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1 Introduction and Preliminaries

Throughout the paper, R will denote an M A-semiring with center Z(R).
Recall that R is prime if a Rb = (0) implies that a = 0 or b = 0 and semiprime
if aRa = 0 implies that a = 0. M A-semiring R is said to be 2 torsion free if
2z = 0 implies that 2 =0 Vz € R. An additive mapping d: R — R is said to
be a derivation if d(zy) = d(z)y + zd(y), holds for all z,y € R and said to
be an inner derivation if d([¢,y]) = [d(¢),y] + [t,d(y)] indeed, d([t,y]) =
d(ty +yt') = d(t)y +td(y) + d(y)t' +y'd(t) = [d(¢),y] + [¢,d (y)]. First, we
introduce the Lie ideal as follows: Let U be an additive subsemigroup of
R, then (i) U is a right Lie ideal of R if [U, R] c U, (ii) U is a left Lie ideal
of Rif [R,U] c U, (iii) if U is both a right Lie ideal and left Lie ideal of R,
then U is a Lie ideal of R. In this paper, we investigate some commutativity
conditions with the help of Lie ideals and derivations in M A-semirings. A
celebrated result of Ram Awtar (1] is extended in M A-semiring as follows:
Let R be a 2-torsion free prime M A-semiring, d be a non-zero derivation of
R and U be a Lie ideal of R such that [z,d(z)] =0 Vz € U, then U € Z(R).
A remarkable result of Herstein [8] is also extended in the setting of M A-
semirings (see(Theorem 2.9)). Let R be a 2-torsion free M A-semiring, d
be a non zero derivation of R. If a € R and [d(R),a] =0, then a € Z(R).

ARS COMBINATORIA 114(2014), pp. 373-384



By semiring we mean a non empty set R with two binary operations
'+’ and ’.” such that (R,+) and (R,.) are semigroups, where + is > com-
mutative with absorbing (0) such that a+0=0+a =a and a0 =0z =0
for all a € R (see [7]) and a.(b+¢) =a.b+a.c, (b+c).a=b.a+ca hold for
all a,b,c € R. In [2], present authors referred the class of additively com-
mutative inverse semiring satisfying the condition (Az) i.e. a+a € Z(R)
for all a € R, where a’ is the additive pseudo inverse (see [6]), as MA-
semirings and introduce the notion of commutators and further they used
commutators to develop the notion of dependent elements (see[4]). For
any z,y € R, we write (zoy) = zy + yz and [z,y] = zy + yz and proved
the Jacobian Theorem as: [z,[y,2]] + [y, [2,2]] = [[=,¥],2] V=z,y,z2€ R
and following identities also hold (i)[z,yz] = [z,y]z + y[z, 2], (i)[zy,2]=
z[y’z] + [22, Z]y, (iii)([xv y])' = [y,z] = [zayl] = [x',y] (see [2]) Exam-
ples of non commutative M A-semirings can also be found in [2] (see also
[3, 4]). The aim of the present paper is to investigate some commutativity
conditions in prime M A-semirings.

2 Some Commutativity Conditions on Prime
M A-Semirings

In this section, we investigate some commutativity conditions for prime
M A-semirings with the help of derivations and commutators. We recall
the followings:

Lemma 2.1. [{, Lemma 2.3] Let R be a semiprime M A-semiring and an
element a € R such that

(?) [z,a] =0,V z€R, thenae Z(R).

(i) [z,a]a=0o0ra(z,a]=0VY z€R, thenaecZ(R).

(i4i) £ =0 if and only if z’' = 0.

(iv) azb=0 if and only if az b=0 ora’zb=0 or azb’ = 0.

Theorem 2.2. [2, Theorem 3.5] Let R be an M A-semiring, then [z, [y, z]]+
(v, [2,2]] = [[z,9], 2] holds for all z,y,z€ R.

Theorem 2.3. [2, Theorem 3.2] If R is an M A-semiring, then for all
z,Y, z € R, the following identities are valid.

(i)[z,yz] = [z,y]z + y[z, 2] ,(Jacobian Identity)

(it)[zy, 2] = z|y, 2] + [z, 2}y, (Jacobian Identity)

(i8)[z +y, 2] = [z, 2] + [y, 2]

(iv)[z,0] = [0,z] =0 ) ’

(v)([2,9]) =[y,2] = [z,4'] =[]

(vi)[[z,y]), 2] = [z, ¥]z + z[y, =

(vii)[nz, y] = n[z,y], for any positive integer n.
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Lemma 2.4. Let R be a 2-torsion free semiprime M A-semiring. Ifa€ R
such that [a,[a,2]] =0 V z€ R, then ae Z(R).

Proof. By hypothesis

[a,[a,z]] =0 VzeR. (1)
Replacing z by zy in (1), we get
0=[a,z[a,y] +[a, 2] ¥] = z[a, [a,y]] +[a, 2} [a,¥] +[a, 2] [a,y] + [, [a, 2]] u.
Using (1) in the last equation, we get 2[a, z] [a,y] = 0. Since R is 2-torsion
free so

[a,2] [a,4] =0. (2)

Replacing y by yt in (2), we get 0= [a, z] [a, 3] = [, 2] y [a, ] +[a, 2] [a, ¥] t.
In view of (2), the last equation yields [a,z]y[a,t] = 0. Primeness of R
implies that either [a,z] =0 or [a,t] = 0 for all z,¢ € R. Hence by Lemma

2.1(i) a € Z(R). O

The following Jordan identity is very useful in the development of the
sequel:

Lemma 2.5. Let R be an M A-semiring. Let x,y, z € R, then the following
identity holds:

(zyoz)=z[y,2]+ (z02)y.
Proof. By definition of commutators in M A-semirings the right hand side
of the last expression becomels: ,
zly,z] +(zo2)y=x(yz+2y )+ (zz + zz)y = Tyz + T2Y +T2Y + 2TY
= ZYz + :vz(y' +Y) + 2Ty = TYZ + x(y' +y)z+zzy =x(y+y +y)z + 2Ty =
Yz + zzy = (TY 0 2). O
Lemma 2.6. Let d be a derivation of a prime M A-semiring R and a be
an element of R. If ad(z) =0 V z € R, then either a =0 or d is zero.

Proof. Let ad(z) =0 V z € R, replace z by zy. Then

0 =ad(z) = a(d(z)y + zd(y)) = ad(z)y + axrd(y) = azd(y) ¥ z,y€ R. As R
is a prime M A-semiring, therefore either d(y) =0 or a =0, if d(y) # 0 for
some y € R, then a =0. a

Theorem 2.7. Let R be a 2-torsion free prime M A-semiring, d be a non
zero derivation of R. If a € R and [d(R),a] =0, then a € Z(R).

Proof. Assume that a ¢ Z(R). By hypothesis, we have
[d(z),a] =0 VzeR. (3)

Replacing = by za in (3), we get
0 = [d(z)a+zd(a),a] = [d(z)a, a]+[zd(a),a] = (d(z)a + a'd(z)) a+[zd(a), a]
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= [d(z),a]a + z[d(a),a] + [z,a]d(a). By using (3) in the last equation, we
get

|z,a]d(a)=0 VY zeR. (4)
Replacing z by zy, y € R in (4), we get 0 = [zy,a]d(a) = z[y,a]d(a) +
[z,a]yd(a) =0 and using (4), we get [z,a]yd(a) =0 V z,y € R. Primeness
of R implies that [z,a] = 0 or d(a) = 0. As a ¢ Z(R), therefore z,a] # 0
for some z € R by Lemma 2.1(i), so we obtain d(a) = 0. Now consider
the following mapping on R : D(z) = [z,a] , where D is a non-zero inner
derivation admitted by R (see [4]). By hypothesis [d(z),a] =0 V z € R,
that is

Dd(z) =0. (5)

Since D is an inner derivation, so D(zy) = D(z)y+zD(y) ¥V z,y € R.
Now take, dD(z) = d([z,a]) = d(za+a'z) = d(za)+d(a'z) = d(z)a+zd(a)+
d(a)z +a'd(z) = d(z)a+a d(z)+zd(a) +d(a)z = [d(z),a]+[z,d(a)]. That
is dD(z) = [d(z),a] + [z,d(a)]. From the last equation using (3) and the
fact that d(a) =0, we get

dD(z)=0 YzeR. (6)

Replacing = by zD(y) in (5) and using (6) and (5) again, we get 0 =
Dd(zD(y)) = D(d(z)D(y) +zdD(y)) = D(d(z)D(y)) = Dd(x)D(y) +
d(z)DD(y) = d(z)DD(y). Hence we get d(z)DD(y) =0 V z,y € R. As
d(z) + 0 for some z € R, therefore by Lemma 2.6, we have

DD(y) =0 VyeR. )

Replacing y by zy in (7) and using it again, we get

0 = DD(=zy) = D(D(z)y + zD(y)) = DD(z)y + D(z)D(y) + D(z)D(y) +
zDD(y) =2D(z)D(y). Since R is a 2-torsion free, we have D(z)D(y) =0.
That is, {z,a]D(y) =0, V x,y € R. Suppose for some z, € R, [z.,a] # 0,
[ze,a]D(y) = 0. Using Lemma 2.6, we obtain D(y) =0 V y € R, that is
[y,a] =0,y € R then by Lemma 2.1 a € Z(R). 0O

Corollary 2.8. Let R be a 2-torsion free prime M A-semiring, d be a
nonzero derivation of R. If [d(R),a] =0 V a € R, then R is commutative.

Proof. Let a € R, then by hypothesis [d(R),a] = 0. Since R be a 2-torsion
free prime M A-semiring, d be a nonzero derivation of R, therefore by The-
orem 2.7 a € Z(R) and hence R < Z(R). Thus R is commutative. 0

In the following theorem, we extend the celebrated result of Herstein
[8] in the setting of M A-semirings.

Theorem 2.9. Let R be a 2-torsion free prime M A-semiring, d be a
nonzero derivation of R and a € R. If d([R,a]) =0, then a € Z(R).
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Proof. By hypothesis
d([r,a])=0 VreR. (8)

Replacing r by ar in (8), we get
0 = d([ar,a]) = d(ara + aar') =d(a(ra+ ar')) = d(a[r,a]) = d(a)[r,a] +
ad([r,a]). Using (8) in the last equation, we get,

d(a)[r,a] =0, YreR. (9)

Replacing 7 by rs, s€ R in (9) and using Theorem 2.3, we have

0 =d(a)[rs,a] =d(a) (r[s,a] + [r,a]s) = d(a)r[s,a] + d(a)[r,a]s V r,s € R.
Using (9), we get d(a)r[s,a] =0V r,s € R. Since R is a prime M A-semiring,
sod(a)=0or [s,a] =0V seR.

Case 1: If d(a) # 0, then [s,a] =0 ¥ s € R and this by Lemma 2.1(%)
implies a € Z(R).

Case 2: Suppose [s,a] # 0 for some s € R, then d(a) = 0. Now, from our
hypothesis, V r € R, we have: 0=d([r,a])=d(ra+ ar') =d(ra) +d(a'r') =
d(r)a +rd(a) + d(a)r +a d(r).

As d(a) = 0, therefore, d(r)a +a'd(r) = 0. That is [d(r),a] =0, V 7 € R,
then by Theorem 2.7, a € Z(R). (m]

Corollary 2.10. Let R be a 2-torsion free prime M A-semiring, d be a
nonzero derivation of R and a € R. If d([R,a]) = OVa € R, then R is

commutative.

Proof. Let a € R, then by hypothesis d([R,a]) =0. Since R be a 2-torsion
free prime M A-semiring, d be a nonzero derivation of R, therefore by The-
orem 2.9 a € Z(R) and hence R< Z(R). Thus R is commutative. ]

Theorem 2.11. Let R be a 2-torsion free prime M A-semiring, I a non-
zero ideal of R and a€ R. If ([z,b]0oa) =0, Yz e R,bel, then ae Z(R).

Proof. As I is a non-zero ideal, take b€ I such that b+0
Case 1: If [z,b] = 0, then in particular [a,b] =0 for some a € R, so

[a,b] =0 Vbel. (10)

As I is ideal, so replacing b by zb in (10), we get [a,zb] =0 Vb e [ i.e. z[a,b]+
[a,z)b=0. Using (10) in the last equation, we get

[a,z]b=0 Vbel,zeR. (11)
Replacing z by zy, in (11), we have

0=[a,zy]b=z[a,y]b+[a,z] yb V z,y € R. Using (11) in the last expression
we get [a,z]yb=0 V z,y € R. As b # 0, therefore, by primeness of R,

377



[a,z] =0 V z € R and by Lemma 2.1(i), we have a € Z(R).
Case 2: If [z,b] + 0, then consider the following mappings on R:

() f(z)=[=b], (@) g(z)=(zea). (12)
Then for any € R, we have gf(z) = g([z,b]) = ([z,b) 0 a) = 0. That is
gf(z)=0,YzeR. (13)
Replacing z by zb in (12)(i), we get f (zb) = [zb,b] = zbb+b'zb = (zb+b'z)b
= [z,b]b = f(z)b, and so we get,
f(zb) = f(z)b, YzeR. (14)
Replacing z by zb in (13), we get 0 = gf (zb) = g (f(z)b) = f(z)boa =

f(@)[b,a]+(f(x)oa)b (by Lemma 2.5). That is f(z)[b,a]+([z,b]ea)b=0.
Using hypothesis in the last expression, we have

f(z)[b,a] =0 Yz eR. (15)

Replacing z by zs, s € R in (15), we obtain 0 = f(zs)[b,a] = [zs,b] [b,a] =
(z[s,b] + [2,b] 5) [b,a] =z [s,b] [b, a] +[2,]] s[b, a] = zf(s)[b, a]+[z, b]s[b, a]
and using (15), we get [z,b]s[b,a] =0, V z,s € R. By primeness of R either
[z,6] =0 or [b,a]) = 0. If [z,b] =0 then in particular [a,b]) =0 and hence
[6,a]) =0 for some a € R. Then by case 1, a € Z(R). ]

Corollary 2.12. Let R be a 2-torsion free prime M A-semiring, I a non-
zero ideal of R and a € R. If ([R,I]oa) =0V a € R, then R is commutative.

Proof. Let a € R, then by hypothesis ([R,I]ca) =0. Since R be a 2-torsion
free prime M A-semiring, I be a nonzero ideal of R, therefore by Theorem
2.11 a€ Z(R) and hence R c Z(R). Thus R is commutative. a

3 Lie ideals and Commutativity Conditions
on Prime M A-Semirings

In this section we investigate commutativity conditions with the help of Lie
idesals and derivations in M A-semirings. A remarkable result of Ram awtar
[1] is also extended in the setting of M A-semirings. First we introduce the
notion of Lie ideals in M A-semirings as a canonical extension of Lie ideals

of rings.

Definition 3.1. Let U be an additive subsemigroup of R, then U is a Lie
ideal of R, if [U,R] c U, and also [R,U]cU.
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Proposition 3.2. If R is a 2-torsion free prime M A-semiring and U is a
Lie ideal of R such that Vx e U, [[z,d(z)],7] =0 Vr € R, and 2% € U, then
[z,d(z)] =0 VzeU.

Proof. By supposition
[[z,d(z)],r] =0 VzeU,reR. (16)
Replacing z by z + 22 in the last relation and using it again, we get

[z +2% d(z+2?)],r]=0
= [[z,d(2)],7] + [z, d(z?)],r] + [[2% d(2)], ] + [[*,d(z*)], 7] = 0.

Using (16) in the last equation, we get

[[z,d(xz)],r] + [[a:z,d(:z:)],r] =0

= ([z,zd(z)],7] + [[z,d(z)z] , 7] + [z[z,d(z)] + [z,d(z)]z,7] =0

= [x (a:d(x) + d(m)z') ,r] + [(a:d(:z:) + d(m)z') z, r] + [z[z,d(z)],7]
+[[z,d(z)]z,r] =0

= [z[z,d(z)], 7] + [[z,d(z)]z, 7] + [z[z,d(z)],7] + [[z,d(z)]z,7] = 0.

In view of Lemma 2.1(z¢), (16) gives: [z,d(z)] € Z(R). So from the last
equation, we get 4 [[z,d(z)]z,r] =0 . Since R is 2-torsion free, we get:

0 = ([z,d(z)]z,r] = [[z,d(z)],r) z + [z,d(z)][z,7] V zeU, reR. Using
(16) from the last equation, we get

[z,d(z)]{z,7] =0 Yz eU, reR. (17)

Replacing 7 by sr in the last equation then Yz e U, r,s € R, we get

0= [z,d(@)][z sr] = [z,d(z)] (slz, ) + [z,5]7) = [z, d(z)]s]z.7]

+ [z,d(z)] [z, s] 7. By(17) the last equation reduces to [z,d(z)]s[z,r] = 0.
By primness of R either [z,d(z)] =0 or [z,7] =0 Vz e U, r,se R.

Case 1: If [z,7] =0 ¥V z e U, r € R, in particular [z,d(z)] =0.

Case 2: If [z,7,] # 0 for some r, € R, then [z,d(z)] =0V zeU. a

Proposition 3.3. Let R be a prime M A-semiring and U be a Lie ideal of
R. Suppose that [[z,d(z)],r] =0 Yz e U, r € R, then [[d(r),z],z] € Z(R)
VzelUreR.

Proof. Let x €U and r € R, and as U is a Lie ideal, therefore [z,r] € U, so
that = + [z,7] € U. By assumption

[[z,d(z)],s] =0 VzeU, seR. (18)
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Replacing z by z+ [z, 7} in (18) then V 2 € U, r, s € R, we get [[z,d(z)], 5]+
[z,d[z,7]),s]) +[[[x,7] d[z,7]],s] +[[[z,],d(2)] 5] = 0. In view of (18)
and using the fact that d is a derivation from the last equation, we get

[[z, [d(z),7]] * [z, [z,d(r)]] + [[z,7] ,d(z)] , 5] = 0. (19)

By Theorem 2.2 [d(z),[r,z]] + [z, [d(z),7]] = [[z,d(z)],r]. Using Theo-
rem 2.3(v), from the last equation, we get [[z,7],d(z)] + [z, [d(z),r]] =
[r,[d(z),z]]. Using it in (19), we get [[r, [d(z),z]] + [z, [z,d(r)]],s] =0.
In view of (18), the last equation becc:mes: 0=[[z,[z,d(r)]],s]

= [ll.d(r)] 2] s8] = [[[d<r>,x1’,m] ] = [[[d(r),=] =], 5] (see (Theo-
rem 2.3(v))). Then by Lemma 2.1(z) [[d(r),z],z] € Z(R). O

The following Lemma 3.4 can be established by using the steps of proof
of Proposition 3.3.

Lemma 3.4. Let R be a prime M A-semiring and U be a Lie ideal of R.
Suppose that [z,d(x)] =0V e U, then [[d(r),z],z] =0 VzeU,re R.

Theorem 3.5. Let R be a 2-torsion free prime M A-semiring. Let d be a
non-zero derivation of R and U be a Lie ideal of R such that [z,d(z)] =0
VzeU. Then U c Z(R).

Proof. By Lemma 3.4

[[d(r),z],z] =0 VzeU,reR. (20)
By linearization of (20) and using (20), we get

[[d(r),z],y] +[[d(r),y],2] = 0. (21)

Let y € U,z = [t,9], then [yt,y] = yty +yyt =y(ty+yt) = y[t,¥] = vz
This implies that yz e U.
Now, replacing y by yz in (21) and expanding, we get
y([[d(r),z], 2] + [[d(r), 2], z]) + ([[d(r), =] ,¥] + [[d(r),¥],2])
+[d(r),y] [z, z]+[y,z] [d(7), 2] = 0. In view of (21) the last equation reduces
to

[d(r),y) [z, z] + [y, 2z} [d(r),2] =0 Vz,z,yeU,reR. (22)

Replacing = by y in (22), ¥ z,y,z € U,r € R, we get
(d(r)y, y'd(r)) (zy + y'z) + (yy + yy') (d(r)z + z'd(r)) =0.

or 0=d(r)yzy + yld(r)zy +yd(r)yz +d(r) (yy + yy') z ,+ d(r? (yyz' + yyz) +
d(r)yy z = d(r)yzy+y d(r)zy +yd(r)yz+d(r) (yy +yy +yy ) z=d(r)yzy+
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y d(r)zy +yd(r)yz + d(r)y'yz = (d(r)y +y d(r)) zy + (y' d(r) + d(r)y) vz
=[d(r),y] [2,y] . Replacing z by [¢t,y] in the last expression, we get

[d(r), 9] [[t,9],9] =0 Vrite Ry eU. (23)
Replacing ¢ by td(a) in (23), ¥V r,t € R,y € U, yields on expansion
[d(r), 9] {t[[d(a),¥],¥] + 2][t,¥] [d(a),y] + [[t,¥],y] d(a)} = O.

In view of (20) and (23) and using the fact that R is 2-torsion free the last
equation reduces to

[d(r),y] [t,¥] [d(a),y] =0 ¥r,t,ae R,yeU. (24)

Now, replacing z by z in (22), V z,2,y € U,r € R and expanding, we
get 0= (d(r)y + y'd('r)) (22 + zz’) +(yz + zy') (d(r)z+ z'd(r)) =d(r)yzz +
d(r)yzz +y d(r)zz+y d(r)zz +yzd(r)z+yzz d(r) + 2y d(r)z+ 2y 2 d(r) =
yzz(d(r) +d (r) + d (r)) +yz (d (r) + d(r) +d(r)) 2+ 2y d(r)z+ 2y 2 d(r) =
yzzd (r)+yzd(r)z+zy d(r)z+zy 2 d(r) = (yz + zy ) 2'd(r)+(yz + 2y ) d(r) 2
= (yz+zy') (z'd('r) +d(r)z) = [y,2][d(r), z] . Replacing z by [t,y] in the
last relation, we get 0 = [y, [t,y]] [d(r),[t,y]] V y € U,r,t € R. In view of
Theorem 2.3(v), we get

([t,9],][[t,v],d(r)] =0 VyeU,rteR. (25)
Now, replacing t by ¢ + d(a) and on expansion, we have
([t 9], 9] + [[d(a), 5], 9]) ([t y], ()] + [[d(a), ] ,d(r)]) = 0.
Using (20) and (25) in the last expression, we get
[[t,9],v][[d(a),y],d(r)] =0 Yy eU, rt,aeR (26)
Replacing t by d(¢)p,p € R in (26) and expanding, we get
{d(®) [[p,],y] +2[d(2), 9] [pv] + [[d(2), 9], v] P} [[d(a),y] . d(r)] = 0.

In view of (20) and (26) and the fact that R is 2-torsion free, the last
equation becomes: [d(t),y][p,y][[d(e),y],d(r)] =0V yeU,rt,a,peR.
Using (24) in the last equation, we get [d(t),y] [p,y]d () [d(a),y] =0. By
Lemma (2.1)(iv), the last equation yields

[d(t),y] [p,y]d(r) [d(a),y] =0 Yy eU, rt,a,peR. (27)

Replacing t by td(p), in (24) and expanding and then using equation
(27), we get [d(r),y]t [d(p),y][d(a),y] = 0. Primeness of R implies that
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[d(r),y] =0 or [d(p),y] [d(a),y] =0.

Case 1: If [d(p),y] [d(a),y] # 0, then [d(r),y] =0 V y e U,r € R, then by
Theorem 2.7 ye Z(R) V ye U.

Case 2: If [d(r),y] # 0 for some y € U,r € R, then

[d(p): y] [d(a')v y] =0 YyeU, a,pcR. (28)

Replacing a by bc in (28), on expansion, we get [d(p),y]d () [c,v]
+[d(p),y] [d(B) ,y) e+ [d(p),y] b[d(c),y] + [d(p), y] [b;y] d(c) = 0. In view
of (28), the last equation reduces to

[d(p),y] d () [e,9] + [d(p),y] b[d(c),y] + [d(p), y] [by] d(c) = 0.

Replacing b by [t,y] in (28), we get

[d(p),yld ([t,y]) [e,y] + [d(p), y] [t,¥] [d(c),y] + [d(p), ] [[t:¥], ¥l d(c) =
0. In view of (23) and (24) the last equation becomes:

0= [d(p), y] d([t,y]) [e,y] = [d(p), y] ([d(¢),¥] + [t.d ()]) [e 9]

= [d(p),y] [d(2),y] [c,y] + [d(p),¥] [t,d (¥)] [, y] = 0. In view of (28), the
last equation yields

[d(P),y] [t,d(¥)] [c,¥] =0 Vp,c,teR, yeU (29)

Replacing ¢ by sc, in (29), we get:

[d(p),y][t,d ()]s [c,y] + [d(p),y] [t,d(¥)] [s,y] ¢ = 0. In view of (29) the
last equation reduces to: [d(p),y] [t,d(y)]s[c,y] =0 Vp,s,c,t e R,yeU.
Primeness of R implies , [d(p), ] [¢t,d(y)] =0 or [¢,y] =0.

Case 2(a): If [d(p),y] [t,d (y)] #0 then [¢,y] =0 implies that y € Z(R).
Case 2(b): If [¢,y] #0 Yy e U, then

[d(p),¥] [t,d(y)] =0 ¥V p,teRyel. (30)

Replacing t by st, in (30) ¥ p, s,c,t € R,y € U, we have: [d(p),y] s[t,d(y)]+
[d(p),y] [s,d(y)]t = 0. In view of (30) from the last equation, we get
(d(p),y] s [t,d(y)] = 0. Primeness of R implies that either [d(p),y] =0 Vpe
Ror [t,d(y)] =0. If [d(p),y] =0, then by case 1, y € Z(R), if [d(p),y] +0
for some p € R, then

[t,d(y)]=0 VteR,yeU. (31)

By Lemma 2.1(%) d(y) € Z(R),Vy € U. This implies d(U) € Z(R). This
completes the proof of (i).

(#):

Now, replacing y by [a,y], the last equation becomes:

[t,d([a,y])] =0. This implies that [t,[d(a),y] + [a,d(y)]] = 0. In view of
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(31), last equation becomes: [t,[d(a),y]] =0V a,t € R,y € U. In view of
Lemma 2.1(iii) and Theorem 2.3, the last equation can be rewritten as:

[[d(a), ¥],t] =0. (32)

In particular [[d(ay),y],t] =0. Consider [d(ay),y] = [d(a)y +ad(y),y] =
(d(a)yy +y'd(a))y +ald(y),y] + [a,¥]d(y) = [d(a),y]y +ald(y),y] +
[a,y]d(y).

By hypothesis [d (y) ,y] = 0, so the last expression becomes: [d(ay),y] =
[d(a),y]y + [a,y] d(y). Using last expression in (32), we get

[([d(a),y]y +[a,y]d(y)),t] =0 Va,teR, yeU. (33)

In particular, 0 =[[d(a),y]y + [a,y]d(y),y] = [d(a) ,¥]yy +y[d(a) 3] ¥
+[[a,9]d(),9] = ([d(a) , ¥]y +y[d(a), 9] )y + [[a, 5] d(), ] =
[[d(a),y],y]y+[la,y],y]d(¥)+[a,y] [d(¥),y] . Using the fact [z,d(z)] =0
and (32), the last expression becomes: [[a,y],y]d(y) = 0. As d is a non zero
derivation and by (i) d(y) € Z(R) therefore, [[a,y],y]td(y) =0 Vt € R.
Then primeness of R implies that [[a,y],y]=0V aeR,yeU.

In view of Theorem 2.3, the last equation reduces to [y, [y,a]] =0 Va e
R,yeU. Now by Lemma 2.4, y€ Z(R) Yy e U. If [y, [y,a]] # O for some
y €U, then d(y) =0. Using the fact d (y) = 0, the expression (33) becomes:
([d(e),y]y,t] = 0. In particular [[d(a),y]y,b] = 0. This implies that
[d(a),y][y,b] +][[d(a),y],b]y=0 Va,be R,y € U. In view of (32), the last
equation becomes:

[d(a),y] [y,b] =0 Va,be R,yeU. (34)

‘Replacing b by cb,c € R in the last equation, we get [d(a),y][y,cb] = 0.
This gives [d(a),y]c[y,b] + [d(a),y] [v,c]b=0. In view of (34), the last
equation yields [d (a),y] ¢[y,b] = 0. Since R is prime, so either [d(a),y] =0
or [y,b] =0. V a,b,ce R,y € U. By hypothesis of case 2 [d(a),y] # 0, then
[y,b] = 0 implies y € Z(R) (c.f Lemma 2.1(i)). This implies that y € Z(R)
VY yeU. Thus U € Z(R). This completes the proof. O

Corollary 3.6. Let R be a 2-torsion free prime M A-semiring, d be a
nonzero derivation of R. If [z,d(z)] =0 Vz € R, then R is commutative.

Proof. As R be itself a Lie ideal and by hypothesis [z,d(z)] =0 Vz € R,
therefore, by Theorem 3.5 R c Z(R). Thus R is commutative. a

If d be taken as inner derivation then the last corollary can be written
as follows:

Corollary 3.7. Let R be a 2-torsion free prime M A-semiring, [y,a] # 0
for some y e R. If [z,[z,a]] =0 Vz € R, then R is commutative.
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