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Abstract

Let A be the (0, 1)-adjacency matrix of a simple graph G and D
be the diagonal matrix diag(di,ds,...,dn), where d; is the degree
of the vertex v;. Q(G) = D + A is called the signless Laplacian of
G. In this paper, we characterize the extremal graph in which the
least signless Laplacian eigenvalue attains the minimum among all the
non-bipartite unicyclic graphs with both given order and diameter.
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1 Introduction

All graphs considered here are connected, undirected and simple (i.e.,
loops and multiple edges are not allowed). Let G = G[V(G), E(G)] be a
graph with vertex set V(G) = {v1,vs,...,v,} and edge set E(G), where
|[V(G)| = n is the order and [E(G)| = m is the size of G. For a graph G,
the adjacency matrix of G is defined to be a matrix A(G) = [a;;], where
a;j =1 if v; is adjacent to v;, and a;; = 0 otherwise. The degree matrix of
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G is denoted by D(G) = diag(dg(v1),d¢(v2),...,dc(va)), where dg(v) or
simply d(v) denotes the degree of a vertex v in the graph G. The matrix
Q(G) = D(G)+ A(G) is called the signless Laplacian matrix (or Q-matrix)
of G. Note that Q(G) is nonnegative, symmetric and positive semidefinite,
so its eigenvalues are real and nonnegative. We simply call the eigenvalues
of Q(G) as the signless Laplacian eigenvalues or Q-eigenvalues of G and
the eigenvalues can be arranged as:

01(G) 2 ¢2(G) 2 --- 2 ¢a(G) 2 0.

The signless Laplacian eigenvalues of a graph have recently attracted
more and more researchers’ attention, see [2-5] for the survey on this topic.
One reason for this is that the signless Laplacian spectrum seems to be more
informative than other commonly used graph matrices [2]. While there are
many results about the largest eigenvalue of the signless Laplacian, the
properties of its least eigenvalue are less well studied. A fundamental fact
is that ¢,(G) = 0 if and only if G is bipartite. This was firstly proven in
1994, in a notable early paper of Desai and Rao (7], who even suggested
the use of ¢,(G) as a measure of non-bipartiteness of G. In a recent work,
Lima et al. [6] survey the known results and presents some new ones about
the least signless Laplacian eigenvalues of graphs. Cardoso et al. [1] prove
that the minimum value of the least eigenvalue of the signless Laplacian
of a connected non-bipartite graph with a prescribed number of vertices is
attained solely in the unicyclic graph obtained from a triangle by attaching
a path at one of its endvertices. Wang and Fan [11] investigate how the
least eigenvalue of the signless Laplacian of a graph changes by relocating a
bipartite branch from one vertex to another vertex, and minimize the least
eigenvalue of the signless Laplacian among the class of connected graphs
with fixed order which contains a given non-bipartite graph as an induced
subgraph. For more results about g,(G), the reader is referred to [8-10].

A connected graph G with order 7 is called a unicyclic graph if | E(G)| =
n. The diameter of a connected graph G is the maximum distance between
pairs of vertices in V(G). The girth of a graph G is the length of the shortest
cycle in G. In this paper, we proceed to investigate the least signless
Laplacian eigenvalues of non-bipartite unicyclic graphs. We characterize
the extremal graph in which the least signless Laplacian eigenvalue attains
the minimum among all the non-bipartite unicyclic graphs with both given
order and diameter. Furthermore, we also characterize the extremal graph
whose least signless Laplacian eigenvalue attains the minimum among all
the non-bipartite unicyclic graphs with given order, girth and diameter.
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2 Preliminary

Denote by C,, and P, the cycle and the path, respectively, each on n
vertices. Let G —u, G —uv denote the graph that arises from G by deleting
the vertex u € V(G) and the graph that arises from G by deleting the edge
wv € E(G). Similarly, G + uv is a graph that arises from G by adding an
edge uv ¢ E(G), where u,v € V(G). A pendant vertex of G is a vertex of
degree 1. A pendant neighbor of G is a vertex adjacent to a pendant vertex.
For v € V(G), Ng(v) or simply N(v) denotes the set of all neighbors of
the vertex v in G. If the length of a path P is equal to the diameter, then
the path P is called a diameter-path. We write dg(u,v) or simply d(u,v)
for the distance in G between vertices u and v, and sgn(a) for the sign of

the real number a.
Let X = (z1,%9,...,2,)T € R®. Then X can be considered as a

function defined on V(G), that is, each vertex v; is mapped to =; = z(v;).
If X is an eigenvector associated to a @Q—eigenvalue, then it defines on G
naturally, i.e. z(v) is the entry of X corresponding to v. One can find in
(6] that

XTQOX = ) [=)+z()

uwv€E(G)

In addition, for an arbitrary unit vector X € R",
2.(G) < XTQ(G)X,

with equality if and only if X is an eigenvector corresponding to ¢,(G).

Let G; and G3 be two vertex-disjoint graphs, and let v; € V(Gy),
vy € V(G2). The coalescence of Gy and Gg, denoted by G;(v1) ¢ G2(va),
is obtained from G;, G2 by identifying vy with v and forming a new
vertex u (see [11] for detail). The graph G;(v;) 0 Ga(vp) is also written
as Gi(u) o Ga(u). If a connected graph G can be expressed in the form
G = G1(u) ¢ G2(u), where G and G are both nontrivial and connected,
then G, is called a branch of G with root u. Clearly Gs is also a branch of
G in the above definition. Let X be a vector defined on V(G). A branch H
of G is called a zero branch with respect to X if z(p) = 0 for all p € V(H);
otherwise it is called a nonzero branch with respect to X.

Lemma 2.1 ([11]) Let G be a connected graph which contains a bipartite
branch H with root u. Let X be an eigenvector of G corresponding to gn(G).

(i) If z(u) = 0, then H is a zero branch of G with respect to X.

(ii) If z(u) # O, then x(p) # O for every vertex p € V(H). Furthermore,
for every vertez p € V(H), z(p)x(u) is either positive or negative, depend-
ing on whether p is or is not in the same part of the bipartite graph H as
u; consequently, x(p)x(q) < 0 for each edge pg € E(H).
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Lemma 2.2 ([11]) Let G = Gi(v2) ¢ G2(u) and G* = G1(v1) 0 Ga(u) be
two graphs of order n, where Gy is a connected graph containing two distinct
vertices vy, vz, and Ga is a connected bipartite graph containing a vertez u.
If there exists an eigenvector X =(z(v1),z(v2),...,z(v),...,z(),...)T of G
corresponding to gn(G) such that |z(v1)| = |z(v2)|, then ¢gn(G*) < gn(G),
with equality only if |x(v1)| = |z(v2)| and dg, (u)z(uv) = = 3 cn 0 (1) z(v).

Lemma 2.3 ([11]) Let G = Gy (v2) ¢ S(u) and G* = G1(v1) 0 S(u), where
G is a connected non-bipartite graph containing two distinct vertices vy, vs,
and S is a nontrivial star with the center u. If there exists an eigenvector
X = (z(vn),z(v2),...,x(vk),...,z(w),...)T of G corresponding to g,(G)
such that |z(v1)| > |z(v2)| or |z(v1)] = |z(v2)| > 0, then ¢ (G*) < gn(G).

Lemma 2.4 ([11]) Let G be a connected non-bipartite graph of order n,
and let X be an eigenvector of G corresponding to g,(G). Let T be a tree,
which is a nonzero branch of G with respect to X and with root u. Then
|z(q)| < |z(p)| whenever p, q are vertices of T such that q lies on the unique

path from u to p.

Vp—1 V2
Uk V1

U ™ u

Fig. 2.1. G

Lemma 2.5 Let G be a unicyclic graph with n vertices, C = vouv1va. . .Uk
Uglg—y...U 1V be the unique cycle in G. Suppose that dg(v;) = 2 and
do(wi) =2 fori=1, ..., k (see Fig. 2.1). Then there exists an eigenvec-
tor X = (z(v0),z(v1), z(v2), .., 2(vk), z(w1), T(u2), ..., z(uk),...)T cor-
responding to g,(G), which satisfies the following:

(i) |x(vo)| = max{|z(w)| [w € V(C)} > O;
(li) a"(vi) = x(ui) fOTi = 172" .o ’k;
(iil) z(vi)z(vie1) <0 and z(u;)z(ui—1) <0 fori=1,2,...,k.

Proof. Suppose Y = (y(wo), y(v1), ..., y(vk), y(u1), ..., y(ux), ... )T is
an eigenvector corresponding to g, (G). If [V(T)| = 1, without loss of gener-
ality, we may assume that |y(vo)| = max{|y(w)| |w € V(C)}. If |[V(T)| > 1,

we claim that
ly(vo)l = max{|y(w)| |w € V(C)}.
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Otherwise, without loss of generality, we suppose |y(v;)| > |y(vo)| for some

1<i<k. Let
G'=G— Z vow + z vw.
weNT(vo) wENT(vo)

By Lemma 2.2, ¢,(G') < gn(G), which is a contradiction because G’ & G.
Furthermore, we claim y(vp) # 0. Otherwise, by Lemma 2.1, T is a zero
branch with respect to X. Then X = 0, which is a contradiction because
X is an eigenvector.

Iffor 1 < i<k y(v;) =0, y(u;) = 0, Lemma 2.5 holds obviously.
Suppose that there exists y(v;) ;ép or y('l;l,,') #0forsome1<i<k.

Let Y/ = (y (vo), ¥ (1), --+» ¥ (We), ¥ (u1), ..., ¥ (us), ...)T € R" sat-
isfying that

y(vo)v w = Vo,
oy ) oylw), w=v fori=1,2, ...,k
viw = y(vi), w=u fori=1,2, ...,k
y(w),  others.
Then

T ! YT
0) < L29CY. YO _ )

Hence Y’ is also an eigenvector of G corresponding to g,(G). Let Z =

Y +Y'. Since z(vp) = 2y(vo) # 0, it follows that Z # 0 and Z is also an

eigenvector of G corresponding to g, (G) which satisfies both (i) and (ii).
Let X = (z(vo), z(v1), ..., z(v), z(u1),. .., T(ug),...)T satisfying that

z(w) = (-1)4e@ W3 (w)| for we V(G).

Hhen XTQOX _ Z7Q(O)Z

< =
As a result, X is also an eigenvector of G corresponding to ¢,(G) which
satisfies (i), (ii) and (iii). O

Lemma 2.6 Let 3 < k < n be odd, and let G be a unicyclic graph obtained
from the cycle C = vivy... vy by attaching rooted trees Ty, ..., T} to the
vertices vy, ..., vk, respectively, where T; contains the root vertez v; and

|V(T3)| =1 means V(T;) = {v;}. Let

k k
G’=G-Z Z v,-w-i-z Z vw.

t=2 wENTi (vi) i=2 wENT‘. (vi)

Then d(G') < d(G).
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Proof. Let d(G') =d', P = v;,v;, ...v;, v, be a diameter-path of G'.
It is not difficult to see that at least one of v;, and v;,, , is a pendent
vertex. Now we distinguish two cases to show that d(G') < d(G).

Case 1. Both v;, and v;,, , are pendent vertices. If v;, and v;, 41 are
on two different rooted trees T; and T, then v; is a vertex in the path P.
Let P, = v;, ...v1, P2 =v;...v;,,,. Without loss of generality, we assume
that the path P; is in T; and the path P is in T;. Then v;, ...v; is the
unique path from v;, to v; of G, and v;...v;, , is the unique path from
Vi,,, to v; of G. Therefore dg(vi,,vi,,,) > d', namely d(G') < d(G).
If both v;, and v;,, , are on the same rooted tree T}, then P is also the
unique path from v;; to v;,,,, of G. Therefore d(G') < d(G).

Case 2. One of v;, and v;,, ,aisa pendent vertex, the other is a vertex
of the cycle. Without loss of generality, we assume that v;, is a vertex of the
cycle and v;,,,, is on the tree T;, then i; = |&£2 ] or iy = [&42]. Let v, is
a vertex of the cycle such that dg(vs,v;) = |_ ]. Then Dg(vt,vi,,,,) = d'.
Therefore d(G') < d(G). m

Let k > 3 beodd. Let Cy , be the graph of order n obtained by attaching
a cycle Cj to an end vertex of a path P, ; and attaching n — k —{ pendant
edges to the other end vertex of the path P4 (see Fig. 2.2). And I =0
means attaching n — k pendant edges to the vertex vy of Cy.

Y14)-1 Vk+i+1
4] %
Yk Ykl Yk :
v
N - \
[31+1 Up

Fig. 2.2. G},

Lemma 2.7 Let 3 < k < n —2 be odd, and let both C','c“, and CI:,I+1 have
order n. Then q,,(C,:,,_H) < qa(Ct ).

Proof. Let Y = (y(v1),y(v2),...,y(vx),...)T be an eigenvector corre-
sponding to gn(Cy ;) satisfying Lemma 2.5. By Lemmas 2.4 and 2.5, we
have 0 < |y(vk+1)| < |¥(Vk+14+1)|- Note that

n n
Crini=Cii— D Wi+ D, Vkprsr?j
j=k+l42 i=kHl42

By Lemma 2.2, we have ¢.(C} 141) < ga(C5,})- O
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3 Main results

Theorem 3.1 Among all the non-bipartite unicyclic graphs with both given
order n and given diameter d, we have

(i) if d = 1, then the graph is isomorphic to Ks;

(ii) if d > 2, then the least signless Laplacian eigenvalue of a graph
attains the minimum uniquely at C3 4_,.

Proof. (i) It is easy to verify that if d(G) = 1 then G = K.

(ii) Suppose that d > 2. Let G be a non-bipartite unicyclic graph with
both given order n and given diameter d, and C = v,v;. .. vgv1 (k is odd)
be the unique cycle in G. A unicyclic graph is either a cycle or a cycle
with trees attached. Then G can be obtained by attaching rooted trees T3,
..+ T to the vertices vy, ..., vk, respectively, where T; contains the root
vertex v;. |V(T;)| =1 means that V(T;) = {v;} and in this case T; is called
a trivial tree. Now we assume that G # Cj ,_,, it suffices to prove that
92(C3,a-2) < @(G).

Case 1. G = C} ; and G is not an odd cycle. Then G has at least
one pendent vertex. Since G # Cj 4_,, it follows that k& > 3. Let
Y = (y(v1),y(v2), -, ¥(vk),- . .)T be an eigenvector corresponding to ¢,(G)
satisfying Lemma 2.5. Then

YTQG)Y
(@)= 717

and we may assume that |y(vx)| = max{|y(w)||i =1,2,...,k} >0,

ly(vi)| < |y(ve)| < ly(ei)l, 1<i< k.

Let
L5)-1 L§)-1
G =G —vyvp — Z UiVit1 + Z VU4l + V)£ 1V[E 410
and Z = (z(v1), z(vs), ..., 2(vk), . )T € R™, in which z(w) corresponds to
the vertex w of G satisfying
2(w) ={ —sgn(y(ve+ )y (sl + ly(w) +y(vic1)l),  w=w,i=1 ..., |§]-1
y(w), others,

where vg = vx. Then
2TQ@E)z =YTQ)Y, 2zZTz>YTy.
As a result, we get that

YTQ(G)Y
YTY

2TQ(6")Z
ZTZ

gn(G™) < = gn(G).

IA
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By k > 3, we claim that ¢,(G*) < gn(G). Otherwise, suppose g,(G*)
¢:(G). Then Z is an eigenvector corresponding to ¢,(G*) and ZTZ
YTY. Therefore,

[9n(G") = 1z(v1) = 2(vet), [9(v1) +y(vk)| =0,

and so
—sgn(y(ve+1)) (9n(G™)—1) (fy(vet) [+1y(ve)+y(v1)]) = sgn(y(ve+r)) ly(vi+o)]-
It follows that
an(G*)y(ve+1)| = (1 — ¢a(G™)) ly(vi) +y(v1)]) = 0.
Since ¢,(G*) # 0, then y(vr4i) = 0. Noting that
ly(vi)| < ly(ve)l < ly(ve+)] =0, $=1,2,... .k,

by Lemma 2.1, we have Y = 0. This is a contradiction because Y is an
eigenvector corresponding to g,(G). Therefore g (G*) < gn(G).
Note that G* =C3 ,, t =1+ [£] - 1,

t+2=d(C3,) =d(G") =d(G) =d.
Therefore t = d — 2. Namely ¢.(C3 4_2) < ¢(G).

Case 2. G is the cycle C = vvy...vv; with only one nontrivial
tree attached, and G # Cj ;. Without loss of generality, we assume that
T} is the nontrivial tree. Then T} have at least two pendant neighbors.
Let X = (z(v1),z(v2),...,z(vk),...)T be an eigenvector corresponding to
gn(G) satisfying Lemma 2.5. Then

|2(vk)] = max{|z(w)| |w € V(C)} > 0,

and so T is a nonzero branch with respect to X. Namely, |z(v;)| > 0 for
any v; € V(T}). Let

|z(ve)| = max{|z(vi)| |vs € V(Tk), v: is not a pendant vertex}.

Denote by P the unique path from v to v; in G. By Lemma 2.4, we know
that any vertex adjacent to v, and not in P must be a pendant vertex.

Suppose that v, is another pendant neighbor and v;,, ..., v;, are all the
pendant vertices adjacent to vp. Then |vg] > |vs| > 0. Let

¢ ¢
G'=G- vavij + Zvcv,-j.
i=1 =1
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By Lemma 2.3, we have ¢,(G’) < gn(G). It is not difficult to see d(G’) <
d(G).

If G’ has at least two pendant neighbors, repeating the above procedure,
we can transform G’ into a non-bipartite unicyclic graph Gy = C} | of order
n, and

an(G1) = g (Ck,1)) <gn(G),  d(G1) = d(Cy,)) < d(G).
Let dy = d(G}). Then d; < d. By Case 1, we have

2n(C3 4,-2) < an(Gh),

with equality if and only if ¥ = 3. Furthermore, by Lemma 2.7, we have

9n(C3,4-2) < ¢a(C3,4,-2) < 4a(G1) < gn(G).

Case 3. There are at least two nontrivial trees attaching at the cy-
cle C = vyva...v¢v;. Let T; and T; be two nontrivial trees. Suppose
Y = (y(v1),y(v2),...,¥(vk),...)T is an eigenvector corresponding to ¢,(G).
Without loss of generality, we may assume that |y(v;)| > |y(v;)|. Let

G=G- Z vjw + Z viw.

wGNTj (vj5) wGNTj (vj)

By Lemma 2.2, we have ¢,(G’') < ¢.(G). If G’ has more than one non-
trivial trees attached at the cycle C' = vjv;...viv1, repeating the above
procedure, we can transform G’ into a non-bipartite unicyclic graph Gy of
order n, where G, is the cycle C = v1vz...v,v; with only one nontrivial
tree attached and ¢,(G1) < g»(G). By Lemma 2.6, we have d(G;) < d(G).
Let dy = d(G,). Then d; <d.

If G1 # Cf, |, by Case 2, we have

an(C3,4,-2) < n(G1) < ga(G).
Furthermore, by Lemma 2.7, we have
an(C3,4-2) < ¢n(C3,4,-2) < gn(G1) < ¢ (G).

If Gy = C§ ;, noting that G has more than one nontrivial trees attached
at the cycle C = vyvp...v,vq, then I = 0. It follows that all the trees
attached at the cycle C = vjvy...vpv; are star. If & > 3, by Case 1, we

have
an(C3, 4,-2) < 2n(G1) < gu(G).
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Furthermore, by Lemma 2.7, we have
an(C3,4-2) < 4n(C3,4,-2) < 2a(G1) < 4a(G).

If k = 3, then Gy = C3 . It follows that G is C3 with at least two vertices
attached by pendant edges. Namely, d(G) = 3. By Lemma 2.7, we have

9n(C3 4-2) = @1(C3,1) < qn(C3 o) = ¢n(G1) < gn(G).

Case 4. G =C,. Let Y = (y(v1),y(v2),...,¥(¥k),...)T be an eigen-
vector corresponding to g,(G) satisfying Lemma 2.5. Then

TQGY
(€)= LAY

and we may assume that |y(ve)] = max{|y(v)|}i = 1,2,...,n} > 0,
and y(vi) = y(vn-i), i =1,2,...,|5]. Let
12]-1 [3]-1

G'=C-vvn— Y VVip1+ Y Uin-i+Vi3)U3141,
i=1

i=1

and Z = (2(v1), 2(v2), ..., 2(v,))T € R, in which z(w) corresponds to the
vertex w of G satisfying

[ ) wewist o, BT
2(w) = { y(w), others.
Then
ZTQE)Z < YTQQY, ZTZ=YTY.
Therefore

. ZTQ(G")Z _ YTQO)Y
amie) < 22 T IOF _ o).

Note that G* is a unicyclic graph with order n, girth 3 and diameter d.
IfG* # Cg' d—2 by Case 2, we have

n(C3,a-2) < @n(G") < ¢ (G)-

If G* = C3 4_5, then d = 2 and n = 5. Namely, G = Cs. Using the well
known mathematics software Matlab, it is easy to compute that

45(C3,0) < g5(Cs) = ¢ (G).

Combining Cases 1-4, if G # Cj 4_,, we have gn(C3 ;_,) < gn(G).
m]
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In a same way as Theorem 3.1, we can characterize the extremal graph
whose least signless Laplacian eigenvalue attains the minimum among the
non-bipartite unicyclic graphs with given order n, girth g and diameter d.

Theorem 3.2 Among all the non-bipartite unicyclic graphs with order n,
girth g and diameter d, we have

(i) if d = 1, then the graph is isomorphic to Ka;

(i) #f g = n, then the graph is isomorphic to Cp;

(iii) ¢f d = 2 and g < n, then the least signless Laplacian eigenvalue of
o graph attains the minimum uniquely at C;, FRTIE
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