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Abstract

Kotani and Sunada introduced the oriented line graph as a tool
in the study of the Ihara zeta function of a finite graph. The
spectral properties of the adjacency operator on the oriented
line graph can be linked to the Ramanujan condition of the
graph. Here, we present a partial characterization of oriented
line graphs in terms of forbidden subgraphs. We also give a
Whitney-type result, as a special case of a result by Balof and
Storm, establishing that if two graphs have the same oriented
line graph, they are isomorphic.

1 Introduction

This work treats some of the structural properties of oriented line graphs.
Oriented line graphs were first introduced by Kotani and Sunada [7] as a
tool to show the rationality of the IThara zeta function. Storm attached an
oriented line graph to a hypergraph [10] for the same reasons. Also, Scott
and Storm were able to describe the coefficients of the Ihara zeta function
in terms of graph structure by exploiting the connection with oriented line

graphs [9].
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In addition to being useful for studying the rationality of the Ihara zeta
function and the structure of the associated graph, there is a direct connec-
tion between oriented line graphs and Ramanujan graphs. The connection
comes through the graph “Riemann hypothesis” and can be expressed as
a spectral condition on the adjacency operator of the oriented line graph.
We refer the interested reader to a paper by Murty [8] which highlights this
connection. Details can also be found in the paper by Kotani and Sunada
[7). More recently, Angel, Friedman, and Hoory made an investigation of
non-backtracking walks in graphs (1], a closely related subject, and added
further motivation for a graph theoretical Riemann hypothesis, which de-
scribes a Ramanujan type condition, proposed by Horton, Stark, and Terras
[6]. The aim of this work is to increase our understanding of this important
intermediary structure, which we hope will increase our understanding of
both the Thara zeta function and of Ramanujan conditions on graphs.

The goal of this work is to provide a partial characterization of ori-
ented line graphs in terms of forbidden subgraphs. All graphs and digraphs
treated here will be finite. We begin by establishing our definitions and
notation. We refer the reader to the books by Harary, and Chartrand and
Lesniak [5, 3] for a good overview of graphs and digraphs.

A graph X = (V, E) is a finite nonempty set V of vertices and a finite
multiset E of unordered pairs of vertices, called edges. If {u,v} € E, we say
that u is adjacent to v and write u ~ v. A graph X is simple if there are
no edges of the form {v,v} and if there are no repeated edges. We denote
by d(z), the degree of vertex x, which is the number of vertices to which z
is adjacent. Finally, a graph is minimum degree 2, denoted “md2”, if every
vertex has degree at least 2. We will restrict our focus to md2 graphs.

A directed graph or digraph D = (V, E) is a finite nonempty set V' of
vertices and a finite multiset E of ordered pairs of vertices called arcs. For
an arc e = (u, w), we define the origin of e to be o(e) = v and the terminus
of e to be t(e) = w. The inverse arc of e, written €, is the arc formed by
switching the origin and terminus of e: € = (w,u). In general, the inverse
arc of an arc need not be present in the arc set of a digraph.

A digraph D is called symmetric if, whenever (u,w) is an arc of D, its
inverse arc (w,u) is as well. There is a natural one-to-one correspondence
between the set of symmetric digraphs and the set of graphs, given by
identifying an edge of the graph to an arc and its inverse arc on the same
vertices. We denote by D(X) the symmetric digraph associated with the
graph X. We give an example in Figure 1.

Crucial to our discussion of these structures are graph isomorphisms and
edge-isomorphisms. A graph isomorphism ¢ : X; — X5 from a graph X to
a graph X5 is a one-to-one map from V' (X;) to V(X2) which preserves edge
adjacencies. A seemingly weaker notion is that of edge-isomorphism: ¢ is
an edge-isomorphism of X, and X if ¢ is a one-to-one map from E(X))
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Figure 1: The complete graph K; minus an edge and its symmetric digraph

to E(X,) which preserves adjacencies. We leave it to the reader to fill in
the appropriate definitions for isomorphisms of digraphs. We are primarily
concerned with graph isomorphisms; however, edge-isomorphisms are useful
as a tool in Section 2.

We now give the construction for the oriented line graph as first pro-
posed by Kotani and Sunada [7]. The idea behind the construction is to
begin with a graph and produce a new structure, a digraph, where any
walk in the digraph corresponds to a non-backtracking walk in the original
graph. A backtrack in a walk is an immediate reuse of an edge, which would
return you to the vertex you just left. To this end, we will construct the ori-
ented line graph by first changing from X to the symmetric digraph D(X)
and then using the arcs in D(X) as the vertices of the oriented line graph.
Arcs in the oriented line graph arise whenever an arc in D(X) “feeds into”
another arc, which is not the inverse arc of the first one (backtracking!).
Thus the oriented line graph is a digraph whose cycles correspond to cycles
in the original graph that do not have a backtrack. This structure is the
focus of the rest of the paper.

Construction 1.1 (Kotani and Sunada). We begin with o graph X and
form its symmetric digraph D(X). Hence D(X) has 2|E(X)| arcs. We
construct the oriented line graph L°X = (Vi,E¢) by

Vi = E(D(X)),

Ef = {(ei,e;) € E(D(X)) x E(D(X)); & # e, t(e:) = o(e;)}.

Definition 1.2. We say that a digraph D is an oriented line graph if it

arises as e result of this construction.

We give an example of the construction in Figure 2.
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Figure 2: Construction of an oriented line graph of X4 minus an edge.

In general, each vertex in L°X is induced by an arc in D(X). At times,
we may refer to a vertex in L°X as (u,v) if it is the vertex induced by the
arc (u,v) in D(X). Context will make it clear when we mean the vertex in
L°X and when we mean the arc in D(X).

Remark 1.3. Often we are interested in the adjacency operator of the
oriented line graph. This operator, sometimes referred to as Hashimoto’s
T-matrix, has received much attention in the literature. It also sometimes
appears at the “edge-routing” matrix. By studying oriented line graphs,
we are studying the structure of these matrices.

In Section 2 we detail a Whitney result, establishing that if two md2
graphs have the same oriented line graph, they are isomorphic. Then in
Sections 3 and 4, we provide a list of forbidden subgraphs that an oriented
line graph cannot contain. We do this by first giving an algorithm that takes
a directed graph and, in the event that the directed graph is an oriented
line graph, produces the “parent” graph. By analyzing this algorithm,
we provide infinite families of forbidden subgraphs. We also detail some
structural properties that oriented line graphs must satisfy. We conjecture,
at the end, that the families we have provided actually are a complete
characterization.

2 A Whitney result

In 1932, Whitney addressed the following question “Suppose we have two
line graphs Lx and Ly, what can we conclude about the graphs X and Y



which induced them?” He answered this question as follows: If Lx & Ly,
then X =Y with the exception of a finite number of situations (reproduced
in Figure 3) [11). In this section, we establish a similar theorem for oriented
line graphs and graphs.

The goal of this section is to provide a proof of Theorem 2.1. This
theorem was first presented by Balof and Storm (2] in the more general
setting of oriented line graphs of hypergraphs. We present here just the
case of oriented line graphs of graphs since that is the setting in which we
find ourselves.

Theorem 2.1 (Balof and Storm). Suppose X and Y are md2 graphs. If
LeX 2 L°Y, then X =Y.

We first consider the case in which every vertex has exactly degree 2;
then we consider the more general case in which at least one vertex is of
degree 3 or higher. In the event that every vertex is degree 2, the original
graph is a disjoint union of cycles. The oriented line graph is a disjoint
union of twice as many directed cycles of the same lengths. Given the
construction of the oriented line graph, it is clear that if we begin with a
disjoint union of directed cycles, we can deduce what graph it came from.

To show the more general case, we look more closely at the vertices in
the oriented line graph. In particular, given a vertex induced by an arc e
in the symmetric digraph, we are able to identify the vertex induced by the
inverse arc &. Pairing each vertex with the vertex induced by its inverse arc
will be very helpful. This idea first appears in [4] as part of an algorithm
to reconstruct the graph that induced an oriented line graph.

We establish some notation and then see how to do this. The outdegree
of v, d*(v), is the number of vertices that are at the terminus of an arc
beginning at v. Similarly, the indegree of v, d~(v), is the number of vertices
that are at the origin of an arc terminating at v.

Theorem 2.2 (Cooper). Given an oriented line graph D which was con-
structed from a connected md2 graph X with at least one vertez of degree
3 or greater, we can match each verter induced by an arc with the vertex
induced by the inverse arc.

Proof. We begin by considering a vertex v € V(D) which satisfies d*(v) >
2. By the construction of the oriented line graph, this suggests that v
corresponds to an arc in the symmetric digraph which “feeds into” at least
2 other arcs, which we will call z and y, without backtracking. Now let us
look at the inverse arc associated with z. This arc will also feed into y and
any other arcs which v feeds into with the exception of the arc z. However,
this arc will feed into exactly one arc which v does not feed into; namely,
the inverse arc of v. Making use of this fact allows us to identify # so that
we can identify it with v in the oriented line graph.
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Figure 3: Exceptional graphs in Whitney’s theorem.

We now consider a vertex v € V(D) which satisfies d*(v) = 1. Since X
is connected and md2, there exists a backtrackless path in X which begins
with the directed arc associated with v and terminates at z, where z is any
vertex of X satisfying d(z) > 3 (such a vertex exists by assumption placed
on X). We argue by induction on the length of this path.

Our base case is if the path is length 1. If the length is 1, the directed
arc associated with v in X terminates at z, a vertex of degree 3 or higher.
This implies, necessarily, that this directed arc feeds into more than one
other directed arc, forcing d*(v) > 1, a contradiction. Then we can use the
arguments from the first paragraph to identify its inverse arc .

Now we suppose that the length is n. In that case, we look at the vertex
to which v points. We denote it by w. Then w is a vertex which is length
n — 1 away from z, so by induction we can identify the vertex which came
from @. Then 0 satisfies d* (@) = 1, and the sole vertex it points at is ,
so we can identify U as desired. O

Theorem 2.2 will let us take an oriented line graph and establish a
correspondence between vertices induced by inverse arcs. An isomorphism
of oriented line graphs will then induce an edge-isomorphism of the parent
graphs because of this correspondence. We make use of a theorem, due
to Whitney [11], regarding edge-isomorphisms as found in Chartrand and
Lesniak (3].

Theorem 2.3 (Whitney). Let ¢ be an edge-isomorphism, a one-to-one map
from the edge set of one graph to another which preserves adjacencies, from
a connected graph X, to a connected graph Xa, where X, is different from
the graphs Gy,Gs,G3, G4, and Gy shown in Figure 3. Then ¢ is induced
by an isomorphism from X; to Xo.

We use this theorem to prove Theorem 2.1.
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Proof of Theorem 2.1. We suppose that we have two graphs X and Y which
are md2 and whose oriented line graphs are isomorphic; ie, L°X = L°Y.
In the event that L°X is a disjoint union of direct cycles, we see directly
that X and Y are disjoint unions of cycles and must be isomorphie.

We suppose that X has a vertex of degree at least 3. In that case, we
use Theorem 2.2 and identify each vertex induced from an arc in L°X with
the vertex induced from the inverse arc. We do the same for L°Y. Then
any isomorphism ¢ : L°X — L°Y will preserve this identification since
it was forced upon us. Moreover, by now identifying the pairs as having
come from the same undirected edge in the original graph, we see that
¢ actually provides us with an edge-isomorphism from X to Y. We now
invoke Theorem 2.3 to see that X Y.

The exceptional graphs in Figure 3 don’t pose a problem as we can
resolve them on a case-by-case basis. O

This gives us the Whitney-type result that we desired. We now turn
our attention to forbidden subgraphs in oriented line graphs in an effort to
provide a structural characterization.

3 Forbidden subgraphs

We begin our investigation of forbidden subgraphs by giving an algorithm
which takes a directed graph D and gives a graph X. In the event that D
is an oriented line graph, the graph X will have the following property: D
and L°X are isomorphic as oriented line graphs.

Remark 3.1. The algorithm is technical. Here is an intuitive idea of what
happens. Recall that each vertex of L°X corresponds to an arc in a directed
graph C. Let’s focus for a moment on digraphs. We will mentally break
each arc into two parts: the beginning which is leaving a vertex v and the
end which is arriving at a vertex w. Then we identify a vertex by looking at
all of the arcs which leave or arrive at that vertex. Thus our goal will be to
identify which vertices in L°X correspond to arcs which originate from the
same vertex or which arrive at the same vertex. Finally, we will construct
the adjacencies in C by gluing the arcs back together so that we can tie our
vertices together.

Construction 3.2. To do this, we first label the vertices of D asvy,...,vm
and the arcs as ey,...,ex. We construct a digraph H as follows. The
verter set of H will be a partition of the set S = {1,2,...,2m} where
m was the number of vertices in D. We generate the particular partition
algorithmically.

For i € S, let Si(t) be the subset of S containing i at time 0 < ¢t < k.
We begin with S;(0) = {i} for each i. At time j, we examine the arc
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Figure 4: A digraph D upon which we run the algorithm

e = (Wi, vi). We let §3,(3) = Sam(i) = S5(j = 1) U Sjpm(i — 1).
In this way, we are identifying that the terminus of v;, (represented by
Sj +m) is the same as the origin of v;, (represented by S;,). We note
that S;, (t) = Sj,+m(t) will remain identified with each other for the rest of
the process so that if one set grows, the other grows with it. To this end,
for any £ € S;,(5), we update S¢(j) = Sj,(j). For £ & S;,(j), we update
Se(3) = Se(§ — 1). We complete this process after we have considered each
edge.

To give the digraph H, we let S; = S;(k); then the vertez set of H is
given by removing any duplication among the S;’s and taking that resulting
partition. The edge set of H is given by E(H) = {(Si, Sit+m)[1 < i < m}.
We note that H is a well-defined multi-digraph; however, it may not be a
simple digraph. It is possible that, at this point, we have loops and multiple
edges.

The graph X is formed as follows. For each pair of arcs in H which
are inverses, we combine them into a single undirected edge on the same
vertices. After this, we forget the directions in H and take any directed edges
as undirected edges on the same vertices. This leaves us with a multigraph.

In Theorem 3.6 we show that if D is an oriented line graph satisfying
certain conditions and if X is the graph generated through Construction
3.2, then D is isomorphic to L°X. In addition, at the end of the section
in Theorem 3.14, we show that if D is an arbitrary digraph that does not
contain certain forbidden subdigraphs, then D is a subdigraph of L°X.

Example 3.3. We illustrate the algorithm on the digraph in Figure 4. The
digraph D has 4 vertices which we have labeled 1 through 4. We now create
eight sets Sy, Sz, - -, Sg by setting 5;(0) = {i}.

The first arc that we consider is e;, which originates at vertex 1 and
terminates at vertex 2. Thus we let S5(1) = S2(1) = S5(0)US2(0) = {2,5}.



Set =0|t=1 t=2 t=3 t=4 t=5
Sl(t) {1} {]} {1} {192)5v7} {l’ 2a4»5)7} {1,2-415:7}
St) | {2} | {2.5) | {2,5,7) | {1,2,5,7} | {1,2,4,5,7} || {1,2,4,5,7}
S3(t) || {3} | {3} {3} {3} 3} {3,8}
Ss@) | {58} | (2.5} | {2,5.7) | {1,.2,5,7} | {1,2.4,5,7} || {1,2,4,5,7}
Se(t) || {6} | {6} {6} {6} {6} {6}
Ss@) | {7 | D | (257 ] {1,257} | {1,2,4,5,7)} || {1,2,4,5,7)}
Ss(t) || {8} | {8} {8} {8} {8} {3.8}

Figure 5: We record the updates to the sets S; for each arc considered.

1,2,4,5,7

A

Figure 6: The digraph that results from our algorithm

We also update S;(1) = {i} for i # 2,5. We now identify Sz and S5 so that
if one is updated later, the other will be as well. We have finished with
e; and now consider e; = (3,2). This asks us to update S7(2) = S(2) =
{2,5,} U {7} = {2,5,7}. In addition, since S and Ss are identified from
before, we update S5(2) = {2,5,7}. The remaining sets S; for i # 2,5,7
remain with S;(2) = {i}. We continue in this manner for the arcs es, ey,
and es. A complete list of the updates which happen for each arc appears
in Figure 5.

Now that we have completed building the sets S;, we see that §; = S, =
S4 =8 =8, = {1,2, 4,5,7}, that S3 = Sg = {3, 8}, and that Sg = {6}
This gives us the partition of {1,2,---,8} that we claimed. We build the
digraph H from the sets S;.

The partition that we found above is given by {{1, 2,4, 5, 7}, {3,8}, {6} }.
Then the adjacencies we get in forming the digraph H are as follows:
{1,2,4,5,7} is adjacent to itself, to {6}, and to {3,8} since 1 + 4 = 5,
2+4 =26, and 4+ 4 = 8. Also, {3,8} is adjacent to {1,2,4,5,7}. The
resulting digraph is shown in Figure 6.

We note that this digraph is a bit “messy”; however, this is in large part
because the original digraph we started with is not an oriented line graph.
This concludes the example.

Before moving on, we describe how to tell when the sets S; and Sj,
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constructed in the above algorithm, are identified with each other. We first
give a useful technical definition.

Definition 3.4 (Alternating paths). In a digraph D, an alternating path
is a sequence of distinct arcs {f1, f2,-*- , fe} for some € € Z such that the
path formed by replacing fo; with the inverse arc fzj forms a path in the
digraph, either starting at the origin of fi and going forwards or starting
at the origin of fe and going backwards in our sequence. In other words, by
reversing the direction of the evenly positioned arcs, we see what we expect
for a path.

We can now fully describe when S; = S;.

Lemma 3.5. Let D be a digraph with m vertices and H the digraph formed
from D by the algorithm above. Then S; = S; for i # j if and only if one
of the three conditions below is satisfied:

1. Forl < i< j £ m, there is an alternating path { f1, fo, -, fe}, with?
even, and fi = (z,v:) and fp = (y,v;) for some vertices z,y € V(D).

2. For1 <i<m < j<2m, there is an alternating path { fi, f2, - - , fe}.
with £ odd, and fi = (x,v;) and fo = (Vj—m,y) for some vertices
z,y € V(D).

3. Form < i < j < 2m, there is an alternating path {f1, f2,--- , fe},
with £ even, and fi = (Vi—m, ) and fo = (Vj—m,y) for some vertices
z,y € V(D).

Proof. If such an alternating path exists, application of the algorithm leads
directly to S; = S;. To show the existance of an alternating path when
the sets are equal we proceed by induction on the number of arcs in the
graph D. If D has no arcs, the constructed digraph H is a collection of
m independent edges and no two sets are equal, so the condition holds
vacuously. For a general digraph D, we label the arcs consecutively and
inspect each arc in turn during the construction of H. In applying the
algorithm to D — ex, we may use the same labels on the arcs. Denote the
digraph so obtained by H’. There are two cases.

Case 1. S; = S; before the inspection of ex. In this case, S; = S; for H’,
a smaller graph, so the alternating path condition holds by the induction
hypothesis.

Case 2. S; = S; only after the inspection of e;. Using the notation
of the construction, e, = (vk,,Vk,) and inspection of the arc yields the
identification Sg, = Sk,+m. Thus, prior to this inspection, S; = Sk, and
S; = Sk,+m (or vice versa) so that after the inspection the sets are the
same. However, these conditions are also true for H’ so we have alternating



paths {f1, f2,..., fi} between v; or v;_m and v, with f; = (v,,z) and
{91.92,-...91r} between v, and v; or vj_n, with g; = (y,vs,). However,
{f1,f2,..., f,ex, 91,92, ..,9r} is an alternating path between v; or vi_,
and v; or vj_m. The parity condition follows from inspection of this path
and the conditions on 7 and j. 0

We immediately make use of Lemma 3.5 to justify the construction given
at the beginning of this section.

Theorem 3.6. Let D be the oriented line graph of a graph X such that
every vertex in X has degree at least 3. Then the digraph H constructed
from D by our algorithm is exactly the symmetric digraph D(X) associated
to X, making the corresponding graph X.

Proof. We begin with some numerical considerations. If m is the number of
edges in X, then the number of vertices in D is exactly 2m. By construction,
there is one arc in H for each vertex in D, so the number of arcs in H is also
2m, the same as the number of arcs in D(X). There are two considerations
to conclude the proof: that each arc in H has an inverse arc and that
adjacent arcs in H correspond to adjacent edges in X.

In Theorem 2.2 we argued that it was possible to identify the vertex
induced by the inverse arc of a vertex v in the oriented line graph if d*(v) >
2. Since X is md3, each arc feeds into at least two other arcs, so every vertex
in D has out degree at least 2. Thus for each vertex v € D, we can identify
the vertex ¥ induced by the associated inverse arc. In the proof of this
result, a length 3 alternating path was constructed, as {(v, z), (¥, ), (v, 0)}.
If we identify v = v; and ¥ = v;, this alternating path falls into case 2 of
Lemma 3.5 so that S;;,,, = S§;. However, if instead we start with v;, the
same considerations lead to an alternating path {(7, a), (b,a), (b,v)} so that

- Sj+m = S; and the arcs (S;, Sitm) and (S;, Sj4m) are inverses, as desired.

We conclude by showing that adjacent arcs in  correspond to adjacent
edges in X. Consider an alternating path {(v1,v2), (v, ve), (v3,v4), (s, v4),
(vs,ve)} in D. Since we know that D is an oriented line graph, if there is
no arc (vy,v4), then the above considerations identify vy = @,. Similarly, if
there is no arc (vs, vg), then vg = T3. However, since the arc corresponding
to vz in D(X) feeds into the arc corresponding to v4 = ¥;, v; must feed into
U3, so the arc (v;,vg) must exist. Thus, the shortest odd alternating path
between two vertices has length at most 3. Since every arc has an inverse,
the only adjacencies to consider in H are those of the form (S;, Sitm)
adjacent to (S;,Sj+m) (so Siym = S;). Since this only happens when
there is an alternating path from v; to v;, and the shortest alternating path
is of length at most 3, either these are inverse arcs, or they are adjacent in
D, so v; feeds into v; in D(X). This concludes the proof. a



Figure 7: The digraphs F; and Fo.
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Figure 8: Illustration for the proof of proposition 1 in the case n =2
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Lemma 3.5 also gives us a concrete way to detect certain structures
which are forbidden in oriented line graphs of simple graphs. We first focus
on the structures in D that lead to loops in X. From the definition of the
edge set of H, we get a loop in H (and thus in X) if S; = Sip,. We define
the following class of digraphs.

Definition 3.7 (Forbidden subdigraphs: F,). Let F, be a digraph with
2n + 1 vertices, written {1,2,---,2n + 1}. The arcs in F,, are given by
(i—1,1) and (i+1,1) for each even i satisfying 1 <i < 2n+1. In addition,
we add the arc (2n+ 1,1).

We illustrate F; and F; in Figure 7.

Proposition 3.8 (Forbidden subdigraphs: F,). Suppose D contains no
subdigraphs isomorphic to F, for each n € N, then the digraph H, and
consequently the graph X, formed from D by our algorithm contains no
loops.

Proof. A loop is formed if an arc is given from a vertex to itself. From
the construction of H, the arcs are (S;, Sit+m). Thus, loops may only be
formed if S; = Siym. Since 1 < i < m < i+ m < 2m, this falls into case 2
of Lemma 3.5 and there is an odd alternating path from v; to itself in D.
Withv; =1, fi =(2n+1,1), fo = (2n+1,2n), f3 = (2n — 1,2n), and so
on until fa,4+1 = (1,2), this is a subdigraph isomorphic to the graph F,,.
This isomorphism is illustrated in Figure 8. O

Thus the graphs F,, arise in an oriented line graph if the parent graph
has a loop.
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Figure 9: The digraphs Gi,1, G1.2, G2,1, and G2 2.

Example 3.9. We have already seen an example where F; induces a loop.
We refer to the digraph in Figure 4. Then the subdigraph induced by the
vertices {1,2, 3} is isomorphic to F;. Indeed, when we run our algorithm,
we see how a loop is produced in the output, as shown in Figure 6.

We also identify the structures in D that give rise to double edges in X.
From the definition of the edge set of H, we get a double edge in H (and
thus in X) if S; = S; and Siym = Sj4m for some pair i # j. We define the
following class of digraphs.

Definition 3.10 (Forbidden subdigraphs: G, ). Let G, be a digraph
with 2(n + k) vertices labeled {a1, a2, -+ ,a2n,b1,b2,- -« ,bar}. The arcs are
given by (ai,a,'+1), (ai,a,-_l) fO‘l" odd i and (bi,bi+1), (bi,b,‘_l) fO’I' even 1.
In addition, we have the arcs (by,a1) and (b, as,).

We illustrate Gy,1, 1,2, G2,1, and Gz 2 in Figure 9.

Proposition 3.11 (Forbidden subgraphs: G, x). Suppose D contains no
subdigraphs isomorphic to G, . for each pair (n, k) € NxN, then the digraph
H from our algorithm, does not contain a double arc with both arcs directed
in the same way. In particular, the resulting graph X will not have a double

edge.

Proof. This proof follows the same general idea as the proof of 3.8: we first
identify when double arcs appear and then identify an isomorphism between



ay = T2 asz = Y2
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Figure 10: Illustration for the proof of proposition 2 in the case n =k =2

the required edges and one of the digraphs G, . Specifically, double arcs
in D result from arcs (S;, Siym) and (S;, Sj+m) when S; = S; and Siym =
Sj+m. If 8; = S;, then this is an instance of case 1 of Lemma 3.5. As
such, there is an alternating path {fy, f2, -+ , fox} with f; = (z1,v;) and
fox = (11, ;). If Siym = Sj4m, then this is an instance of case 3 of Lemma
3.5. Thus, there is an alternating path {g1, 92, - , g2} with g = (v;, z2)
and gon = (vj,y2). We identify v; = by, v; = agn, Ty = b, y1 = bax,
zo = aj, and Yy = ag,—1. In addition, g» = (as,a2), g3 = (as,as4), ete.,
until gon—1 = (@2n-2,82n—a, f2 = (b2,b3), f3 = (b4, b3), and so on until
fok—1 = (bak,bak—1). This is an isomorphism to G, x and is illustrated in
Figure 10. O

The graphs G,, . arise if the parent graph has a double edge, which shows
up in H as two arcs directed in the same direction. There is a second case
of a double edge in X which arises from two arcs in H which are directed
in opposite directions. We must take care to allow this when the arcs are
playing the role of “inverse arcs” and disallow it when they were induced
by different edges in X. To this end, we define another class of digraphs.

Definition 3.12. We define Qn,k by starting with G, . and removing the
arc (b1,a1). We then replace that arc with the arc (a1, b,).

Proposition 3.13 (Forbidden digraphs: G ). Suppose D contains no
subdigraphs isomorphic to Gn,k for each pair (n, k) € NxN, then the digraph
H contains no double arcs directed in opposing directions. In particular,
if D contains no subdigraphs isomorphic to G, i for each k € N, then the
digraph H contains no arcs which would arise from a pair of inverse arcs. In
this case, the graph X formed from H will not have a double edge resulting
from failing to identify a pair of inverse arcs.
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Figure 11: Illustration for the proof of proposition 3 in the case n = k = 2

Proof. Arcs occur in opposite directions in H when arcs (S;, Siym) and
(Sj,Sj+m) have §; = Sj4m and §; = Siym. Both of these fall into case
2 of Lemma 3.5, so there are alternating paths {f1, f2, -, fan—1} and
{91,92,- - y 92641} With fi = (z1,%), fon-1 = (vj, 1), g1 = (22,v;) and
92k+1 = (vi, y2). With the identification that ay = v;, a2 = 24, agn—1 = 11,
azn = vj, by = y2, and by = 9, this gives an isomorphism to the graph
g'n,k. However, we must take care to allow inverse arcs, so this cuts down
the family of disallowed subgraphs. An arc in H would not be adjacent
to its inverse arc in the oriented line graph, so the vertices corresponding
to inverse arcs cannot be adjacent in D. The first part of this theorem
completely describes when one arc and its inverse both arise from D. The
vertices in g-n,k which correspond to the inverse arcs are a; and ag,,. There
is no value of k to make these adjacent, but they are adjacent when n =1,
so the graphs g'l,k are not allowed. d

Now that we have identified the families of digraphs F,,, G, &, and g}k,
we more precisely state the relationship between D, H, and X when D is

an arbitrary digraph.

Theorem 3.14. Let D be a digraph and X the graph resulting from the
above algorithm. Suppose D contains no subdigraph isomorphic to an in-
stance of Fn, Gnk, or Gix, then H is a simple digraph with no loops and
D is a subdigraph of L°X, the oriented line graph of X.

Proof. The statement that H is simple follows from Propositions 3.8 and
3.11. For the remaining statement, that D is a subdigraph of L°X, we
present an explicit injective mapping of both the vertices and the arcs in
D to the vertices and arcs in L°X. This injection is illustrated in Figure
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Figure 12: Our mapping.

12. To begin with the vertices, a vertex v; € V(D) corresponds in the
algorithm to the arc (S;,Si+m) € E(H). This mapping is bijective by
construction. Since H is simple, and we form X by combining inverse arcs
ignoring direction, there is at most one other arc in E(H) corresponding
to the edge {Si, Si+m} € E(X). Recalling that V(L°X) = E(D(X)), the
edge {S;, Si+m} forms two vertices in V(L°X), specifically, (S;, Sitn) and
(Si+m,S:i). Assuch, we introduce the correspondence that v; — (S;, Sitm)
and note that this mapping is injective.

It remains only to show that if (v;,v;) is an arc in D then the cor-
responding vertices (S;, Siym) and (Sj, Sj+m) in V(L°X) are adjacent.
However, the existence of the edge (v;,v;) causes Siy,, = S; from our
algorithm. Thus, in H, the arc (S;, Sitm) and the arc (S;, Sj4+m) share
the vertex Siym = S;. By Proposition 3.13, the vertices S; and Sjim
are distinct, so the arcs (Si, Sit+m) and (S, Sj4+m) in E(D(X)) are not in-
verses. Since the terminus of the first arc is the origin of the second arc, the
arc ((Siy Si+m): (Sj, Sj+m)) is in E(L°X). The injectivity of the mapping
(vi,v;) — ((Si, Si4+m), (Sjs Sj+m)) follows since cach of the aforementioned
arcs is unique. O

We note that the conclusion that D is a subdigraph of L°X is important.
There are several ways for D to not be isomorphic to L°X. It is possible

412



that the intermediate graph H is not isomorphic to D(X). This can happen
particularly when ‘H has some arcs without corresponding inverse arcs. In
this case, X will have more edges than half the number of vertices of D. A
second possibility is that the number of edges in X is correct, but L°X has
more arcs than D.

4 Structural characterizations

The discussion in the previous section led to forbidden subgraphs upon
considering what structures in an oriented line graph would be induced by
a loop or double edge in X. In this section, we take a more rigorous look at
the structure of the oriented line graph and provide some characterizations
based upon these observations.

We fix a graph X, its symmetric digraph D(X), and the resulting ori-
ented line graph L°X. We begin by looking at the arcs in D(X) that an
arc ej can legally feed into. We first establish some notation. For a vertex
v in a digraph D, we let 'y (v) = {w € V(D)|{v,w} € E(D)}. Then I'y(v)
is exactly those neighbors of v for which there is an arc beginning at » and
terminating at w. Similarly, ['_(v).= {w € V(D)|{w, v} € E(D)} describes
those vertices for which there is an arc beginning at w and terminating at
v. We also have d*(v) = |I';(v)] and d~ (v) = [T~ (v)].

We now focus on the indegrees and outdegrees of vertices in an oriented
line graph.

Proposition 4.1 (Characterization 1: Degree considerations). Suppose
L°X is the oriented line graph of X. Then the following are true:

1. Suppose v € V(L°X) and d*(v) > 1. Then for vertices wy,wy €
Ty (v), we have d~(w;) = d~(wp). Moreover, the symmetric dif-
ference of T_(wy) and I'_(ws) contains ezactly 2 elements: w, €
P_(we) \T—(w1) and o € T (w1) \T'—(ws).

2. Suppose v € V(L°X) and d~(v) > 1. Then for vertices wy,ws €
T'_(v), we have d*(w;) = d*(w2). Moreover, the symmetric dif-
ference of T'y(w)) and I'p(we) contains exactly 2 elements: w, €
Ci(w2) \ T+ (un) and wy € T (wi) \ T4 {ws).

Proof. We consider the first case. Fix a vertex v with d*(v) > 1 and two
vertices wy and wp € I'y (v). This means that v feeds into both w;, and w..
If we consider what is happening in the symmetric digraph D(X) used in
the construction of L°X, we see that v corresponds to an arc which points
at the tail of the arcs described by w; and ws. Hence, w; and wy have the
same origin in D(X). That they satisfy d~(w;) = d~(w2) now follows,
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The claim regarding the symmetric difference is immediate from our
discussion of Theorem 2.1 in Section 2.
The second claim follows by symmetry with the first. O

We will now focus on cycles in the oriented line graph and on paths
where each vertex has indegree 1 and outdegree 1. Before giving our next
characterization, we give a definition from Cooper [4].

Definition 4.2 (Cooper). In a digraph D, o 2-path is a sequence of ver-
tices

{d1,da,- -+ ,dr} such that Ty(di) = {diy1} for 1 < i < k. A 2-path con-
taining a verter v is maximal if there is no 2-path with more arcs which
contains v.

In the oriented line graph L°X, we can get 2-paths whenever we have
vertices of degree 2 in X since 2-paths consist exactly of those paths where
each vertex has indegree 1 and outdegree 1. We describe a structural prop-
erty of L°X relating to 2-paths and cycles.

Proposition 4.3 (Characterization 2: 2-paths and cycles). Suppose L°X
is the oriented line graph of X. Then the following are true:

1. If{dy,--- ,dx} is a mazimal 2-path in L°X, there there is a mazimal
2-path {a1,--- ,ax} satisfying t(ax) = o(d1) and t(di) = o(ay) in X.

2. If{e1, - ,en} is a cycle in L°X such that e; = e; if and only if i = j,
then there is another cycle {by, - ,ba} in L°X which is disjoint from
the first and satisfies b; = b; if and only if i = j.

Proof. Both statements will follow by considering the oriented line graph
construction. We consider the first statement. If {d;,--- ,di} is a maximal
2-path in L°X, then there is a corresponding path of & edges in X where
each of the interior vertices has degree 2 and the vertices at either end
have larger degree. Traversing this path in one direction will give rise
to {d1, - ,di}. By traversing it in the other direction, we will produce
another maximal 2-path {ai,---,ax} which ends where the first started,
and starts where the first ends. This is exactly what we have claimed.
The second statement is similar. Given a cycle in X which does not
repeat edges, we induce two cycles in L°X depending upon our direction
of travel around the cycle. O

We conclude by conjecturing that between the forbidden subgraphs of
the previous section and the structural properties described in this section,
we have described oriented line graphs.
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Conjecture 4.4 (Description of oriented line graphs). Suppose a digraph
D has no subgraphs isomorphic to an instance of Fy, Gn k., or g"l,k, and
suppose D satisfies the properties given in Proposition .1 and Proposition
4.3. Then let X be the undirected graph obtained by following the algo-
rithm in the previous section and combining arcs which point in opposing
directions into a single undirected edge, then D is the oriented line graph
of X.
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