On the least signless Laplacian eigenvalue of non-bipartite unicyclic graphs with both given order and diameter*

Shu-Guang Guo^{a†} Meiling Xu^{a,b} Guanglong Yu^a

 Department of Mathematics, Yancheng Teachers University, Yancheng, 224002, Jiangsu, P.R. China
 Department of Mathematics, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, P.R. China

Abstract

Let A be the (0,1)-adjacency matrix of a simple graph G and D be the diagonal matrix $\operatorname{diag}(d_1,d_2,\ldots,d_n)$, where d_i is the degree of the vertex v_i . Q(G)=D+A is called the signless Laplacian of G. In this paper, we characterize the extremal graph in which the least signless Laplacian eigenvalue attains the minimum among all the non-bipartite unicyclic graphs with both given order and diameter.

AMS Classifications (2000): 05C50

Keywords: Signless Laplacian; Non-bipartite unicyclic graph; Least eigenvalue

1 Introduction

All graphs considered here are connected, undirected and simple (i.e., loops and multiple edges are not allowed). Let G = G[V(G), E(G)] be a graph with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$ and edge set E(G), where |V(G)| = n is the order and |E(G)| = m is the size of G. For a graph G, the adjacency matrix of G is defined to be a matrix $A(G) = [a_{ij}]$, where $a_{ij} = 1$ if v_i is adjacent to v_j , and $a_{ij} = 0$ otherwise. The degree matrix of

^{*}Supported by NSFC (Nos. 11171290, 11271315, 11201407).

[†]Corresponding author: E-mail addresses: yctusgguo@gmail.com.

G is denoted by $D(G) = diag(d_G(v_1), d_G(v_2), \ldots, d_G(v_n))$, where $d_G(v)$ or simply d(v) denotes the degree of a vertex v in the graph G. The matrix Q(G) = D(G) + A(G) is called the signless Laplacian matrix (or Q-matrix) of G. Note that Q(G) is nonnegative, symmetric and positive semidefinite, so its eigenvalues are real and nonnegative. We simply call the eigenvalues of Q(G) as the signless Laplacian eigenvalues or Q-eigenvalues of G and the eigenvalues can be arranged as:

$$q_1(G) \ge q_2(G) \ge \cdots \ge q_n(G) \ge 0.$$

The signless Laplacian eigenvalues of a graph have recently attracted more and more researchers' attention, see [2-5] for the survey on this topic. One reason for this is that the signless Laplacian spectrum seems to be more informative than other commonly used graph matrices [2]. While there are many results about the largest eigenvalue of the signless Laplacian, the properties of its least eigenvalue are less well studied. A fundamental fact is that $q_n(G) = 0$ if and only if G is bipartite. This was firstly proven in 1994, in a notable early paper of Desai and Rao [7], who even suggested the use of $q_n(G)$ as a measure of non-bipartiteness of G. In a recent work, Lima et al. [6] survey the known results and presents some new ones about the least signless Laplacian eigenvalues of graphs. Cardoso et al. [1] prove that the minimum value of the least eigenvalue of the signless Laplacian of a connected non-bipartite graph with a prescribed number of vertices is attained solely in the unicyclic graph obtained from a triangle by attaching a path at one of its endvertices. Wang and Fan [11] investigate how the least eigenvalue of the signless Laplacian of a graph changes by relocating a bipartite branch from one vertex to another vertex, and minimize the least eigenvalue of the signless Laplacian among the class of connected graphs with fixed order which contains a given non-bipartite graph as an induced subgraph. For more results about $q_n(G)$, the reader is referred to [8-10].

A connected graph G with order n is called a unicyclic graph if |E(G)| = n. The diameter of a connected graph G is the maximum distance between pairs of vertices in V(G). The girth of a graph G is the length of the shortest cycle in G. In this paper, we proceed to investigate the least signless Laplacian eigenvalues of non-bipartite unicyclic graphs. We characterize the extremal graph in which the least signless Laplacian eigenvalue attains the minimum among all the non-bipartite unicyclic graphs with both given order and diameter. Furthermore, we also characterize the extremal graph whose least signless Laplacian eigenvalue attains the minimum among all the non-bipartite unicyclic graphs with given order, girth and diameter.

2 Preliminary

Denote by C_n and P_n the cycle and the path, respectively, each on n vertices. Let G-u, G-uv denote the graph that arises from G by deleting the vertex $u \in V(G)$ and the graph that arises from G by deleting the edge $uv \in E(G)$. Similarly, G+uv is a graph that arises from G by adding an edge $uv \notin E(G)$, where $u, v \in V(G)$. A pendant vertex of G is a vertex of degree 1. A pendant neighbor of G is a vertex adjacent to a pendant vertex. For $v \in V(G)$, $N_G(v)$ or simply N(v) denotes the set of all neighbors of the vertex v in G. If the length of a path P is equal to the diameter, then the path P is called a diameter-path. We write $d_G(u,v)$ or simply d(u,v) for the distance in G between vertices u and v, and sgn(a) for the sign of the real number a.

Let $X = (x_1, x_2, \ldots, x_n)^T \in \mathbb{R}^n$. Then X can be considered as a function defined on V(G), that is, each vertex v_i is mapped to $x_i = x(v_i)$. If X is an eigenvector associated to a Q-eigenvalue, then it defines on G naturally, i.e. x(v) is the entry of X corresponding to v. One can find in [6] that

$$X^TQ(G)X = \sum_{uv \in E(G)} [x(u) + x(v)]^2.$$

In addition, for an arbitrary unit vector $X \in \mathbb{R}^n$,

$$q_n(G) \leq X^T Q(G)X$$
,

with equality if and only if X is an eigenvector corresponding to $q_n(G)$.

Let G_1 and G_2 be two vertex-disjoint graphs, and let $v_1 \in V(G_1)$, $v_2 \in V(G_2)$. The coalescence of G_1 and G_2 , denoted by $G_1(v_1) \diamond G_2(v_2)$, is obtained from G_1 , G_2 by identifying v_1 with v_2 and forming a new vertex u (see [11] for detail). The graph $G_1(v_1) \diamond G_2(v_2)$ is also written as $G_1(u) \diamond G_2(u)$. If a connected graph G can be expressed in the form $G = G_1(u) \diamond G_2(u)$, where G_1 and G_2 are both nontrivial and connected, then G_1 is called a branch of G with root G0. Clearly G2 is also a branch of G3 in the above definition. Let G4 be a vector defined on G5. A branch G6 is called a zero branch with respect to G6. A branch G7 is called a nonzero branch with respect to G8.

Lemma 2.1 ([11]) Let G be a connected graph which contains a bipartite branch H with root u. Let X be an eigenvector of G corresponding to $q_n(G)$.

- (i) If x(u) = 0, then H is a zero branch of G with respect to X.
- (ii) If $x(u) \neq 0$, then $x(p) \neq 0$ for every vertex $p \in V(H)$. Furthermore, for every vertex $p \in V(H)$, x(p)x(u) is either positive or negative, depending on whether p is or is not in the same part of the bipartite graph H as u; consequently, x(p)x(q) < 0 for each edge $pq \in E(H)$.

Lemma 2.2 ([11]) Let $G = G_1(v_2) \diamond G_2(u)$ and $G^* = G_1(v_1) \diamond G_2(u)$ be two graphs of order n, where G_1 is a connected graph containing two distinct vertices v_1, v_2 , and G_2 is a connected bipartite graph containing a vertex u. If there exists an eigenvector $X = (x(v_1), x(v_2), \ldots, x(v_k), \ldots, x(u), \ldots)^T$ of G corresponding to $q_n(G)$ such that $|x(v_1)| \geq |x(v_2)|$, then $q_n(G^*) \leq q_n(G)$, with equality only if $|x(v_1)| = |x(v_2)|$ and $d_{G_2}(u)x(u) = -\sum_{v \in N_{G_2}(u)} x(v)$.

Lemma 2.3 ([11]) Let $G = G_1(v_2) \diamond S(u)$ and $G^* = G_1(v_1) \diamond S(u)$, where G_1 is a connected non-bipartite graph containing two distinct vertices v_1, v_2 , and S is a nontrivial star with the center u. If there exists an eigenvector $X = (x(v_1), x(v_2), \ldots, x(v_k), \ldots, x(u), \ldots)^T$ of G corresponding to $q_n(G)$ such that $|x(v_1)| > |x(v_2)|$ or $|x(v_1)| = |x(v_2)| > 0$, then $q_n(G^*) < q_n(G)$.

Lemma 2.4 ([11]) Let G be a connected non-bipartite graph of order n, and let X be an eigenvector of G corresponding to $q_n(G)$. Let T be a tree, which is a nonzero branch of G with respect to X and with root u. Then |x(q)| < |x(p)| whenever p, q are vertices of T such that q lies on the unique path from u to p.

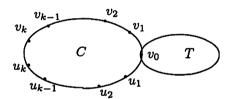


Fig. 2.1. G

Lemma 2.5 Let G be a unicyclic graph with n vertices, $C = v_0v_1v_2...v_k$ $u_ku_{k-1}...u_1v_0$ be the unique cycle in G. Suppose that $d_G(v_i) = 2$ and $d_G(u_i) = 2$ for i = 1, ..., k (see Fig. 2.1). Then there exists an eigenvector $X = (x(v_0), x(v_1), x(v_2), ..., x(v_k), x(u_1), x(u_2), ..., x(u_k), ...)^T$ corresponding to $q_n(G)$, which satisfies the following:

- (i) $|x(v_0)| = \max\{|x(w)| | w \in V(C)\} > 0;$
- (ii) $x(v_i) = x(u_i)$ for i = 1, 2, ..., k;
- (iii) $x(v_i)x(v_{i-1}) \le 0$ and $x(u_i)x(u_{i-1}) \le 0$ for i = 1, 2, ..., k.

Proof. Suppose $Y = (y(v_0), y(v_1), \ldots, y(v_k), y(u_1), \ldots, y(u_k), \ldots)^T$ is an eigenvector corresponding to $q_n(G)$. If |V(T)| = 1, without loss of generality, we may assume that $|y(v_0)| = \max\{|y(w)| | w \in V(C)\}$. If |V(T)| > 1, we claim that

$$|y(v_0)| = \max\{|y(w)| | w \in V(C)\}.$$

Otherwise, without loss of generality, we suppose $|y(v_i)| > |y(v_0)|$ for some $1 \le i \le k$. Let

$$G' = G - \sum_{w \in N_T(v_0)} v_0 w + \sum_{w \in N_T(v_0)} v_i w.$$

By Lemma 2.2, $q_n(G') < q_n(G)$, which is a contradiction because $G' \cong G$. Furthermore, we claim $y(v_0) \neq 0$. Otherwise, by Lemma 2.1, T is a zero branch with respect to X. Then X = 0, which is a contradiction because X is an eigenvector.

If for $1 \le i \le k$, $y(v_i) = 0$, $y(u_i) = 0$, Lemma 2.5 holds obviously. Suppose that there exists $y(v_i) \ne 0$ or $y(u_i) \ne 0$ for some $1 \le i \le k$.

Let $Y' = (y'(v_0), y'(v_1), \ldots, y'(v_k), y'(u_1), \ldots, y'(u_k), \ldots)^T \in \mathbb{R}^n$ satisfying that

$$y^{'}(w) = \left\{ egin{array}{ll} y(v_0), & w = v_0; \ y(u_i), & w = v_i \ for \ i = 1, \ 2, \ \ldots, \ k; \ y(v_i), & w = u_i \ for \ i = 1, \ 2, \ \ldots, \ k; \ y(w), & others. \end{array}
ight.$$

Then

$$q_n(G) \le \frac{Y^{'T}Q(G)Y'}{Y^{'T}Y'} = \frac{Y^TQ(G)Y}{Y^TY} = q_n(G).$$

Hence Y' is also an eigenvector of G corresponding to $q_n(G)$. Let Z = Y + Y'. Since $z(v_0) = 2y(v_0) \neq 0$, it follows that $Z \neq 0$ and Z is also an eigenvector of G corresponding to $q_n(G)$ which satisfies both (i) and (ii).

Let $X = (x(v_0), x(v_1), \dots, x(v_k), x(u_1), \dots, x(u_k), \dots)^T$ satisfying that

$$x(w) = (-1)^{d_G(v_0, w)} |z(w)|$$
 for $w \in V(G)$.

Then

$$q_n(G) \le \frac{X^T Q(G)X}{X^T X} \le \frac{Z^T Q(G)Z}{Z^T Z} = q_n(G).$$

As a result, X is also an eigenvector of G corresponding to $q_n(G)$ which satisfies (i), (ii) and (iii). \square

Lemma 2.6 Let $3 \le k < n$ be odd, and let G be a unicyclic graph obtained from the cycle $C = v_1 v_2 \dots v_k v_1$ by attaching rooted trees T_1, \dots, T_k to the vertices v_1, \dots, v_k , respectively, where T_i contains the root vertex v_i and $|V(T_i)| = 1$ means $V(T_i) = \{v_i\}$. Let

$$G' = G - \sum_{i=2}^{k} \sum_{w \in N_{T_i}(v_i)} v_i w + \sum_{i=2}^{k} \sum_{w \in N_{T_i}(v_i)} v_1 w.$$

Then $d(G') \leq d(G)$.

Proof. Let d(G') = d', $P = v_{i_1} v_{i_2} \dots v_{i_{d'}} v_{i_{d'+1}}$ be a diameter-path of G'. It is not difficult to see that at least one of v_{i_1} and $v_{i_{d'+1}}$ is a pendent vertex. Now we distinguish two cases to show that $d(G') \leq d(G)$.

Case 1. Both v_{i_1} and $v_{i_{d'+1}}$ are pendent vertices. If v_{i_1} and $v_{i_{d'+1}}$ are on two different rooted trees T_i and T_j , then v_1 is a vertex in the path P. Let $P_1 = v_{i_1} \dots v_1$, $P_2 = v_1 \dots v_{i_{d'+1}}$. Without loss of generality, we assume that the path P_1 is in T_i and the path P_2 is in T_j . Then $v_{i_1} \dots v_i$ is the unique path from v_{i_1} to v_i of G, and $v_j \dots v_{i_{d'+1}}$ is the unique path from $v_{i_{d'+1}}$ to v_j of G. Therefore $d_G(v_{i_1}, v_{i_{d'+1}}) > d'$, namely d(G') < d(G).

If both v_{i_1} and $v_{i_{d'+1}}$ are on the same rooted tree T_i , then P is also the unique path from v_{i_1} to $v_{i_{d'+1}}$ of G. Therefore $d(G') \leq d(G)$.

Case 2. One of v_{i_1} and $v_{i_{d'+1}}$ is a pendent vertex, the other is a vertex of the cycle. Without loss of generality, we assume that v_{i_1} is a vertex of the cycle and $v_{i_{d'+1}}$ is on the tree T_i , then $i_1 = \lfloor \frac{k+2}{2} \rfloor$ or $i_1 = \lceil \frac{k+2}{2} \rceil$. Let v_t is a vertex of the cycle such that $d_G(v_t, v_i) = \lfloor \frac{k}{2} \rfloor$. Then $D_G(v_t, v_{i_{d'+1}}) = d'$. Therefore $d(G') \leq d(G)$.

Let $k \geq 3$ be odd. Let $C_{k,l}^*$ be the graph of order n obtained by attaching a cycle C_k to an end vertex of a path P_{l+1} and attaching n-k-l pendant edges to the other end vertex of the path P_{l+1} (see Fig. 2.2). And l=0 means attaching n-k pendant edges to the vertex v_k of C_k .

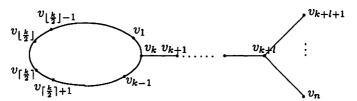


Fig. 2.2. $C_{k,l}^*$

Lemma 2.7 Let $3 \le k \le n-2$ be odd, and let both $C_{k,l}^*$ and $C_{k,l+1}^*$ have order n. Then $q_n(C_{k,l+1}^*) < q_n(C_{k,l}^*)$.

Proof. Let $Y = (y(v_1), y(v_2), \dots, y(v_k), \dots)^T$ be an eigenvector corresponding to $q_n(C_{k,l}^*)$ satisfying Lemma 2.5. By Lemmas 2.4 and 2.5, we have $0 < |y(v_{k+l})| < |y(v_{k+l+1})|$. Note that

$$C_{k,l+1}^* = C_{k,l}^* - \sum_{j=k+l+2}^n v_{k+l}v_j + \sum_{j=k+l+2}^n v_{k+l+1}v_j.$$

By Lemma 2.2, we have $q_n(C_{k,l+1}^*) < q_n(C_{k,l}^*)$.

3 Main results

Theorem 3.1 Among all the non-bipartite unicyclic graphs with both given order n and given diameter d, we have

- (i) if d = 1, then the graph is isomorphic to K_3 ;
- (ii) if $d \geq 2$, then the least signless Laplacian eigenvalue of a graph attains the minimum uniquely at $C_{3,d-2}^*$.

Proof. (i) It is easy to verify that if d(G) = 1 then $G = K_3$.

(ii) Suppose that $d \geq 2$. Let G be a non-bipartite unicyclic graph with both given order n and given diameter d, and $C = v_1 v_2 \dots v_k v_1$ (k is odd) be the unique cycle in G. A unicyclic graph is either a cycle or a cycle with trees attached. Then G can be obtained by attaching rooted trees T_1 , ..., T_k to the vertices v_1 , ..., v_k , respectively, where T_i contains the root vertex v_i . $|V(T_i)| = 1$ means that $V(T_i) = \{v_i\}$ and in this case T_i is called a trivial tree. Now we assume that $G \neq C_{3,d-2}^*$, it suffices to prove that $q_n(C_{3,d-2}^*) < q_n(G)$.

Case 1. $G = C_{k,l}^*$ and G is not an odd cycle. Then G has at least one pendent vertex. Since $G \neq C_{3,d-2}^*$, it follows that k > 3. Let $Y = (y(v_1), y(v_2), \ldots, y(v_k), \ldots)^T$ be an eigenvector corresponding to $q_n(G)$ satisfying Lemma 2.5. Then

$$q_n(G) = \frac{Y^T Q(G)Y}{Y^T Y},$$

and we may assume that $|y(v_k)|=\max\{|y(v_i)|\,|i=1,2,\ldots,k\}>0,$

$$|y(v_i)| \le |y(v_k)| \le |y(v_{k+l})|, \quad 1 \le i \le k.$$

Let

$$G^* = G - v_1 v_k - \sum_{i=1}^{\lfloor \frac{k}{2} \rfloor - 1} v_i v_{i+1} + \sum_{i=1}^{\lfloor \frac{k}{2} \rfloor - 1} v_i v_{k+l} + v_{\lfloor \frac{k}{2} \rfloor} v_{\lceil \frac{k}{2} \rceil + 1},$$

and $Z=(z(v_1),z(v_2),\ldots,z(v_k),\ldots)^T\in R^n$, in which z(w) corresponds to the vertex w of G satisfying

$$z(w) = \begin{cases} -\sup_{v \in V} (y(v_{k+l}))(|y(v_{k+l})| + |y(v_i) + y(v_{i-1})|), & w = v_i, i = 1, \dots, \lfloor \frac{k}{2} \rfloor - 1; \\ y(w), & \text{others,} \end{cases}$$

where $v_0 = v_k$. Then

$$Z^T Q(G^*)Z = Y^T Q(G)Y, \qquad Z^T Z \ge Y^T Y.$$

As a result, we get that

$$q_n(G^*) \le \frac{Z^T Q(G^*) Z}{Z^T Z} \le \frac{Y^T Q(G) Y}{Y^T Y} = q_n(G).$$

By k > 3, we claim that $q_n(G^*) < q_n(G)$. Otherwise, suppose $q_n(G^*) = q_n(G)$. Then Z is an eigenvector corresponding to $q_n(G^*)$ and $Z^TZ = Y^TY$. Therefore,

$$[q_n(G^*) - 1]z(v_1) = z(v_{k+l}), |y(v_1) + y(v_k)| = 0,$$

and so

$$-\operatorname{sgn}(y(v_{k+l}))(q_n(G^*)-1)(|y(v_{k+l})|+|y(v_k)+y(v_1)|)=\operatorname{sgn}(y(v_{k+l}))|y(v_{k+l})|.$$

It follows that

$$q_n(G^*)|y(v_{k+l})| = (1 - q_n(G^*))|y(v_k) + y(v_1)| = 0.$$

Since $q_n(G^*) \neq 0$, then $y(v_{k+l}) = 0$. Noting that

$$|y(v_i)| \le |y(v_k)| \le |y(v_{k+l})| = 0, \quad i = 1, 2, \dots k,$$

by Lemma 2.1, we have Y = 0. This is a contradiction because Y is an eigenvector corresponding to $q_n(G)$. Therefore $q_n(G^*) < q_n(G)$.

Note that $G^* = C_{3,t}^*$, $t = l + \lfloor \frac{k}{2} \rfloor - 1$,

$$t + 2 = d(C_{3,t}^*) = d(G^*) = d(G) = d.$$

Therefore t = d - 2. Namely $q_n(C_{3,d-2}^*) < q_n(G)$.

Case 2. G is the cycle $C = v_1 v_2 \dots v_k v_1$ with only one nontrivial tree attached, and $G \neq C_{k,l}^*$. Without loss of generality, we assume that T_k is the nontrivial tree. Then T_k have at least two pendant neighbors. Let $X = (x(v_1), x(v_2), \dots, x(v_k), \dots)^T$ be an eigenvector corresponding to $q_n(G)$ satisfying Lemma 2.5. Then

$$|x(v_k)| = \max\{|x(w)| | w \in V(C)\} > 0,$$

and so T_k is a nonzero branch with respect to X. Namely, $|x(v_i)| > 0$ for any $v_i \in V(T_k)$. Let

$$|x(v_c)| = \max\{|x(v_i)| | v_i \in V(T_k), v_i \text{ is not a pendant vertex}\}.$$

Denote by P the unique path from v_k to v_c in G. By Lemma 2.4, we know that any vertex adjacent to v_c and not in P must be a pendant vertex.

Suppose that v_b is another pendant neighbor and v_{i_1}, \ldots, v_{i_t} are all the pendant vertices adjacent to v_b . Then $|v_c| \ge |v_b| > 0$. Let

$$G' = G - \sum_{j=1}^{t} v_b v_{i_j} + \sum_{j=1}^{t} v_c v_{i_j}.$$

By Lemma 2.3, we have $q_n(G') < q_n(G)$. It is not difficult to see $d(G') \le d(G)$.

If G' has at least two pendant neighbors, repeating the above procedure, we can transform G' into a non-bipartite unicyclic graph $G_1 = C_{k,l}^*$ of order n, and

$$q_n(G_1) = q_n(C_{k,l}^*) < q_n(G), \quad d(G_1) = d(C_{k,l}^*) \le d(G).$$

Let $d_1 = d(G_1)$. Then $d_1 \leq d$. By Case 1, we have

$$q_n(C_{3,d_1-2}^*) \le q_n(G_1),$$

with equality if and only if k = 3. Furthermore, by Lemma 2.7, we have

$$q_n(C_{3,d-2}^*) \le q_n(C_{3,d_1-2}^*) \le q_n(G_1) < q_n(G).$$

Case 3. There are at least two nontrivial trees attaching at the cycle $C = v_1 v_2 \dots v_k v_1$. Let T_i and T_j be two nontrivial trees. Suppose $Y = (y(v_1), y(v_2), \dots, y(v_k), \dots)^T$ is an eigenvector corresponding to $q_n(G)$. Without loss of generality, we may assume that $|y(v_i)| \ge |y(v_j)|$. Let

$$G' = G - \sum_{w \in N_{T_j}(v_j)} v_j w + \sum_{w \in N_{T_j}(v_j)} v_i w.$$

By Lemma 2.2, we have $q_n(G') \leq q_n(G)$. If G' has more than one non-trivial trees attached at the cycle $C = v_1 v_2 \dots v_k v_1$, repeating the above procedure, we can transform G' into a non-bipartite unicyclic graph G_1 of order n, where G_1 is the cycle $C = v_1 v_2 \dots v_k v_1$ with only one nontrivial tree attached and $q_n(G_1) \leq q_n(G)$. By Lemma 2.6, we have $d(G_1) \leq d(G)$. Let $d_1 = d(G_1)$. Then $d_1 \leq d$.

If $G_1 \neq C_{k,l}^*$, by Case 2, we have

$$q_n(C_{3,d_1-2}^*) < q_n(G_1) \le q_n(G).$$

Furthermore, by Lemma 2.7, we have

$$q_n(C_{3,d-2}^*) \le q_n(C_{3,d_1-2}^*) < q_n(G_1) \le q_n(G).$$

If $G_1 = C_{k,l}^*$, noting that G has more than one nontrivial trees attached at the cycle $C = v_1 v_2 \dots v_k v_1$, then l = 0. It follows that all the trees attached at the cycle $C = v_1 v_2 \dots v_k v_1$ are star. If k > 3, by Case 1, we have

$$q_n(C_{3,d_1-2}^*) < q_n(G_1) \le q_n(G).$$

Furthermore, by Lemma 2.7, we have

$$q_n(C_{3,d-2}^*) \le q_n(C_{3,d_1-2}^*) < q_n(G_1) \le q_n(G).$$

If k = 3, then $G_1 = C_{3,0}^*$. It follows that G is C_3 with at least two vertices attached by pendant edges. Namely, d(G) = 3. By Lemma 2.7, we have

$$q_n(C_{3,d-2}^*) = q_n(C_{3,1}^*) < q_n(C_{3,0}^*) = q_n(G_1) \le q_n(G).$$

Case 4. $G = C_n$. Let $Y = (y(v_1), y(v_2), \dots, y(v_k), \dots)^T$ be an eigenvector corresponding to $q_n(G)$ satisfying Lemma 2.5. Then

$$q_n(G) = \frac{Y^T Q(G)Y}{Y^T Y},$$

and we may assume that $|y(v_n)| = \max\{|y(v_i)| | i = 1, 2, ..., n\} > 0$, and $y(v_i) = y(v_{n-i}), i = 1, 2, ..., \lfloor \frac{n}{2} \rfloor$. Let

$$G^* = G - v_1 v_n - \sum_{i=1}^{\lfloor \frac{n}{2} \rfloor - 1} v_i v_{i+1} + \sum_{i=1}^{\lfloor \frac{n}{2} \rfloor - 1} v_i v_{n-i} + v_{\lfloor \frac{n}{2} \rfloor} v_{\lceil \frac{n}{2} \rceil + 1},$$

and $Z = (z(v_1), z(v_2), \dots, z(v_n))^T \in \mathbb{R}^n$, in which z(w) corresponds to the vertex w of G satisfying

$$z(w) = \begin{cases} -y(v_i), & w = v_i, i = 1, \dots, \lfloor \frac{k}{2} \rfloor - 1; \\ y(w), & \text{others.} \end{cases}$$

Then

$$Z^TQ(G^*)Z \le Y^TQ(G)Y, \qquad Z^TZ = Y^TY.$$

Therefore

$$q_n(G^*) \leq \frac{Z^TQ(G^*)Z}{Z^TZ} \leq \frac{Y^TQ(G)Y}{Y^TY} = q_n(G).$$

Note that G^* is a unicyclic graph with order n, girth 3 and diameter d. If $G^* \neq C^*_{3,d-2}$, by Case 2, we have

$$q_n(C_{3,d-2}^*) < q_n(G^*) \le q_n(G).$$

If $G^* = C_{3, d-2}^*$, then d = 2 and n = 5. Namely, $G = C_5$. Using the well known mathematics software Matlab, it is easy to compute that

$$q_5(C_{3,0}^*) < q_5(C_5) = q_n(G).$$

Combining Cases 1-4, if $G \neq C_{3,d-2}^*$, we have $q_n(C_{3,d-2}^*) < q_n(G)$.

In a same way as Theorem 3.1, we can characterize the extremal graph whose least signless Laplacian eigenvalue attains the minimum among the non-bipartite unicyclic graphs with given order n, girth g and diameter d.

Theorem 3.2 Among all the non-bipartite unicyclic graphs with order n, girth g and diameter d, we have

- (i) if d = 1, then the graph is isomorphic to K_3 ;
- (i) if g = n, then the graph is isomorphic to C_n ;
- (iii) if $d \geq 2$ and g < n, then the least signless Laplacian eigenvalue of a graph attains the minimum uniquely at $C_{g,d-\lceil \frac{g}{2} \rceil}^*$.

Acknowledgments

We are grateful to the anonymous referees for valuable suggestions which result in an improvement of the original manuscript.

References

- [1] D.M. Cardoso, D. Cvetković, P. Rowlinson, S.K. Simić, A sharp lower bound for the least eigenvalue of the signless Laplacian of a non-bipartite graph, Linear Algebra Appl. 429 (2008) 2770-2780.
- [2] D. Cvetković, P. Rowlinson, S.K. Simić, Signless Laplacians of finite graphs, Linear Algebra Appl. 423 (2007) 155-171.
- [3] D. Cvetković, S.K. Simić, Towards a spectral theory of graphs based on the signless Laplacian, I, Publ. Inst. Math. (Beograd) 85(99) (2009) 19-33.
- [4] D. Cvetković, S.K. Simić, Towards a spectral theory of graphs based on signless Laplacian, II, Linear Algebra Appl. 432 (2010) 2257-2272.
- [5] D. Cvetković, S.K. Simić, Towards a spectral theory of graphs based on signless Laplacian, III, Appl. Anal. Discrete Math. 4 (2010) 156-166.
- [6] L.S. de Lima, C.S. Oliveira, N.M.M. de Abreu, V. Nikiforov, The smallest eigenvalue of the signless Laplacian, Linear Algebra Appl. 435 (2011) 2570-2584.
- [7] M. Desai, V. Rao, A characterization of the smallest eigenvalue of a graph, J. Graph Theory 18 (1994) 181-194.
- [8] S. Fallat, Y.-Z. Fan, Bipartiteness and the least eigenvalue of signless Laplacian of graphs, Linear Algebra Appl. 436 (2012), 3254-3267.
- [9] C.X. He, H. Pan, The smallest signless laplacian eigenvalue of graphs under perturbation, Electron. J. Linear Algebra 23 (2012), 473-482.
- [10] S. Li, S. Wang, The least eigenvalue of the signless Laplacian of the complements of trees, Linear Algebra Appl. 436 (2012) 2398-2405.
- [11] Y. Wang, Y.-Z. Fan, The least eigenvalue of signless Laplacian of graphs under perturbation, Linear Algebra Appl. 436 (2012) 2084-2092.