,, while the number of pebbles which can be
moved simultaneously from vs:4 is at most mgy. Let D(v;) = q, D(v2) = d.

Case 2¢=1.
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If my = 0, then we modify D and C%,,, by removing vy, vs¢41 and
the pebble on them. Thus creating a distribution D* of CZ,_, with at
most 2t — 1 pebbles. We claim that all the remaining vertices may still be
pebbled, in other words, that D* is solvable. Using distribution D, [l"-iiﬂj
pebbles could be moved from {vst,v1} to vz, | 251 | + | 2] pebbles can be
moved to v3. Using D*, m; pebbles may be moved from vs; to vy. my+ [% ]
pebbles pebbles can be moved to v3. Since m; > [mzilj for all m; > 0,
all vertices initially that are reachable from D are still reachable from D*.
Then D* is solvable. Then contradicting the fact that fone(CZ,_;) = 2t.

If ma # 0 and d = 0, then we modify D and C%_; by removing vy, ve
and the pebble on them. Thus creating a distribution D* of CZ,_, with
2t—1 pebbles. We claim that all the remaining vertices may still be pebbled,
in other words, that D* is solvable. Using distribution D, |Zttfiatl|
pebbles could be moved from {vs¢,vse+1,v1} to v3. Using D*, my + mg
pebbles may be moved from {vs;, vse41} to vs. Since my+mg > [ﬁlj'—,:,ﬂlj
for all m; > 0, all vertices initially that are reachable from D are still
reachable from D*. Then D* is solvable. Then contradicting the fact that

fOPt(Cgt-l) =2t

If my # 0 and d # 0, then we modify D and CSZH_I by removing v; and
the pebble on it. Thus creating a distribution D* of CZ, with 2t —1 pebbles.
We claim that D* is solvable. Using distribution D, |24t | + m; pebbles
could be moved from {vs,vst41,1} to vz, at most | Zatmatlid | pebbles
" could be moved to v3. Using D*, m; + my pebbles may be moved to v,,
vs can get | 5t2| + my pebbles. Since my > |24t | and |24t | 4+ my >
| mutmatlid | for all my > 0, all vertices initially that are reachable from
D are still reachable from D*. Then D* is solvable. Then contradicting
the fact that f,p:(CZ,) = 2t.

Case 3¢ > 3.

We may assume that each occupied vertex of CZ,, has at least two
pebbles. Otherwise, it can return to Case 2. When at least one of sy
and v, is unoccupied, say vz, we modify D and 052t+1 by removing vy, v
and pebbles on v;, place 2 pebbles on vs; and g — 3 pebbles on v3. Thus
creating a distribution D* of 2¢ — 1 pebbles on C%_,. We claim that D*
is solvable. For D, we can move | Z£™4+™2 | pebbles to v3. For D*, we can
move m; + my + q — 2 pebbles to v3. Since m; +mp+qg—2> L—'E"Tmai'-‘lj,
all vertices initially that are reachable from D are still reachable from D*.
Then D* is solvable. Then contradicting the fact that f,p:(C%_;) = 2t.
When D(v;) # 0 and D(vse41) # 0, ie., d > 2 and D(vseq1) > 2, we
modify D and C% ., by removing v; and pebbles on it, place 2 pebbles on
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vst+1 and g — 3 pebbles on vp. Thus creating a distribution D* of 2¢t — 1
pebbles on CZ,. Using distribution D, | 242 |+ m; pebbles could be moved
to vz and at most | P1t™249+d | pebbles could be moved to v3. Using D*,
my + mg + g — 2 pebbles could be moved to v, and I_M”—' J+ma+1
pebbles could be moved to vs. Since my+q—2 > 24| and |2rtgtd=3)
my+1 > |Zatmatatd | a)) vertices initially that are reachable from D are
still reachable from D*. Then D‘ is solvable. Thus contradicting the fact
that f,p:(CZ) = 2t.

Combining with three cases, we conclude that our initial assumption is
false, and the theorem holds for all positive integers. O
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