The optimal pebbling number of square of paths and cycles *

Yongsheng Ye † Mei Liu Jie Gao

School of Mathematical Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, China

Abstract

A pebbling move is taking two pebbles off one vertex and then placing one on an adjacent vertex. The optimal pebbling number of G, denoted by $f_{opt}(G)$, is the least positive integer n such that n pebbles are placed suitably on vertices of G and for any specified vertex v of G, we can move one pebble to v by a sequence of pebbling moves. In this paper, we determine the optimal pebbling number of the square of paths and cycles.

AMS Classification: 05C38

Keywords: Paths; Square of cycles; Optimal pebbling number

1 Introduction

Pebbling in graphs was first introduced by Chung [1]. Consider a connected graph with a fixed number of pebbles distributed on its vertices. A pebbling move consists of the removal of two pebbles from a vertex and the placement of one pebble on an adjacent vertex.

A distribution of pebbles to the vertices of a graph is said to be solvable when a pebble may be moved to any specified vertex using a sequence of admissible pebbling moves. (This includes sequences of length 0, i.e., when the initial distribution places at least one pebble on the vertex in question).

^{*}Supported by National Natural Science Foundation of China (No. 10971248) and Anhui Provincial Natural Science Foundation(No. KJ2013Z279, KJ2011B152).

[†]Corresponding author: yeysh66@163.com

The pebbling number of a graph G, denoted by f(G), is the least number such that any distribution of f(G) pebbles to the vertices of G is solvable. And the optimal pebbling number of a graph G, denoted by $f_{opt}(G)$, is the least number such that there exists a solvable distribution of $f_{opt}(G)$ pebbles on G. Clearly, $f_{opt}(G) \leq f(G)$ for any graph G. There are some known results about $f_{opt}(G)$ for some specific graphs(see[2-5]).

Let G be a connected graph. For $u, v \in V(G)$, we denote by $d_G(u, v)$ the distance between u and v in G. The kth power of G, denoted by G^k , is the graph obtained from G by adding an edge uv to G whenever $2 \leq d_G(u, v) \leq k$ in G.

Throughout this paper, unless stated otherwise, G will denote a simple connected graph on n vertices. Given a distribution D of pebbles on G, we use |D| to indicate the size of D, i.e. the number of pebbles in D. Denote by $\langle v_1, v_2, \ldots, v_n \rangle$ (respectively, $[v_1, v_2, \ldots, v_n]$) the path (respectively, cycle) with vertices v_1, v_2, \ldots, v_n in order. For a path $\langle v_i, v_{i+1}, \cdots, v_{i+j} \rangle$, we write $D(\langle v_i, v_{i+1}, \cdots, v_{i+j} \rangle) = [p_i, p_{i+1}, \cdots, p_{i+j}]$ to indicate that D places p_k pebbles on vertex v_k for each $k = i, i+1, \cdots, i+j$. Similarly, D(v) = p means that D places p pebbles on the vertex v. We then say that a vertex v is occupied if $D(v) \geq 1$ and unoccupied when D(v) = 0. Moreover, denote by $\widetilde{D}(v)$ the number of pebbles on v after some sequence of pebbling moves. Denote Z^+ the set of positive integers.

The optimal pebbling number was first considered by Pachter, Snevily, and Voxman. They obtained the optimal number of paths and the pebbling number of P_n^2 (see [3]). In [4], T. Friedman and C. Wyels gave the optimal pebbling number of cycles. Y. Ye et al. gave that the pebbling number of C_n^2 [6, 7]. Motivated by this, we obtain the optimal pebbling numbers of squares of paths and cycles in this paper.

2 Optimal pebbling number of P_n^2

This section studies the optimal pebbling number of P_n^2 . Let $P_n = \langle v_1, v_2, \ldots, v_n \rangle$. First, we give some useful lemmas.

Lemma 2.1 ([4]) $f_{opt}(P_{3t+r}) = f_{opt}(C_{3t+r}) = 2t + r$, where $t \in \mathbb{Z}^+$ and r = 0, 1, 2.

Lemma 2.2 Let s and q be two positive integers with $s \leq q$. If P_n^2 admits a solvable distribution D of size q such that $D(v_n) = s$, then P_n^2 also admits

a solvable distribution D^* of size q such that $D^*(v_n) = 0$ for s = 1 and $D^*(v_n) = s - 2$ for $s \ge 2$.

Proof. For s=1, there exist a sequence of pebbling moves from $\langle v_1, v_2, \cdots, v_{n-2} \rangle$ to v_{n-1} with $\widetilde{D}(v_{n-1}) \geq 1$. Now we can define $D^*(v_{n-1}) = D(v_{n-1}) + 1$, $D^*(v_n) = 0$ and $D^*(v_j) = D(v_j)$ for each of the left vertices v_j . Clearly, D^* is also a solvable distribution.

Next let $s \geq 2$. We can define $D^*(v_{n-1}) = D(v_{n-1}) + 2$, $D^*(v_n) = s - 2$ and $D^*(v_j) = D(v_j)$ for each of the left vertices v_j . Clearly, D^* is also a solvable distribution. \square

Lemma 2.3 Let s and q be two positive integers with $s \leq q$. If P_n^2 admits a solvable distribution D of size q such that $D(\langle v_{n-1}, v_n \rangle) = [s, 0]$, then P_n^2 also admits a solvable distribution D^* of size q such that $D^*(\langle v_{n-1}, v_n \rangle) = [0, 0]$ for s = 1 and $D^*(\langle v_{n-1}, v_n \rangle) = [s - 2, 0]$ for $s \geq 2$.

Proof. For s=1, it is clear that there exist a sequence of pebbling moves such that $\widetilde{D}(v_{n-2}) \geq 2$ or $\widetilde{D}(v_{n-3}) \geq 2$. Suppose that $D^*(v_{n-2}) = D(v_{n-2}) + 1$, $D^*(v_{n-1}) = 0$ and $D^*(v_j) = D(v_j)$ for each of the left vertices v_j . Then D^* is a solvable distribution.

Next let $s \geq 2$. Similarly, suppose that $D^*(v_{n-2}) = D(v_{n-2}) + 2$, $D^*(v_{n-1}) = s - 2$ and $D^*(v_j) = D(v_j)$ for each of the left vertices v_j . Hence D^* is also a solvable distribution. \square

By Lemma 2.2 and Lemma 2.3, we easily give the following result.

Corollary 2.4 For P_n^2 , if D is a solvable distribution of size q, then there is some solvable distribution D^* of size q such that $D^*(v_n) = D^*(v_{n-1}) = 0$.

A solvable distribution of P_n^2 is said to be good, if $\overline{D}(v_{n-1}) \geq 2$ or $\widetilde{D}(v_n) \geq 2$ after appropriate pebbling moves.

Lemma 2.5 For $n \geq 3$, let P_n^2 have a good distribution of size q. Then P_n^2 admits a good distribution D of size q such that $D(v_n) \neq 0$ or $D(v_{n-1}) \neq 0$.

Proof. Let k be the maximum positive integer, obtain $D(v_k) \neq 0$, such that P_n^2 admits a good distribution of size q. Using proof by contradiction, we can assume that $k \leq n-2$, i.e., $D(v_{k+1}) = D(v_{k+2}) = \dots = D(v_n) = 0$.

First, we consider the case that $D(v_k)$ is odd or k = 1, 2. We can define two new distributions D'_j (j = 1, 2) such that $D'_j(v_k) = D(v_k) - 1$, $D'_j(v_{k+j}) = D(v_{k+j}) + 1$ and $D'_j(v_i) = D(v_i)$ for else i. Note that any pebble can go through one of v_{k+1} and v_{k+2} to reach v_{n-1} and v_n . So at least one of D'_1 and D'_2 is a good distribution. Hence it is a contradiction in the maximal of k.

Second, it remains the case that $D(v_k)$ is even and $k \geq 3$. Next, we consider two cases according to the parity of $D(v_{k-1})$. If $D(v_{k-1})$ is odd, then we can define two new distributions $D_j''(j=1,2)$ such that $D_j''(v_k) = D(v_k) - 2$, $D_j''(v_{k-1}) = D(v_{k-1}) + 1$, $D_j''(v_{k+j}) = D(v_{k+j}) + 1$ and $D_j''(v_i) = D(v_i)$ for else i. Clearly, either D_1'' or D_2'' is a good distribution. Otherwise, $D(v_{k-1})$ is even. We can define two new distributions $D_j'''(j=1,2)$ such that $D_j'''(v_k) = D(v_k) - 2$, $D_j'''(v_{k-2}) = D(v_{k-2}) + 1$, $D_j'''(v_{k+j}) = D(v_{k+j}) + 1$ and $D_j'''(v_i) = D(v_i)$ for else i. Then one of D_1''' and D_2''' is a good distribution. A contradiction. \square

The result of $f_{opt}(P_n^2)$ depends on the value of $n \mod 5$. Thus we write P_n as $P_n = P_{5t+r} = \langle v_1, v_2, \dots, v_{5t+r} \rangle$, where $r \in \{-2, -1, 0, 1, 2\}$ and t is a positive integer.

Theorem 2.6 Let n = 5t + r. Then

$$f_{opt}(P_n^2) = f_{opt}(P_{5t+r}^2) = \begin{cases} 2t & if \quad r = -2, -1, 0; \\ 2t+1 & if \quad r = 1, 2. \end{cases}$$

Proof. Mark the right of the equation with A_r . We give a distribution D of P_{5t+r}^2 , which places 2 pebbles at $v_3, v_{5+3}, \ldots, v_{5(t-1)+3}$ when r = -2, -1, 0, places an additional pebble at v_{5t} when r = 1 or 2. Clearly, D is solvable. Then $f_{opt}(P_n^2) \leq A_r$. Next, we use mathematical induction on n to prove $f_{opt}(P_n^2) = A_r$.

First, let
$$n=3$$
. Note that $P_3^2 \cong C_3$. By Lemma 2.1, $f_{opt}(P_3^2)=2$.

Second, assume that the theorem is true for each n > 3. We need show that the theorem is true for n + 1. If n = 5t - 2, then by induction hypothesis, $f_{opt}(P_{5t-2}^2) = 2t$. Since P_{5t-2}^2 is a subgraph of P_{5t-1}^2 , we have

$$f_{opt}(P_{n+1}^2) = f_{opt}(P_{5t-1}^2) \ge f_{opt}(P_{5t-2}^2) = 2t = A_{-1}.$$

Similarly, if n = 5t - 1, then

$$f_{opt}(P_{n+1}^2) = f_{opt}(P_{5t}^2) \ge f_{opt}(P_{5t-1}^2) = 2t = A_0;$$

if n = 5t + 1, then

$$f_{opt}(P_{n+1}^2) = f_{opt}(P_{5t+2}^2) \ge f_{opt}(P_{5t+1}^2) = 2t + 1 = A_2.$$

Next, it remains the cases n = 5t and n = 5t + 2.

For n=5t, we have to show $f_{opt}(P_{n+1}^2)=f_{opt}(P_{5t+1}^2)\geq 2t+1=A_1$. By induction hypothesis, $f_{opt}(P_{5t+1}^2)\geq f_{opt}(P_{5t}^2)=2t=A_0$. Now, assume that D is a solvable distribution of P_{5t+1}^2 of size 2t. If $D(v_{5t+1})=1$ or $D(\langle v_{5t}, v_{5t+1} \rangle)=[0, 2]$, then after any pebbling moves,

$$\sum_{i=1}^{5t-1} \widetilde{D}(v_i) \le 2t - 1 \text{ or } \sum_{i=1}^{5t} \widetilde{D}(v_i) \le 2t - 1.$$

Note that by induction hypothesis, $f_{opt}(P_{5t-1}^2) = f_{opt}(P_{5t}^2) = 2t$. It is a contradiction in the solvability of D. If $D(v_{5t+1}) = 2$ and $D(v_{5t})$ is odd, then we can define a distribution D' such that $D'(v_{5t+1}) = 1$, $D'(v_{5t}) = D(v_{5t}) + 1$ and $D'(v_i) = D(v_i)$ for else i. If $D(v_{5t+1}) = 2$ and $D(v_{5t})$ is even and nonzero, then we can define a distribution D' such that $D'(v_{5t+1}) = 1$, $D'(v_{5t-1}) = D(v_{5t-1}) + 1$ and $D'(v_i) = D(v_i)$ for else i. Clearly, in both cases, D' is also solvable for P_{5t+1}^2 with $D'(v_{5t+1}) = 1$. A contradiction to the above. If $D(v_{5t+1}) \geq 3$, then by Lemma 2.2, P_{5t+1}^2 admits a solvable distribution D'' with $D''(v_{5t+1}) = 1$ or 2. Similarly, a contradiction. Hence $D(v_{5t+1}) = 0$, that is, $\sum_{i=1}^{5t} D(v_i) = 2t$. We give the following

Claim D is not a good distribution for P_{5t}^2 .

The proof of the claim will be given in the last section.

Since D is not a good distribution for P_{5t}^2 , the vertex v_{5t+1} can not get a pebble after any pebbling moves, it is a contradiction in the solvability of D. So D is not solvable for P_{5t+1}^2 . Then $f_{opt}(P_{5t+1}^2) = 2t + 1$. Now, we give the proof of the claim.

By the induction hypothesis that $f_{opt}(P_{5t}^2)=2t$, let D be a solvable distribution of size 2t in P_{5t}^2 . Similar to the preceding proof, we have $D(v_{5t})=0$. Next we prove that $D(v_{5t-1})=0$. If $D(v_{5t-1})=1$, then $\sum_{i=1}^{5t-2}D(v_i)=2t-1$. By the induction hypothesis that $f_{opt}(P_{5t-1}^2)=2t$, it is a contradiction. If $D(\langle v_{5t-3}, v_{5t-2}, v_{5t-1}\rangle)=[0,0,2]$, then after any pebbling moves, $\sum_{i=1}^{5t-4}\widetilde{D}(v_i)=2t-2$. Since $f_{opt}(P_{5t-4}^2)=2t-1$ by induction hypothesis, it is a contradiction in the solvability of D. Suppose that at least one of the values of $D(v_{5t-3})$ and $D(v_{5t-2})$ is nonzero, say $D(v_{5t-3})\neq 0$. If $D(v_{5t-3})$ is odd, then we can define a distribution D^* such that $D^*(v_{5t-1})=1$, $D^*(v_{5t-3})=D(v_{5t-3})+1$ and $D^*(v_i)=D(v_i)$ for else i. Otherwise, $D(v_{5t-3})$ is even. We can define a distribution D^* such that $D^*(v_{5t-1})=1$, $D^*(v_{5t-4})=D(v_{5t-4})+1$ and $D^*(v_i)=D(v_i)$ for else i. Therefore, in both cases, D^* is also solvable for P_{5t}^2 with $D^*(v_{5t-1})=1$. A contradiction to the above. If $D(v_{5t-1})\geq 3$, then, by Lemma 2.3, we can

conclude that P_{5t}^2 admits a solvable distribution D^{**} with $D^{**}(v_{5t-1}) = 1$ or 2. A contradiction. Then $D(v_{5t-1}) = 0$. By Lemma 2.5, the solvable distribution D of P_{5t}^2 is not a good distribution.

For n = 5t + 2, we can similarly prove that $f_{opt}(P_{n+1}^2) = 2t + 2$. \square

3 Optimal pebbling number of C_n^2

We write C_n as $C_{5t+r} = [v_1v_2 \cdots v_{5t+r}]$ where $r \in \{-2, -1, 0, 1, 2\}$ and t is positive integer. For the convenience of our proofs, if we remove a vertex v_i of C_n^2 , then it is understood that the edge incident to v_i is also removed, after adding an edge between v_{i-1} and v_{i+2} , v_{i-2} and v_{i+1} , we obtain the graph C_{n-1}^2 . If we remove two vertices v_i and v_{i+1} then adding an edge between v_{i-1} and v_{i+2} , v_{i-1} and v_{i+3} , v_{i-2} and v_{i+2} , respectively. We create the graph C_{n-2}^2 . Since the graph C_n^2 may obtain by adding an edge between v_1 and v_n , v_1 and v_{n-1} , v_2 and v_n in the graph P_n^2 , we have a corollary as follows:

Corollary 3.1 $f_{opt}(P_n^2) \geq f_{opt}(C_n^2)$.

Theorem 3.2 Let n = 5t + r, where $t \in \mathbb{Z}^+$ and r = -2, -1, 0, 1, 2.

$$f_{opt}(C_n^2) = f_{opt}(C_{5t+r}^2) = \begin{cases} 2t & if \quad r = -2, -1, 0; \\ 2t + 1 & if \quad r = 1, 2. \end{cases}$$

Proof. Mark the right of the equation with A_r . By Corollary 3.1,

$$f_{opt}(C_{5t+r}^2) \leq A_r$$
.

Now we show $f_{opt}(C_{5t+r}^2) \geq A_r$. Thus $f_{opt}(C_{5t+r}^2) = A_r$.

First, we note that $C_3^2 \cong K_3$, $C_4^2 \cong K_4$ and $C_5^2 \cong K_5$. Obviously,

$$f_{opt}(C_3^2) = f_{opt}(C_4^2) = f_{opt}(C_5^2) = 2.$$

Second, assume that the theorem is true for n > 5. We need show that the theorem is true for n + 1. If n = 5t - 2, 5t - 1, 5t + 1, then Theorem 3.2 holds for n + 1, which the proof is similar to the proof of Theorem 2.6.

Next, it remains the cases n=5t and n=5t+2. We only need prove that if $f_{opt}(C_{5t}^2)=2t$ then $f_{opt}(C_{5t+1}^2)\geq 2t+1$. The proof of the case n=5t+2 is similar.

Using proof by contradiction, suppose that $f_{opt}(C_{5t+1}^2) < 2t+1$, and 5t+1 is the smallest index such that the theorem does not hold. That is $f_{opt}(C_{5t+1}^2) \leq 2t$. Since C_{5t}^2 is a subgraph of C_{5t+1}^2 , we have $f_{opt}(C_{5t+1}^2) \geq f_{opt}(C_{5t}^2) = 2t$. Thus $f_{opt}(C_{5t+1}^2) = 2t$. Suppose that D is a solvable distribution of size 2t in C_{5t+1}^2 . We will modify D to create D^* , a solvable distribution on a smaller square of cycles with fewer than the number of pebbles, thus producing our desired contradiction.

Case 1: D places exactly 2 pebbles on each occupied vertex of C_{5t+1}^2 .

We consider the corresponding sequence of the number of pebbles on the vertices of C_{5t+1}^2 . Since D was assumed to be solvable, we may assume that there are at most four consecutive unoccupied vertices in D. Also, there is a sequence of vertices $v_i, v_{i+1}, v_{i+2}, v_{i+3}, v_{i+4}$ with $D([v_i, v_{i+1}, v_{i+2}, v_{i+3}, v_{i+4}]) = [2, 0, 0, 0, 2]$ or [2, 0, 0, 2, 0] or [2, 0, 0, 0, 0]. Otherwise, there would be exactly four unoccupied vertices between every pair of occupied vertices. Thus we have r = 0. This is a contradiction.

Suppose that $D([v_i, v_{i+1}, v_{i+2}, v_{i+3}, v_{i+4}]) = [2, 0, 0, 0, 2]$ or [2, 0, 0, 2, 0], we can modify D and C_{5t+1}^2 by removing vertices $v_{i+1}, v_{i+2}, v_{i+3}, v_{i+4}$ and their associated pebbles. Since v_{i+5} and v_{i+6} are either occupied or can be pebbled by v_i , and other vertices are unaffected, D^* is a solvable distribution. Note that D^* is a distribution on C_{5t-3}^2 with $|D^*| = 2t-2$. We have reached a contradiction since $f_{opt}(C_{5t-3}^2) = 2t-1$. In addition, if $D([v_i, v_{i+1}, v_{i+2}, v_{i+3}, v_{i+4}]) = [2, 2, 0, 0, 0]$, then we can modify D and C_{5t+1}^2 by removing vertices v_{i+1}, v_{i+2} and two pebbles on v_{i+1} , and put one pebble to v_{i-1} . Observe that D^* is a solvable distribution. Then D^* is a distribution on C_{5t-1}^2 with $|D^*| = 2t-1$. By the hypothesis $f_{opt}(C_{5t-1}^2) = 2t$, it is a contradiction.

Next, we consider that C_{5t+1}^2 contains the vertex v_1 (after relabeling if necessary) with $D(v_1) = 1$ or $D(v_1) \ge 3$. Without loss of generality, we may assume that v_j (j > 1) need to obtain pebbles from $\{v_{5t}, v_{5t+1}, v_1\}$ by a sequence of pebbling moves. Thus the pebbling moves must be involved with v_2 and v_3 . We assume that the number of pebbles which can be moved from v_{5t} to others is at most m_1 , while the number of pebbles which can be moved simultaneously from v_{5t+1} is at most m_2 . Let $D(v_1) = q$, $D(v_2) = d$.

Case 2 q = 1.

If $m_2=0$, then we modify D and C_{5t+1}^2 by removing v_1,v_{5t+1} and the pebble on them. Thus creating a distribution D^* of C_{5t-1}^2 with at most 2t-1 pebbles. We claim that all the remaining vertices may still be pebbled, in other words, that D^* is solvable. Using distribution D, $\lfloor \frac{m_1+1}{2} \rfloor$ pebbles could be moved from $\{v_{5t}, v_1\}$ to v_2 , $\lfloor \frac{m_1+1}{2} \rfloor + \lfloor \frac{d}{2} \rfloor$ pebbles can be moved to v_3 . Using D^* , m_1 pebbles may be moved from v_{5t} to v_2 . $m_1 + \lfloor \frac{d}{2} \rfloor$ pebbles pebbles can be moved to v_3 . Since $m_1 \geq \lfloor \frac{m_1+1}{2} \rfloor$ for all $m_1 \geq 0$, all vertices initially that are reachable from D are still reachable from D^* . Then D^* is solvable. Then contradicting the fact that $f_{opt}(C_{5t-1}^2) = 2t$.

If $m_2 \neq 0$ and d=0, then we modify D and C_{5t+1}^2 by removing v_1, v_2 and the pebble on them. Thus creating a distribution D^* of C_{5t-1}^2 with 2t-1 pebbles. We claim that all the remaining vertices may still be pebbled, in other words, that D^* is solvable. Using distribution D, $\lfloor \frac{m_1+m_2+1}{2} \rfloor$ pebbles could be moved from $\{v_{5t}, v_{5t+1}, v_1\}$ to v_3 . Using D^* , m_1+m_2 pebbles may be moved from $\{v_{5t}, v_{5t+1}\}$ to v_3 . Since $m_1+m_2 \geq \lfloor \frac{m_1+1+m_2}{2} \rfloor$ for all $m_1 \geq 0$, all vertices initially that are reachable from D are still reachable from D^* . Then D^* is solvable. Then contradicting the fact that $f_{opt}(C_{5t-1}^2) = 2t$.

If $m_2 \neq 0$ and $d \neq 0$, then we modify D and C_{5t+1}^2 by removing v_1 and the pebble on it. Thus creating a distribution D^* of C_{5t}^2 with 2t-1 pebbles. We claim that D^* is solvable. Using distribution D, $\lfloor \frac{m_1+1}{2} \rfloor + m_2$ pebbles could be moved from $\{v_{5t}, v_{5t+1}, v_1\}$ to v_2 , at most $\lfloor \frac{m_1+m_2+1+d}{2} \rfloor$ pebbles could be moved to v_3 . Using D^* , m_1+m_2 pebbles may be moved to v_2 , v_3 can get $\lfloor \frac{m_1+d}{2} \rfloor + m_2$ pebbles. Since $m_1 \geq \lfloor \frac{m_1+d}{2} \rfloor$ and $\lfloor \frac{m_1+d}{2} \rfloor + m_2 \geq \lfloor \frac{m_1+m_2+1+d}{2} \rfloor$ for all $m_1 \geq 0$, all vertices initially that are reachable from D are still reachable from D^* . Then D^* is solvable. Then contradicting the fact that $f_{opt}(C_{5t}^2) = 2t$.

Case 3 $q \ge 3$.

We may assume that each occupied vertex of C^2_{5t+1} has at least two pebbles. Otherwise, it can return to Case 2. When at least one of v_{5t+1} and v_2 is unoccupied, say v_2 , we modify D and C^2_{5t+1} by removing v_1, v_2 and pebbles on v_1 , place 2 pebbles on v_{5t} and q-3 pebbles on v_3 . Thus creating a distribution D^* of 2t-1 pebbles on C^2_{5t-1} . We claim that D^* is solvable. For D, we can move $\lfloor \frac{q+m_1+m_2}{2} \rfloor$ pebbles to v_3 . For D^* , we can move m_1+m_2+q-2 pebbles to v_3 . Since $m_1+m_2+q-2 \geq \lfloor \frac{m_1+m_2+q}{2} \rfloor$, all vertices initially that are reachable from D are still reachable from D^* . Then D^* is solvable. Then contradicting the fact that $f_{opt}(C^2_{5t-1})=2t$. When $D(v_2) \neq 0$ and $D(v_{5t+1}) \neq 0$, i.e., $d \geq 2$ and $D(v_{5t+1}) \geq 2$, we modify D and C^2_{5t+1} by removing v_1 and pebbles on it, place 2 pebbles on

 v_{5t+1} and q-3 pebbles on v_2 . Thus creating a distribution D^* of 2t-1 pebbles on C_{5t}^2 . Using distribution D, $\lfloor \frac{m_1+q}{2} \rfloor + m_2$ pebbles could be moved to v_2 and at most $\lfloor \frac{m_1+m_2+q+d}{2} \rfloor$ pebbles could be moved to v_3 . Using D^* , m_1+m_2+q-2 pebbles could be moved to v_2 and $\lfloor \frac{m_1+q+d-3}{2} \rfloor + m_2+1$ pebbles could be moved to v_3 . Since $m_1+q-2 \geq \lfloor \frac{m_1+q}{2} \rfloor$ and $\lfloor \frac{m_1+q+d-3}{2} \rfloor + m_2+1 \geq \lfloor \frac{m_1+m_2+q+d}{2} \rfloor$, all vertices initially that are reachable from D are still reachable from D^* . Then D^* is solvable. Thus contradicting the fact that $f_{opt}(C_{5t}^2)=2t$.

Combining with three cases, we conclude that our initial assumption is false, and the theorem holds for all positive integers. \Box

Acknowledgment Thanks to the anonymous referees for many useful comments and suggestions.

References

- [1] F. R. K. Chung, Pebbling in hypercubes, SIAM J. Discrete Math., 2(4)(1989)467-472.
- [2] H. L. Fu, C. L. Shue, The optimal pebbling number of the complete m-ary tree, Discrete Math. 22(2000),no.1-3,89-100.
- [3] L. Pachter, H. Snevily, B. Voxman, On pebbling graphs. Congressus Numerantium, 107 (1995) 65-80.
- [4] T. Friedman, C. Wyels, Optimal pebbling of paths and cycles. Discrete Math., submitted (Mathematics ArXiv Article math.CO/0506076).
- [5] D. Moews, Optimally pebbling hypercubes and powers. Discrete Math., 190 (1-3) (1998) 271-276.
- [6] Y.S. Ye, M.Q. Zhai, Y. Zhang, Pebbling number of squares of odd cycles, Discrete Math., 312 (21) (2012) 3174-3178.
- [7] Y.S. Ye, M.Q. Zhai, Y. Zhang, The pebbling number of squares of even cycles, Discrete Math., 312 (21) (2012) 3203-3211.